JPS62144125A - Photographic lens - Google Patents

Photographic lens

Info

Publication number
JPS62144125A
JPS62144125A JP28499985A JP28499985A JPS62144125A JP S62144125 A JPS62144125 A JP S62144125A JP 28499985 A JP28499985 A JP 28499985A JP 28499985 A JP28499985 A JP 28499985A JP S62144125 A JPS62144125 A JP S62144125A
Authority
JP
Japan
Prior art keywords
lens
refractive power
photographic
length
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28499985A
Other languages
Japanese (ja)
Other versions
JPH0668571B2 (en
Inventor
Nozomi Kitagishi
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60284999A priority Critical patent/JPH0668571B2/en
Publication of JPS62144125A publication Critical patent/JPS62144125A/en
Publication of JPH0668571B2 publication Critical patent/JPH0668571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To well compensate various aberrations, which are generated when the refracting power of each lens group is increased, and shorten the overall optical length by setting a distributed index lens having a prescribed shape in a lens system constituting a photographic lens. CONSTITUTION:At least one lens L of the photographic lens system is constituted to satisfy N>0 when the refractive index in the direction orthogonal to the optical axis of an internal medium of the lens L is N(h)=N0+N1h<2>+N2h<4>+ N3h<6>+N4H-u8+N5h<10>- where (h) is the height from the optical axis, and this lens system is constituted to satisfy conditions of inequalities (1) and (2) where (f), L, and D are the focal length and the overall optical length of the lens system and the lens thickness of the lens L respectively. If the overall optical length is longer than the upper limit of the formula (1), the effect of the use of the distributed index lens is reduced. If a partial charge of refracting power is reduced beyond the condition of the inequality (2), the curvature of field is increased, and it is difficult that a good optical capacity is obtained while shortening the overall optical length.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は虚影レンズに関し、特に光軸と直交する方向に
内部屈折率が序々に変化する所請屈折率分布型の所定形
状のレンズを用いること(より光学性能の向上及び光学
全長(67体側の第1レンズ而から結像面までの距離)
の短、帰化を図った携帯用小型カメラに好適な撮影レン
ズに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a virtual shadow lens, and in particular to a lens of a predetermined shape with a desired refractive index distribution type in which the internal refractive index gradually changes in the direction perpendicular to the optical axis. (improvement of optical performance and total optical length (distance from the first lens on the 67 body side to the imaging plane)
This invention relates to a photographic lens suitable for a small, portable camera designed to be naturalized.

(従来の技術) 近年携帯用カメラの小型化に1≠い撮影レンズにもレン
ズ全長の短い小型のものが要望されている。
(Prior Art) In recent years, with the miniaturization of portable cameras, there has been a demand for compact photographic lenses with a short overall length.

一般の撮影レンズでは焦点距離が長くなるにつれてレン
ズ全長は増大してくる。特に焦点距離の長い望遠型の撮
影レンズではレンズ全長が増大してくる。
In a general photographic lens, the total length of the lens increases as the focal length increases. Particularly in the case of a telephoto lens with a long focal length, the total length of the lens increases.

望遠型の撮影レンズは多くの場合圧の屈折力の前群と負
の屈折力の後群の2つのレンズ群より構成されている。
Telephoto taking lenses are often composed of two lens groups: a front group with pressure refractive power and a rear group with negative refractive power.

この望遠型撮影レンズにおイテレンズ全長の短縮化を図
るには各レンズ群の屈折力全強める必要がある。
In order to shorten the total lens length of this telephoto taking lens, it is necessary to fully strengthen the refractive power of each lens group.

しかしながら各レンズ群の屈折力を強めて、光学全長の
短縮化を図ろうとすると諸収差の発生が多くなり)特に
像面の平坦性に起因するペッツバール和が負の方向へ急
激に増大し、像面湾曲が大きくなってくる。
However, if you try to shorten the total optical length by increasing the refractive power of each lens group, various aberrations will occur. In particular, the Petzval sum caused by the flatness of the image plane will rapidly increase in the negative direction, and the image The surface curvature becomes larger.

この像面湾曲は例えば光学全長をL1焦点距離をfとし
たとき光学全長の目安であるテレ比L/f  t−約0
.7以下にすると、負の方向に急激に増大し、画面全体
の光学性能を著るしく低下させる原因となってくる。又
光学全長の短縮化を図りつりFナンバーを小さくシ、撮
影レンズを明るくしようとすると高次の球面収差が多く
発生し・これを良好に補正するのが大変難しくなってく
る。
This field curvature is calculated by the telephoto ratio L/f t - approximately 0, which is a guideline for the optical total length, for example, when the optical total length is L1 and the focal length is f.
.. If it is less than 7, it will rapidly increase in the negative direction, causing a significant decrease in the optical performance of the entire screen. Furthermore, if an attempt is made to shorten the total optical length by decreasing the F number and making the photographing lens brighter, a large amount of higher-order spherical aberration will occur, and it will be very difficult to properly correct this aberration.

(発明が解決しようとする問題点) 本発明は物体側より順に正と負の屈折力の2つのレンズ
群を有し、各レンズ群の屈折力を強めたときに生ずる諸
収差、特に像面湾曲を所謂屈折率分布型のレンズを用い
ることにより良好に補正し、光学全長の短縮化を図った
撮影レンズの提供を目的とする。
(Problems to be Solved by the Invention) The present invention has two lens groups having positive and negative refractive powers in order from the object side, and it is possible to avoid various aberrations that occur when the refractive power of each lens group is strengthened, especially at the image plane. The object of the present invention is to provide a photographic lens in which curvature is well corrected by using a so-called gradient index lens, and the total optical length is shortened.

(間萌点t−解決するための手段) 複数のレンズを有した撮影レンズにおいて、該撮影レン
ズの少なくとも1つのレンズLt−該レンズLの内部媒
質が光軸と直交する方向の屈折率を光軸からの高さih
とし N(h) −N +N h2+N b’+N5h6+N
4h8十N5h10・・・・−・       ・・・
・−・・・・囚としたときN1>0となるように構成し
・かつ前記撮影レンズの焦点距離と光学全長を各々f。
(Means for Solving Interval Point t) In a photographic lens having a plurality of lenses, at least one lens Lt of the photographic lens - the refractive index of the internal medium of the lens L in the direction orthogonal to the optical axis is Height from axis ih
Then N(h) -N +N h2+N b'+N5h6+N
4h80N5h10・・・・−・・・・・
---Constructed so that N1>0 when taken as a prisoner, and the focal length and optical total length of the photographing lens are each f.

L1前記レンズLのレンズ厚をDとしたときL/f <
α7         、・−・・・−・−(1)ΣN
LD>0.2/f         ・−・・・−・(
2)となるように構成したことである。
L1 When the lens thickness of the lens L is D, L/f <
α7 ,・−・・−・−(1)ΣN
LD>0.2/f ・−・−・(
2).

この池水発明の特徴は実施例において記載されている。The features of this pond water invention are described in the Examples.

(実施例) 第1、第2図は各々本発明の数値実施例1゜2のレンズ
断面図である。図中■は正の屈折力の前群)I!は負の
屈折力の後群であ夛、本実施例では最も大きい空気間隔
を境にして前群と後群とに分けている。そして後群中の
一部のレンズ;(前述の要件を有する光軸から遠ざかる
に従い屈折率が序々に大きくなる屈折率分布型レンズを
用いることKより、前群と後群の屈折力を強め光学全長
の短縮化を図るときに生ずる諸収差・特に像面湾曲を良
好に補正している。
(Example) FIGS. 1 and 2 are cross-sectional views of a lens according to a numerical example 1°2 of the present invention. ■ in the figure is the front group with positive refractive power) I! is a rear group with negative refractive power, and in this embodiment, it is divided into a front group and a rear group with the largest air gap as the boundary. And some lenses in the rear group; (By using a gradient index lens, which has the above-mentioned requirements and whose refractive index gradually increases as it moves away from the optical axis, the refractive power of the front and rear groups is strengthened. Various aberrations, especially field curvature, that occur when trying to shorten the overall length are well corrected.

即ち本実施例では光学全長が条件式(1)で表わされる
テレ比よりも小さい望遠型の撮影レンズにおいて、後群
の一部のレンズに内部媒質の光軸に直交する方向の屈折
率が前述の要件を満足する屈折率分布型レンズより構成
しているのを特徴としている。これにより光学全長の短
縮化を図ったときく生ずる諸収差−主に像面湾曲を良好
に補正している。
That is, in this example, in a telephoto taking lens whose total optical length is smaller than the telephoto ratio expressed by conditional expression (1), some lenses in the rear group have the refractive index of the internal medium in the direction perpendicular to the optical axis as described above. It is characterized by being constructed from a gradient index lens that satisfies the requirements of This effectively corrects various aberrations, mainly field curvature, which often occur when the overall optical length is shortened.

条件式(2)におけるΣけ屈折率分布型レンズ全2つ以
上用いたときの各レンズにおける係数Nよ とレンズ厚
りとの積の和が同条件を満足すれば良いことを示してい
る。
This shows that when two or more Σ-gradient index lenses in conditional expression (2) are used, the sum of the products of the coefficient N and the lens thickness for each lens should satisfy the same condition.

本実施例においては撮影レンズの光学全長が条件式tx
t 1fI:外れて長くなってくると屈折率分布型レン
ズを用いる効果が薄れてくる。
In this example, the optical total length of the photographic lens is expressed by the conditional expression tx
t 1fI: As the lens becomes longer and longer, the effect of using a gradient index lens becomes less effective.

又本実施例の如く光軸と直交する方向に屈折率分布を有
する所謂ラジアル型の屈折率分布型レンズではレンズ内
部における屈折力(転送屈折力)はレンズ厚をDとする
と近似的に一2NLDと表わすことができる。ぞして係
数N□が正の場合はレンズ内部における屈折力をま負と
なシ発散作用を有する。本実施例では係数N工が正の値
の屈折率分布型レンズにおいてレンズ内部の屈折力の和
を条件式(2)全満足するように構成しヘツツハール和
金小すくシている。
In addition, in a so-called radial type gradient index lens having a refractive index distribution in a direction perpendicular to the optical axis as in this embodiment, the refractive power (transfer refractive power) inside the lens is approximately -2NLD, where D is the lens thickness. It can be expressed as Therefore, when the coefficient N□ is positive, the lens has a diverging effect that negatively affects the refractive power inside the lens. In this embodiment, a gradient index lens with a positive coefficient N is configured so that the sum of refractive powers inside the lens fully satisfies conditional expression (2), and the sum of the refractive powers is reduced to a small value.

条件式(2)ヲ外れて屈折力の分担が小さくなってくる
と球面収差やコマ収差等は比較的良好に補正することが
できるが、ペッツバール和カ大きくなシ、この結果像面
湾曲が増大し、光学全長の短縮化を図うつつ良好なる光
学性能を得るのが難しくなってくる。
If conditional expression (2) is violated and the sharing of refractive power becomes smaller, spherical aberration, coma, etc. can be corrected relatively well, but the Petzval sum increases, and as a result, the curvature of field increases. However, it becomes difficult to obtain good optical performance while shortening the total optical length.

一般に全系の焦点距離を1とし)屈折率分布型レンズの
レンズ内部の集光若しくは発散効果による屈折力をφ、
ベースの屈折率fjcNoとしたとき屈折率分布型レン
ズのペッツバール和Pは P−φ/N。
In general, assuming that the focal length of the entire system is 1), the refractive power due to the condensing or diverging effect inside the lens of a gradient index lens is φ,
When the refractive index of the base is fjcNo, the Petzval sum P of the gradient index lens is P-φ/N.

となりNの2乗に反比例してくる。従って通常の屈折面
のペッツバール和P′−φ/Noに比べて屈折率分布型
レンズを用いればペッツバール和を小さくすることがで
きる。
Therefore, it is inversely proportional to the square of N. Therefore, if a gradient index lens is used, the Petzval sum can be made smaller than the Petzval sum P'-φ/No of a normal refractive surface.

本実施例では屈折率分布型レンズの屈折面の屈折力及び
転送屈折力−2NID Y(適切に設定することによシ
ベツツパール和と小さくしつつ全体的に良好なる光学性
能全得ている。
In this example, the refractive power and transfer refractive power of the refractive surface of the gradient index lens -2NID Y (by appropriately setting the Sibets-Pearl sum), overall good optical performance is obtained.

尚本実施例において屈折率分布型レンズを用いて所定の
諸収差を良好に補正するには、屈折率分布型レンズの厚
さをdとしたとき o、oz7’ (a <0.15/       ・・
・・・・・・・(3)の如く設定するのが好ましい。
In this example, in order to properly correct various aberrations using a gradient index lens, the thickness of the gradient index lens is o, oz7' (a < 0.15/ ・・
It is preferable to set as shown in (3).

前述の如く屈折率分布型レンズの転送屈折力は近似的に
一2N IDと表わすことができる。この為所定の転送
屈折力を得るためには例えばレンズ厚りを小さくすれば
係数Nll金色くしなければならない。即ち元軸からの
距fihに対する屈折率Nの変化dN/dh t−大き
くする必要がある。しかしながらあまり屈折率、% d
N/dh ’に大きくすると補正しようとする収差以外
の他の諸収差の発生が大きくなってくる。
As mentioned above, the transfer refractive power of the gradient index lens can be approximately expressed as -2N ID. Therefore, in order to obtain a predetermined transfer refractive power, for example, by decreasing the thickness of the lens, it is necessary to make the lens yellow by a factor of N11. That is, it is necessary to increase the change in refractive index N dN/dh t with respect to the distance fih from the original axis. However less refractive index,% d
If the value is increased to N/dh', the occurrence of various aberrations other than the aberration to be corrected increases.

そこで本実施例では条件式(3)の如く屈折率分布型レ
ンズの厚さを設定して所定の転送屈折力を得ると共に諸
収差の補正を良好に行っている。
Therefore, in this embodiment, the thickness of the gradient index lens is set as in conditional expression (3) to obtain a predetermined transfer refractive power and to properly correct various aberrations.

条件式(3)の下限vLヲ越えて厚さが短くなると屈折
率差dN/dhを大きくしなければならず為この箱来前
述の如く諸収差の発生が多くなり好ましくない。又上限
tLt−越えて厚さが長くなりすぎると逆に屈折率差が
小さくな夛すぎ屈折率分布変化による収差補正効果が少
なくなってくるので好ましくない。
If the thickness becomes short beyond the lower limit vL of conditional expression (3), the refractive index difference dN/dh must be increased, which is undesirable because various aberrations will increase as described above. On the other hand, if the thickness exceeds the upper limit tLt- and the thickness becomes too long, the refractive index difference is small and the aberration correction effect due to excessive changes in the refractive index distribution decreases, which is not preferable.

更に本実施例では両レンズ面を凸面若しくは光軸上の厚
さに比べてレンズ周辺部の厚さが薄い所」凸レンズの形
状で構成すると共に屈折力分布を制限する前述の式にお
けるh4の係数N をN2〉0となるようにして球面収
差、コマ収差飄歪曲収差等を良好に補正している。
Furthermore, in this embodiment, both lens surfaces are convex, or the thickness at the peripheral portion of the lens is thinner than the thickness on the optical axis.The coefficient of h4 in the above equation that limits the refractive power distribution is By setting N such that N2>0, spherical aberration, coma aberration, distortion, etc. are favorably corrected.

これは凸面により生じる負の方向の球面収差をレンズ内
部の転送屈折力を負とし・これによシ正の方向に発生せ
しめて全体的にバランス良く補正している。
This corrects the spherical aberration in the negative direction caused by the convex surface by making the transfer refractive power inside the lens negative and causing it to occur in the positive direction, thereby correcting the spherical aberration in a well-balanced manner as a whole.

コマ収差についても同体である。The same is true for comatic aberration.

又歪曲状±は屈折率分布型レンズの周辺の屈折率の高い
凸面によ9頁の方向に大きく発生させて望遠型において
発生しがちな正の歪曲収差と、バランスさせて補正して
いる。
Further, the distortion (±) is largely generated in the direction of page 9 by the convex surface with a high refractive index around the periphery of the gradient index lens, and is corrected by balancing it with the positive distortion that tends to occur in telephoto lenses.

第1図に示す型層型の逮影し/ズは撮影−角が&25′
である。
The angle of the layered type shown in Figure 1 is &25'.
It is.

本実施例では前群Iを物体側に強い屈折面金有する正の
屈折力の第ルンズ、物体側に凸面を向けた正の屈折力の
メニスカス状の第2レンズ、そして1!!面側に強い屈
折力を有する両レンズ面が凹面の第3レンズの3つのレ
ンズよシ構成し、後群!It−像面側に凸面を向けた負
の屈折力のメニスカス状の第4レンズ、全□体として負
の転送屈折力の屈折率分布型の第5レンズそして両レン
ズ面が凸面の第6レンズの3つのレンズより構成してい
る。屈折率分布型の第5ンンズは両レンズ面を凸状とし
1内部媒質の屈折率分布が光軸から離れるに従い序々に
大きくなるように構成し、全体的に負の屈折力となるよ
うに構成している。即ちレンズ内部で発散作用を有する
ようにし、前述の式で表わしたとき一2NIDの屈折力
を有するようにしている。このときの屈折力は後群■の
屈折力の1.86倍となっている。
In this embodiment, the front group I includes a positive refractive power lens with a strong refractive surface facing the object side, a meniscus-shaped second lens with positive refractive power with a convex surface facing the object side, and 1! ! The rear group consists of three lenses, including a third lens whose both lens surfaces are concave and have strong refractive power on the surface side! It - a meniscus-shaped fourth lens with a negative refractive power with a convex surface facing the image plane side, a refractive index gradient-type fifth lens with a negative transfer refractive power as a whole □ body, and a sixth lens with both lens surfaces convex. It is composed of three lenses. The fifth lens of the refractive index distribution type is configured so that both lens surfaces are convex and the refractive index distribution of the first internal medium gradually increases as it moves away from the optical axis, so that the overall lens has negative refractive power. are doing. That is, the lens is designed to have a diverging effect within the lens, and has a refractive power of -2 NID when expressed by the above-mentioned formula. The refractive power at this time is 1.86 times the refractive power of the rear group (2).

このように本実施例では屈折ぶ分布型レンズの内部屈折
力fc前述の如く設定し、後群の負の屈折力全所定値し
て維持するのに後群内の凹レンズ面の屈折力によらず屈
折率分布製レンズの転送屈折力−2ND  より得るよ
うにしてペッツバール和を小さくシ、全体的に良好なる
収差補正を行っている。
In this embodiment, the internal refractive power fc of the refracting distributed lens is set as described above, and the refractive power of the concave lens surface in the rear group is used to maintain the entire negative refractive power of the rear group at a predetermined value. The transfer refractive power of the gradient index lens is -2ND, thereby reducing the Petzval sum and performing overall good aberration correction.

第2図に示す実施例では前群1のレンズ構成は第1図の
実施例と同様であるが後群■を像面側に凸面全回けた負
の屈折力のメニスカス状の第4レンズと全体として負の
転送屈折力の屈折率分布型の第5ンンズの2つのレンズ
よす構成している。
In the embodiment shown in FIG. 2, the lens configuration of the front group 1 is the same as that of the embodiment shown in FIG. As a whole, it is composed of two lenses of a refractive index distribution type fifth lens having negative transfer refractive power.

本実施例における屈折率分布型の第5レンズはXf?、
面側に凸面を向けたメニスカス形状をしているがこの他
の構成及び作用については第1図で示した実施例と同じ
である。
The fifth lens of the gradient index type in this example is Xf? ,
Although it has a meniscus shape with a convex surface facing toward the front side, the other structure and operation are the same as the embodiment shown in FIG.

以上の実施例では望遠型の撮影レンズについて述べたが
ガウス型し/ズやテツサー型しンズ等他のタイプの撮影
レンズについても本発明は良好に適用することができる
In the above embodiments, a telephoto lens has been described, but the present invention can also be suitably applied to other types of lens such as a Gaussian lens or a Tetsusar lens.

次に本発明の数IIi実施例を示す。数値実施例におい
てRiけ物体側よシ順に第1番目のレンズ面の曲率半径
・ Dlは物体側より第1番目のレンズ厚及び空気間隔
、Ni とνlは各々物体側よりj峨に第ijデ目のレ
ンズのガラスの屈折率とアツベ数である。
Next, a number IIi embodiment of the present invention will be shown. In the numerical example, Ri is the radius of curvature of the first lens surface in order from the object side, Dl is the thickness and air gap of the first lens from the object side, Ni and νl are the ijth lens thickness and air distance from the object side, respectively. These are the refractive index and Atsube number of the glass in the eye lens.

屈折率分布型レンズは光軸と直交する方向の高さをhと
したときの屈折率N(h)  &N(h) −N0+N
1h2+N2h4+N5h6+N4h8+N5h10 なる式で表わしている。
A gradient index lens has a refractive index of N(h) &N(h) -N0+N when the height in the direction perpendicular to the optical axis is h.
It is expressed by the formula: 1h2+N2h4+N5h6+N4h8+N5h10.

又ra−oxJの表示は[to−”jを意味する。Moreover, the expression ra-oxJ means [to-"j.

数値実施例I F−100FNO−1:5.6 2ω−13,25’R
1−16,97D L−1)3N 1−1.49700
  v 1−81.6R2−−250,72D 2−0
.03R3−16,65D 3−120  N 2−1
−48749  y 2−70.2R4−49,To 
 D 4−1.02R5−−447L89  D 5−
0.93  N 3−L 85026  シ3−3Z 
aR6−30,70D 6−20.40 R7−−8,45D 7−0.63  N 4−1.8
3400  y 4−37.2R8−−18,5508
−0,06 R9−27,07D 9−5.46  N 5−N(h
)RIO−−9,’31    DIO−0,06R1
)−21,80Dll−0,94N 6−L 5325
6   ν 6−45.9R12−−168,376 数値実施例2 F−100FNO−1:5.6 2ω−6,7Rl−2
’!−05D 1” 3.33  N 1−1.497
00  v 1−81.6R2−−235,0802−
0,03 R3−20,56D 3− ′2.33  N 2−1
.49831  シ2−65.0R4−73,8904
−:L 00 R5−−2146,09D 5−1.00  N 3−
1.85026  y 3−3Z 3R6−30,12
06−27,31 R7−−IZ 19  D 7−0.67  N 4−
1.80440  v 4−39.6R8−−18,5
3D 8−0.07 R9−−57,42D 9−3.27  N 5−i’
1(h)RIO−−8,56 (発明の効果) 本発明によれば撮影レンズを構成するレンズ系中に所定
形状の屈折率分布量レンズ全設定することにより谷レン
ズ群の屈折力を強めたときに生ずる諸収差を良好に補正
し、光□学全長の短縮化を図った高性能の撮影レンズ全
達成することができる。
Numerical Example I F-100FNO-1:5.6 2ω-13,25'R
1-16,97D L-1)3N 1-1.49700
v 1-81.6R2--250,72D 2-0
.. 03R3-16,65D 3-120 N 2-1
-48749y 2-70.2R4-49,To
D 4-1.02R5--447L89 D 5-
0.93 N 3-L 85026 C3-3Z
aR6-30,70D 6-20.40 R7--8,45D 7-0.63 N 4-1.8
3400y 4-37.2R8--18,5508
-0,06 R9-27,07D 9-5.46 N 5-N(h
)RIO--9,'31 DIO-0,06R1
)-21,80Dll-0,94N 6-L 5325
6 ν 6-45.9R12--168,376 Numerical Example 2 F-100FNO-1:5.6 2ω-6,7Rl-2
'! -05D 1” 3.33 N 1-1.497
00 v 1-81.6R2--235,0802-
0,03 R3-20,56D 3-'2.33 N 2-1
.. 49831 Shi2-65.0R4-73,8904
-: L 00 R5--2146,09D 5-1.00 N 3-
1.85026 y 3-3Z 3R6-30,12
06-27,31 R7--IZ 19 D 7-0.67 N 4-
1.80440 v 4-39.6R8--18,5
3D 8-0.07 R9--57, 42D 9-3.27 N 5-i'
1(h) RIO--8, 56 (Effects of the Invention) According to the present invention, the refractive power of the valley lens group is strengthened by setting all the refractive index distribution lenses of a predetermined shape in the lens system constituting the photographic lens. It is possible to satisfactorily correct the various aberrations that occur when the lens is used, and to achieve a high-performance photographic lens with a shortened overall optical length.

【図面の簡単な説明】[Brief explanation of drawings]

第1因、第2図は各々本発明の献値実施列1゜2のレン
ズ断面図、第3図、第42は各々本発明の数値実施例1
.2の諸収差函でらる。図中1、nld谷々前#1後群
・M汀メリディオナル1遼面・Sはサジタル像面である
The first factor and FIG. 2 are cross-sectional views of lenses of a 1°2 dedication array of the present invention, and FIGS. 3 and 42 are numerical example 1 of the present invention, respectively.
.. 2 various aberrations are shown in the box. In the figure, 1, nld valley front #1 rear group, M side meridional 1 Liao plane, S is the sagittal image plane.

Claims (3)

【特許請求の範囲】[Claims] (1)複数のレンズを有した撮影レンズにおいて、該撮
影レンズの少なくとも1つのレンズLを該レンズLの内
部媒質が光軸と直交する方向の屈折率を光軸からの高さ
をhとしN(h)−N_0+N_1h^2+N_2h^
4+……としたときN_1>0となるように構成し、か
つ前記撮影レンズの焦点距離と光学全長を各々f、L、
前記レンズLのレンズ厚をDとしたとき L/f<0.7 ΣN_1D>0.2/f となるように構成したことを特徴とする撮影レンズ。
(1) In a photographic lens having a plurality of lenses, the refractive index of at least one lens L of the photographic lens in the direction perpendicular to the optical axis of the internal medium of the lens L is N, where the height from the optical axis is h. (h) −N_0+N_1h^2+N_2h^
4+..., the configuration is such that N_1>0, and the focal length and optical total length of the photographic lens are f, L, respectively.
A photographing lens characterized in that, when the lens thickness of the lens L is D, L/f<0.7 ΣN_1D>0.2/f.
(2)前記撮影レンズを最も大きな空気間隔を境にして
前群と後群の2つのレンズ群に分けたとき、前記後群中
に前記少なくとも1つのレンズLを設けたことを特徴と
する特許請求の範囲第1項記載の撮影レンズ。
(2) A patent characterized in that, when the photographing lens is divided into two lens groups, a front group and a rear group, with the largest air gap as the boundary, the at least one lens L is provided in the rear group. A photographic lens according to claim 1.
(3)前記レンズLの形状をレンズの中心厚がコパ厚よ
りも大きい凸状のレンズより構成したことを特徴とする
特許請求の範囲第2項記載の撮影レンズ。
(3) The photographing lens according to claim 2, characterized in that the lens L is configured as a convex lens whose center thickness is larger than the Copa thickness.
JP60284999A 1985-12-18 1985-12-18 Shooting lens Expired - Fee Related JPH0668571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284999A JPH0668571B2 (en) 1985-12-18 1985-12-18 Shooting lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284999A JPH0668571B2 (en) 1985-12-18 1985-12-18 Shooting lens

Publications (2)

Publication Number Publication Date
JPS62144125A true JPS62144125A (en) 1987-06-27
JPH0668571B2 JPH0668571B2 (en) 1994-08-31

Family

ID=17685832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284999A Expired - Fee Related JPH0668571B2 (en) 1985-12-18 1985-12-18 Shooting lens

Country Status (1)

Country Link
JP (1) JPH0668571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250116A (en) * 1988-05-06 1990-02-20 Olympus Optical Co Ltd Large-diameter telephoto lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229238A (en) * 1975-08-30 1977-03-04 Olympus Optical Co Ltd Inside-view mirror objective optical system
JPS5247692A (en) * 1975-10-14 1977-04-15 Minolta Camera Co Ltd Printed circuit board for holding light emitting element
JPS5859420A (en) * 1981-10-05 1983-04-08 Nippon Sheet Glass Co Ltd Compound lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229238A (en) * 1975-08-30 1977-03-04 Olympus Optical Co Ltd Inside-view mirror objective optical system
JPS5247692A (en) * 1975-10-14 1977-04-15 Minolta Camera Co Ltd Printed circuit board for holding light emitting element
JPS5859420A (en) * 1981-10-05 1983-04-08 Nippon Sheet Glass Co Ltd Compound lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250116A (en) * 1988-05-06 1990-02-20 Olympus Optical Co Ltd Large-diameter telephoto lens

Also Published As

Publication number Publication date
JPH0668571B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
WO2021068753A1 (en) Optical imaging system
TWI773340B (en) Optical imaging lens
TWI835620B (en) Optical imaging lens
TWI673532B (en) Optical imaging lens
WO2021008232A1 (en) Optical imaging lens
JPS61284718A (en) Variable focal length lens
JPH05157965A (en) Wide-angle lens
TWI715235B (en) Optical imaging lens
CN115185071B (en) Optical lens
US4514052A (en) High speed objective lens system with an aspheric surface
CN113721347A (en) Optical imaging lens, camera module and electronic equipment
TWI773040B (en) Optical imaging lens
TW202326217A (en) Optical imaging lens
JP2599311B2 (en) Super wide angle lens
JPH0664232B2 (en) Telephoto objective lens
JPS6128972B2 (en)
JPH0420161B2 (en)
JP2924119B2 (en) Zoom lens
TWI691750B (en) Optical imaging lens
JPS62144125A (en) Photographic lens
JPS6131847B2 (en)
US4550987A (en) Small size telephoto lens
TWM527550U (en) Six pieces miniaturized wide-angle lens
TW202144853A (en) Optical imaging lens
JPS6126044B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees