JPS5855315A - Manufacture of silicone nitride powder - Google Patents

Manufacture of silicone nitride powder

Info

Publication number
JPS5855315A
JPS5855315A JP14961481A JP14961481A JPS5855315A JP S5855315 A JPS5855315 A JP S5855315A JP 14961481 A JP14961481 A JP 14961481A JP 14961481 A JP14961481 A JP 14961481A JP S5855315 A JPS5855315 A JP S5855315A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitrogen
manufacture
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14961481A
Other languages
Japanese (ja)
Other versions
JPS6111885B2 (en
Inventor
Shinji Osada
長田 真司
Kiyoshi Kasai
笠井 清
Takaaki Tsukidate
月館 隆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP14961481A priority Critical patent/JPS5855315A/en
Publication of JPS5855315A publication Critical patent/JPS5855315A/en
Publication of JPS6111885B2 publication Critical patent/JPS6111885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain fine alpha-type silicon nitride powder of high purity suitable for use in the manufacture of a high stress material for high temp. use by rapidly heating a silane compound contg. nitrogen, and thermally decomposing and crystallizing it to manufacture silicon nitride. CONSTITUTION:A silane compound contg. nitrogen such as silicon diimide obtd. by reacting silicon halide with ammonia is thermally decomposed and crystallized. At this time, the compound is heated while controlling the temp. rising speed in the temp. range of 1,350-1,550 deg.C to >=15 deg.C/min, and it is held at about 1,550-1,700 deg.C to manufacture silicon nitride by thermal decomposition. Thus, the resulting silicon nitride is inhibited from being made larger in grain size, the formation of beta-type silicon nitride is prevented, and fine polycrystalline alpha-type silicon nitride powder is obtd. A sintered body obtd. by sintering this silicon nitride powder is chemically and physically stable and shows high strength.

Description

【発明の詳細な説明】 法に関するものである。[Detailed description of the invention] It is about law.

窒化珪素又は窒化珪素の焼結体は周知の通シ、従来の窯
業製品に比べて、1)機械的強度および硬度が非常に大
きく、高温強度も大きい、一熱衝撃に強く耐火度も大き
い、射熱伝導度が比較的大きい、4熱膨張率が非常に小
さい、句化学的に安定で耐食性が大きい、6)電気絶縁
性が大きい、などの性質を具備している。このため、そ
の用途は広く、金属製錬,窯業.機械工業用などの高級
耐火物,耐火材料.耐摩耗材料,電気絶縁材料などに使
用されている。近年、特に極めて広範囲の温度域に亘っ
て高強度,耐熱性機械的衝撃性が要求されるガスタービ
ンのような高温材料の原料として注目されている。
Silicon nitride or a sintered body of silicon nitride has the following advantages compared to conventional ceramic products: 1) It has very high mechanical strength and hardness, high temperature strength, high resistance to thermal shock, and high fire resistance. It has the following properties: relatively high thermal conductivity, very low coefficient of thermal expansion, chemically stable and high corrosion resistance, and 6) high electrical insulation. For this reason, its uses are wide, including metal smelting and ceramics. High-grade refractories and fireproof materials for machinery industry, etc. Used in wear-resistant materials, electrical insulation materials, etc. In recent years, it has attracted attention as a raw material for high-temperature materials such as gas turbines, which require high strength, heat resistance, and mechanical impact resistance over an extremely wide temperature range.

一般に、窒化珪素焼結体を高温高応力材料として実用に
供する場合には、高温時におけるこれらの材料の物理的
.化学的安定性が厳しく要求される。このような性質、
特に熱的,機械的特性は、焼結体製造の原料として用い
る窒化珪素の純度。
In general, when silicon nitride sintered bodies are put to practical use as high-temperature, high-stress materials, physical problems of these materials at high temperatures are important. Chemical stability is strictly required. Such properties,
In particular, the thermal and mechanical properties are determined by the purity of the silicon nitride used as the raw material for manufacturing the sintered body.

結晶型.粒子径,粒子形状、更に窒化珪素を得る際の出
発原料の種類にまで大きく影響される。
Crystal type. It is greatly influenced by the particle size, particle shape, and even the type of starting material used to obtain silicon nitride.

前記したような用途に用いる窒化珪素は、微細な粒状晶
からなる高純寂のα型窒化珪禦粉末であることが望まれ
る。しかし、これらの条件を完全に満たす窒化珪素粉末
は未だ開発されておらず、その製法は極めて困難である
とされていた。
The silicon nitride used for the above applications is preferably a highly pure α-type silicon nitride powder consisting of fine granular crystals. However, silicon nitride powder that completely satisfies these conditions has not yet been developed, and its production method has been considered extremely difficult.

これまでの窒化珪素粉末の製造方法としては、!)シリ
カ粉末と黒鉛粉末とを窒素雰囲気にて加熱し、シリカ粉
末を還元して活性なシリコン含有蒸気を生成し、これと
窒素とを反応させるいわゆるシリカ還元法がある。しか
し、この方法は原料として充分精製されたシリカ粉末お
よび黒鉛粉末を用いる必要があるばかりでなく、得られ
る生成物はα型窒化珪累、β型窒化珪素、酸窒化珪素お
よび炭化珪素などの混合系で、更に多重のelR1!g
を含有し、ま九窒累含有率も低く、従って高純肚α型窒
化珪素粉末を得るのは困難である。また、創金輌珪素粉
末と成形後、窒素またはアンモニア気流下で加熱しつつ
窒素ガス圧を制御して1500℃以下の11i度で珪素
粉末を直接窒化する方法がある。
As for the manufacturing method of silicon nitride powder so far,! ) There is a so-called silica reduction method in which silica powder and graphite powder are heated in a nitrogen atmosphere, the silica powder is reduced to generate active silicon-containing vapor, and this is reacted with nitrogen. However, this method not only requires the use of sufficiently refined silica powder and graphite powder as raw materials, but also the resulting product is a mixture of α-type silicon nitride, β-type silicon nitride, silicon oxynitride, and silicon carbide. In the system, even more multiple elR1! g
, and the cumulative nitrogen content is low, so it is difficult to obtain high purity α-type silicon nitride powder. There is also a method of directly nitriding the silicon powder at 11 degrees below 1500 degrees Celsius by heating it under a nitrogen or ammonia stream and controlling the nitrogen gas pressure after molding the silicon powder.

この方法にて得られる窒化珪素はβ型窒化珪素を多く含
み、また微細な粉末は得られにくいこと、かつ、微細な
粉末を得るには長時間の粉砕を必要とし、従って粉砕過
程での不純物の混入が避けられず、高密度、高強度の窒
化珪素焼結体の製造原料としては不適当である。この他
、3)ハロゲン化珪素とアンモニアとの高温気相反応で
窒化珪素を得る方法がある。この方法は、比較的高純度
のα型窒化珪素が得られるが、窒化珪素薄膜の製造に限
られ、焼結用原料粉末の製造には適さない。
The silicon nitride obtained by this method contains a large amount of β-type silicon nitride, and it is difficult to obtain fine powder, and it requires long pulverization to obtain fine powder, so impurities are generated during the pulverization process. It is unavoidable that sintered silicon nitride is mixed with other substances, making it unsuitable as a raw material for producing high-density, high-strength silicon nitride sintered bodies. In addition, there is a method of 3) obtaining silicon nitride through a high-temperature gas phase reaction between silicon halide and ammonia. Although this method yields α-type silicon nitride of relatively high purity, it is limited to the production of silicon nitride thin films and is not suitable for production of raw material powder for sintering.

一方、4シリコンイミドの熱分解による方法は高純度の
α型窒化珪素は容易に得られるが、その粒子形状は針状
または柱状晶が大部分であり、平均粒径は充分微細とは
言い難い(特開昭54−14540(1,特開昭55−
75200)。そのためこれを焼結用原料粉末として用
いた場合、非常に低い成形体密度のものしか得られず、
また焼結性に乏しいため高密度焼結体が得られない欠点
があった。
On the other hand, although highly pure α-type silicon nitride can be easily obtained using the thermal decomposition method of 4-silicon imide, the particle shape is mostly acicular or columnar, and the average particle size cannot be said to be sufficiently fine. (JP-A-54-14540 (1, JP-A-55-14540)
75200). Therefore, when this is used as a raw material powder for sintering, only a compact with a very low density can be obtained.
Furthermore, it has the disadvantage that a high-density sintered body cannot be obtained due to poor sinterability.

本発明者らは、これらの方法の内、殊にシリコンイミド
熱分解法の上記欠点を解消すべく鋭意研究の結果、焼結
用原料粉末として優れた性能を有する、平均粒径が1μ
m以下の極めて微細な高純度α型窒化珪素の製造法を見
出し、本発明を完成した。
Among these methods, the present inventors have conducted intensive research to overcome the above-mentioned drawbacks of the silicon imide pyrolysis method, and have found that a powder with an average particle size of 1 μm has excellent performance as a raw material powder for sintering.
The present invention was completed by discovering a method for producing highly purified α-type silicon nitride with extremely fine particles of less than m.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の製造法は、含窒素シラン化合物を加熱分解して
窒化珪素を得る際に1ある温度範囲において急速なる加
熱を行ない、極めて速やかに結晶化させることにより、
多結晶質の微細外窒化珪素を得ることを特徴とするもの
である。
The production method of the present invention involves heating rapidly in a certain temperature range when thermally decomposing a nitrogen-containing silane compound to obtain silicon nitride, and crystallizing it extremely quickly.
This method is characterized by obtaining polycrystalline microscopic silicon nitride.

本発明の製造法に用いる含窒素シラン化分物としては、
ハロゲン化珪素とアンモニアとの反応生成物のシリコン
ジイミド(st(m)2)とハロゲン化アンモニウムと
の混合物を液体アンモニアで洗浄して得九51(NH)
zあるいはシリコンジイミド、塩化アンモニウムを窒素
あるいはアンモニア中で加熱して得た分解生成物81.
N、)T、非晶質窒化珪素粉末勢であるが、本発明にお
いて良好で微細な窒化珪素を得るためには、上記粉末中
に含まれるハロゲンは1f[1チ以下の場診が特に好ま
しい。
The nitrogen-containing silanized fraction used in the production method of the present invention includes:
951 (NH) was obtained by washing a mixture of silicon diimide (st(m)2), a reaction product of silicon halide and ammonia, and ammonium halide with liquid ammonia.
z or silicon diimide, a decomposition product obtained by heating ammonium chloride in nitrogen or ammonia 81.
N, )T, amorphous silicon nitride powder, but in order to obtain good and fine silicon nitride in the present invention, it is particularly preferable that the halogen contained in the powder be 1f [1 ti or less]. .

しかして本発明の製造法においては、含窒素シラン化合
物を加熱分解結晶化する際[1350℃〜1550℃の
温1範囲における昇温速度が15℃/分以上となるよう
に制御することが必須である。前記範囲での昇温速度が
15℃/分未満では1350℃近傍で生成しはじめる窒
化珪素の結晶核が昇温途中で粒成長を起こすと同時に1
より安定な相であるβ型窒化珪素の生成割合が増大し。
However, in the production method of the present invention, when thermally decomposing and crystallizing a nitrogen-containing silane compound, it is essential to control the temperature increase rate in a temperature range of 1350°C to 1550°C to be 15°C/min or more. It is. If the heating rate in the above range is less than 15°C/min, silicon nitride crystal nuclei that begin to form around 1350°C will grow grains during heating and at the same time
The proportion of β-type silicon nitride, which is a more stable phase, increases.

所望の微細な高純度α型窒化珪素を得ることが困難とな
るためである。即ち、前記した温度範囲での核成長によ
る大粒径化を防止するために可及的速やかに昇温するこ
とが必要である。
This is because it becomes difficult to obtain the desired fine, highly pure α-type silicon nitride. That is, it is necessary to raise the temperature as quickly as possible in order to prevent grain size from increasing due to nucleus growth within the above-mentioned temperature range.

また、1350℃〜1550℃の温度範囲における昇温
速度の上限については、特に限定されるものではないが
、10,000℃/分を越える速度で昇温し九場合には
、出発原料を充填した容器の熱衝撃による破損等が生じ
るので好ましくない。
In addition, the upper limit of the heating rate in the temperature range of 1350°C to 1550°C is not particularly limited, but if the temperature is raised at a rate exceeding 10,000°C/min, the starting material will be charged. This is not preferable because it may cause damage to the container due to thermal shock.

より好ましくは15℃/分〜8000℃/分の昇温速度
で実施することである。
More preferably, the heating rate is 15°C/min to 8000°C/min.

本発明の製造法においては、1550℃未満の温度にお
ける昇温速度は特に限定されるものではない。その理由
は1000℃未満では真空中等の特殊な雰囲気下で加熱
する場合、あるいけ出発原料が特殊な不純物を含む場合
を除き、熱分解のみ進行し、結晶化は起こらないので1
350℃未満での昇温操作は生成窒化珪素の粒子形状等
に対しては直接の影響を及ぼさないからである。
In the production method of the present invention, the rate of temperature increase at temperatures below 1550°C is not particularly limited. The reason for this is that below 1000°C, only thermal decomposition will proceed and crystallization will not occur unless heated in a special atmosphere such as a vacuum or when the starting material contains special impurities.
This is because the temperature raising operation below 350° C. does not have a direct effect on the particle shape of the produced silicon nitride.

むしろ、1350℃未満、よシ好ましくは800℃〜1
300℃の温度範囲で原料を長時間保持し充分加熱分解
せしめ、更に好ましくはアンモニア流通するととKよシ
脱ハロゲンせしめて、実質的にハロゲンを含まない窒化
珪素に近似した組成をもつ非晶質物質としておくことが
、後の急速な結晶化による微細な窒化珪素の合成には望
ましい。
Rather, below 1350°C, preferably between 800°C and 1
By holding the raw material in a temperature range of 300° C. for a long time to fully thermally decompose it, and more preferably by passing ammonia through it, K can be dehalogenated to form an amorphous material with a composition similar to silicon nitride, which is substantially free of halogens. It is desirable to keep it as a substance for later synthesis of fine silicon nitride through rapid crystallization.

また、原料保持温度の上限は1550℃以上1700℃
未満とすることが望ましい。これは1550℃未満では
例えば含有ハロゲンの多い出発原料を剛いた場合には、
充分急速な結晶化が得られない場合があシ、また170
0℃以上では生成窒化珪素の粒成長、シリコ〉への分解
、β型窒化珪素の生成率の増加等が起こるためである。
In addition, the upper limit of raw material holding temperature is 1550℃ or higher and 1700℃
It is desirable that it be less than If the temperature is lower than 1550°C, for example, if a starting material containing a large amount of halogen is stiffened,
Sufficiently rapid crystallization may not be obtained, and 170
This is because at temperatures above 0° C., grain growth of silicon nitride, decomposition into silico, an increase in the production rate of β-type silicon nitride, etc. occur.

上紀保持温度で保持する時間は特に限定されるものでは
ないが、例えば1550℃で保持する場合、10分〜3
0分の保持時間が適当である。
The time for holding at the upper temperature is not particularly limited, but for example, when holding at 1550°C, it is 10 minutes to 3
A holding time of 0 minutes is appropriate.

本発明の製造法において、加熱分解を行なうに際し、殊
に1!550℃以上の温度範囲において最も好ましい雰
囲気は窒素雰囲気である。
In the production method of the present invention, when carrying out thermal decomposition, the most preferable atmosphere is a nitrogen atmosphere, especially in a temperature range of 1!550° C. or higher.

それ以外の雰囲気も採用することができるが、例えば不
活性ガス、真空中等では一部窒化珪素のシリコンへの分
解が起とり、また、水素、ハロゲンガス中では針状晶窒
化珪素の生成が促進されるため、それらの点では好まし
くない。
Other atmospheres can also be used, but for example, in inert gas or vacuum, some silicon nitride decomposes into silicon, and in hydrogen or halogen gas, the formation of acicular silicon nitride is promoted. Therefore, it is undesirable in these respects.

また、原料の加熱方法は、本発明で限定した条件を満た
しておれば特に制限されるものでない。
Further, the method of heating the raw material is not particularly limited as long as it satisfies the conditions defined in the present invention.

Pljえば、通常の外部加熱による方法、また所定の温
度に保持した雰囲気に連続的に原料を導入する方法など
がある。
Examples of methods include a method using ordinary external heating, and a method of continuously introducing raw materials into an atmosphere maintained at a predetermined temperature.

上述したように、含s1sシラン化合物を出発原料とし
て、所定の昇温速度で急速に加熱分解結晶化せしめると
とKより、第1図に示す平均粒径が1声以下、α相含有
率が85%以上、窒素含有針が38重量−以上の微細な
窒化珪素をはじめて得ることができる。従って、これを
原料として窒化珪素焼結体とした場合、その焼結体は化
学的物理的に安定で高強度を発揮するため高温高応力材
料用の焼結用原料粉末として有用である。
As mentioned above, when an s1s-containing silane compound is used as a starting material and is rapidly thermally decomposed and crystallized at a predetermined heating rate, the average particle size shown in FIG. For the first time, it is possible to obtain fine silicon nitride with a nitrogen content of 85% or more and a needle weight of 38% or more. Therefore, when a silicon nitride sintered body is made from this as a raw material, the sintered body is chemically and physically stable and exhibits high strength, so it is useful as a raw material powder for sintering high temperature and high stress materials.

次に、実施的で本発明を更に詳述する。Next, the present invention will be described in further detail in practical terms.

実施N1〜3.比較911〜3 二重仕込管の外管に窒素ガスを搬送ガスとした四塩化珪
素飽和蒸気(25℃)を35いrで、また内管にアンモ
ニアガスを20 f/hrの速度で夫々流し、水冷で1
0℃に保った反応管(60%φ×28 (1%)に導入
し、両者を連続的に反応させ生成した微粉末を窒素ガス
により搬送し、反応管下部の容器に捕集した。
Implementation N1-3. Comparison 911-3 Saturated silicon tetrachloride vapor (25°C) with nitrogen gas as a carrier gas was flowed into the outer pipe of the double charging pipe at 35 rpm, and ammonia gas was flowed into the inner pipe at a rate of 20 f/hr. , 1 with water cooling
The mixture was introduced into a reaction tube (60%φ×28 (1%)) kept at 0° C., and the two were continuously reacted to produce a fine powder, which was transported by nitrogen gas and collected in a container at the bottom of the reaction tube.

次に前記粉末20fを石英で形成された140■φの管
状炉に充填し、アンモニア雰囲気下200’C/hrで
昇温し、1000℃の温度下で10時間保持して白色の
非晶質粉末を得た。アルカリ溶融法による塩素分析の結
果、この生成粉末の塩素含有置けα5重tチであった。
Next, 20f of the powder was filled into a 140mm diameter tubular furnace made of quartz, heated at 200'C/hr in an ammonia atmosphere, and kept at 1000°C for 10 hours to form a white amorphous powder. A powder was obtained. As a result of chlorine analysis using an alkali melting method, the chlorine content of the produced powder was found to be α5%.

次に@1表に示す61aの昇温速度にて窒素雰囲気下で
前記粉末各々3fを1600℃に加熱し、(15時間保
持して6種の生成粉末を得た。
Next, each of the powders 3f was heated to 1600° C. under a nitrogen atmosphere at a heating rate of 61a shown in Table @1 and held for 15 hours to obtain six types of powders.

これらの生成粉末の窒素含有率、α相含有率、平均粒径
、粉末の形状を調べた。その結果を第1表に示した。オ
た、実施例1で得た生成物の電子顕微鏡写真(3000
倍)を第1図K、比較例5で得た生成物の電子顕微鏡写
真(3ooo倍)を第2図に示した。
The nitrogen content, α phase content, average particle size, and powder shape of these produced powders were investigated. The results are shown in Table 1. Also, an electron micrograph of the product obtained in Example 1 (3000
Fig. 1K shows an electron micrograph (300 times magnification) of the product obtained in Comparative Example 5.

第1表 実施例4〜6.比較M4〜6 実施例1と同様にして得九81(NH)、、 MH,0
i混合粉末を一70℃の液体アンモニアで洗浄し削成し
たyp、atを除去し5i(N′F1)tを単離した。
Table 1 Examples 4-6. Comparison M4-6 Obtained in the same manner as in Example 1 981 (NH), MH,0
The i mixed powder was washed with liquid ammonia at -70°C to remove the shaved yp and at, and 5i(N'F1)t was isolated.

このfii(四)、を上記実施例1〜3および比較例1
〜3と同様な昇温速1および方法を用いて6種の生成粉
末を得た。夫々の生成粉末の窒素含有率、α相含有率、
平均粒径、粉末の形状を調べた結果を下記第2表に示し
た。
This fii (4) is applied to the above Examples 1 to 3 and Comparative Example 1.
Using the same heating rate 1 and method as in ~3, six product powders were obtained. Nitrogen content, α phase content,
The results of examining the average particle size and powder shape are shown in Table 2 below.

第2表 実施P17 実施ガ1と同様にして得九81(N’H)、 、 NH
,al混合粉末をMOボートに充填し、これを60%φ
の管状炉内に設置した後、アンモニア流通下200 イ
rで昇温し、1300℃の温度下で5時間保持した。
Table 2 Implementation P17 Proceed as in Example 1 to obtain 981 (N'H), , NH
, al mixed powder was filled into an MO boat, and this was 60%φ
After placing the tube in a tube furnace, the temperature was raised at 200 hr under ammonia flow, and the temperature was maintained at 1300° C. for 5 hours.

次に、20℃l/minの昇温連破で1soa℃から1
550℃まで昇温し、15分間保持した。こうして得ら
れた生成粉末の窒素含有率、α相含有率。
Next, the temperature was increased from 1 soa℃ to 1 soa℃ by continuous heating at 20℃l/min.
The temperature was raised to 550°C and held for 15 minutes. Nitrogen content and α phase content of the powder thus obtained.

平均粒径、粉末の形状を調べた。その結果を第3表に示
しえ。
The average particle size and powder shape were examined. Show the results in Table 3.

第3表 実施例8〜?、比較例7 実施pHと同様にして得たS i、N、H粉末を更に窒
素雰囲気下1300℃で2時間保持して淡黄色の非晶質
粉末を得た。化学分析の結果、この粉末の組成はst、
a、に極めて近いことがわかった。
Table 3 Example 8~? , Comparative Example 7 The Si, N, H powder obtained in the same manner as in the practical pH was further held at 1300° C. for 2 hours under a nitrogen atmosphere to obtain a pale yellow amorphous powder. As a result of chemical analysis, the composition of this powder is st,
It was found that it is very close to a.

次K、上記の粉末をモリブデンポー)K充填し第4表に
示した3種の温度に保持した管状炉に急速に挿入して瞬
間的に原料をこの温度に昇温した後、窒素雰囲気下(1
5時間保持して3種の生成粉末を得た。
Next, the above powder was filled with molybdenum powder and rapidly inserted into a tubular furnace maintained at the three temperatures shown in Table 4, and the raw material was heated to this temperature instantaneously, then under a nitrogen atmosphere. (1
After holding for 5 hours, three types of powder were obtained.

これらの生成粉末の窒素含有率、α相含有率、平均粒径
、粉末の形状を調べた。その結果を第4表に示した。
The nitrogen content, α phase content, average particle size, and powder shape of these produced powders were investigated. The results are shown in Table 4.

第4、Fourth,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例で得た窒化珪素粉末の、また
第2図は比較例で得た粉末の電子顕微鏡写真(いずれも
3000倍)である。 特許出願人 東洋曹達工業株式会社
FIG. 1 is an electron micrograph of the silicon nitride powder obtained in the example of the present invention, and FIG. 2 is an electron micrograph of the powder obtained in the comparative example (both magnified by 3000 times). Patent applicant: Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] α) 含窒素シラン化合物を加熱分解して窒化珪素を製
造する方法において、加熱分解を行なうに際し、135
0℃〜1550℃の温度範囲における昇温速度を毎分1
5℃以上に制御することkより、該含窒素シラン化合物
を急速に加熱分解結晶化せしめることを特徴とする窒化
珪素粉末の製造法。
α) In the method of producing silicon nitride by thermally decomposing a nitrogen-containing silane compound, 135
The temperature increase rate in the temperature range of 0℃ to 1550℃ is 1 per minute.
A method for producing silicon nitride powder, characterized in that the nitrogen-containing silane compound is rapidly thermally decomposed and crystallized by controlling the temperature to 5° C. or higher.
JP14961481A 1981-09-24 1981-09-24 Manufacture of silicone nitride powder Granted JPS5855315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14961481A JPS5855315A (en) 1981-09-24 1981-09-24 Manufacture of silicone nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14961481A JPS5855315A (en) 1981-09-24 1981-09-24 Manufacture of silicone nitride powder

Publications (2)

Publication Number Publication Date
JPS5855315A true JPS5855315A (en) 1983-04-01
JPS6111885B2 JPS6111885B2 (en) 1986-04-05

Family

ID=15479052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14961481A Granted JPS5855315A (en) 1981-09-24 1981-09-24 Manufacture of silicone nitride powder

Country Status (1)

Country Link
JP (1) JPS5855315A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227082A2 (en) * 1985-12-23 1987-07-01 Tosoh Corporation Process for preparation of high alpha-type silicon nitride powder
EP0228842A2 (en) * 1985-12-23 1987-07-15 Ford Motor Company Limited Method of making ultrapure silicon nitride precursor
JPS62182105A (en) * 1985-10-17 1987-08-10 バイエル・アクチエンゲゼルシヤフト Improved silicon nitride and manufacture
EP0242188A2 (en) * 1986-04-18 1987-10-21 Ford Motor Company Limited Method of making silicon nitride precursor
JPS62185787U (en) * 1986-05-16 1987-11-26

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182105A (en) * 1985-10-17 1987-08-10 バイエル・アクチエンゲゼルシヤフト Improved silicon nitride and manufacture
EP0227082A2 (en) * 1985-12-23 1987-07-01 Tosoh Corporation Process for preparation of high alpha-type silicon nitride powder
EP0228842A2 (en) * 1985-12-23 1987-07-15 Ford Motor Company Limited Method of making ultrapure silicon nitride precursor
US4770830A (en) * 1985-12-23 1988-09-13 Toyo Soda Manufacturing Co., Ltd. Process for preparation of high α-type silicon nitride powder
EP0227082B1 (en) * 1985-12-23 1991-09-11 Tosoh Corporation Process for preparation of high alpha-type silicon nitride powder
EP0242188A2 (en) * 1986-04-18 1987-10-21 Ford Motor Company Limited Method of making silicon nitride precursor
JPS62185787U (en) * 1986-05-16 1987-11-26
JPH0437994Y2 (en) * 1986-05-16 1992-09-07

Also Published As

Publication number Publication date
JPS6111885B2 (en) 1986-04-05

Similar Documents

Publication Publication Date Title
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4346068A (en) Process for preparing high-purity α-type silicon nitride
US5693305A (en) Method for synthesizing aluminum nitride whiskers
JPS6111886B2 (en)
JPS5855315A (en) Manufacture of silicone nitride powder
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPS62100404A (en) Production of pulverous hexagonal boron nitride having high purity
JPS5891018A (en) Manufacture of fine nitride powder
JPS62148309A (en) Preparation of silicon nitride having high content of alpha type silicon nitride
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS5973412A (en) Preparation of powder of silicone nitride
JPS5849611A (en) Powder containing 2h type silicon carbide and its preparation
JPS6140805A (en) Manufacture of silicon nitride fine powder
JPS621564B2 (en)
JPS5874598A (en) Manufacture of fibrous silicon nitride
JPS61127616A (en) Production of silicon carbide fine powder
JP2604753B2 (en) Method for producing silicon carbide whiskers
JPS6077114A (en) Production of spherical sic powder
JPS58176109A (en) Production of alpha-type silicon nitride
JPH0454610B2 (en)
JPS60131899A (en) Manufacture of silicon carbide whisker
JPS6046912A (en) Production of ultrafine granule of silicon carbide
JPH0454611B2 (en)
JPH0454609B2 (en)
JPS6163510A (en) Production of composite fine powder