JPS5849483B2 - Cathode carbon block manufacturing method for aluminum electrolyzer - Google Patents

Cathode carbon block manufacturing method for aluminum electrolyzer

Info

Publication number
JPS5849483B2
JPS5849483B2 JP51036970A JP3697076A JPS5849483B2 JP S5849483 B2 JPS5849483 B2 JP S5849483B2 JP 51036970 A JP51036970 A JP 51036970A JP 3697076 A JP3697076 A JP 3697076A JP S5849483 B2 JPS5849483 B2 JP S5849483B2
Authority
JP
Japan
Prior art keywords
carbon block
cathode carbon
temperature
coal pitch
pitch coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51036970A
Other languages
Japanese (ja)
Other versions
JPS52119615A (en
Inventor
仲次郎 山本
俊平 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KAABON KK
Original Assignee
TOYO KAABON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KAABON KK filed Critical TOYO KAABON KK
Priority to JP51036970A priority Critical patent/JPS5849483B2/en
Publication of JPS52119615A publication Critical patent/JPS52119615A/en
Publication of JPS5849483B2 publication Critical patent/JPS5849483B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はアルミニウム電解槽用陰極炭素ブロックの製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cathode carbon block for an aluminum electrolytic cell.

詳しくは本発明は、特に耐摩耗性に富み、且つ耐浴性の
すぐれた陰極炭素ブロックの製造法に関するものである
Specifically, the present invention relates to a method for producing a cathode carbon block that is particularly highly wear resistant and has excellent bath resistance.

アルミニウム電解槽の陰極部分のうち、溶融アルミニウ
ムや電解浴と接する個所は、周知のように、炭素質材料
で構成されている。
As is well known, the portion of the cathode portion of the aluminum electrolytic cell that comes into contact with molten aluminum and the electrolytic bath is made of a carbonaceous material.

特に電解槽の底部は、暇焼無煙炭、黒鉛、コークス等を
主体とする骨材と炭素質粘結剤との混練物を加圧成型し
、次いで900〜1300℃程度の温度で焼成して得ら
れた炭素ブロックで構成されている。
In particular, the bottom of the electrolytic cell is obtained by press-molding a mixture of aggregate mainly composed of time-burned anthracite, graphite, coke, etc. and a carbonaceous binder, and then firing it at a temperature of about 900 to 1300°C. It is made up of carbon blocks.

電解操業中に、この炭素ブロックは熱応力及び化学的作
用を受けて劣化し、遂には操業停止の止むなぎに到る。
During electrolytic operation, this carbon block is subjected to thermal stress and chemical effects and deteriorates, eventually leading to the stoppage of operation.

炭素ブロックの劣化原因は単純ではなく、各種の要因が
関係していると考えられている。
The cause of carbon block deterioration is not simple and is thought to be related to various factors.

その一つは電解浴成分の炭素ブロック中への侵入であり
、他の一つは物理的作用による炭素ブロックの破損であ
る。
One of these is the intrusion of electrolyte bath components into the carbon block, and the other is damage to the carbon block due to physical action.

この物理的作用による破損のなかには、電磁力による溶
融アルミニウムの流動に伴なう炭素ブロック表面の摩耗
及び溶融アルミニウムが局所的渦流を形成することに伴
なう甑穴( Pit hole )の生或があると考え
られている。
Damage caused by this physical action includes abrasion of the carbon block surface due to the flow of molten aluminum due to electromagnetic force, and the formation of pit holes due to the formation of local vortices in the molten aluminum. It is thought that there is.

特に甑穴の形成は、クラツク部から発生するといわれ、
鳳穴形成が進行すると、甑穴を経て溶融アルミニウムが
集電棒に達してアルミニウム中の鉄分を増加させる(
Journal of Metals l 9 6
7年3月及びl968年9月参照)。
In particular, the formation of potholes is said to occur from cracks,
As the hole formation progresses, molten aluminum reaches the current collector rod through the hole and increases the iron content in the aluminum (
Journal of Metals l 9 6
(See March 1968 and September 1968).

このような物理的作用による炭素ブロックの破損を防止
するためには、従来から炭素ブロックの備えるべき特性
として挙げられている圧縮及び引張り強度、耐熱衝撃性
、耐浴性、導電性等の外に、耐摩耗性が要求されるもの
と考えられる。
In order to prevent damage to carbon blocks due to such physical effects, in addition to the characteristics that carbon blocks should have such as compressive and tensile strength, thermal shock resistance, bath resistance, and electrical conductivity. , wear resistance is considered to be required.

本発明者らは上述の如き考察に基づき、耐摩耗性に富む
炭素ブロックについで検討した結果、石炭ピッチコーク
スを主体とする骨材と炭素質粘結剤とを、常法により混
練して加圧或型したのち、約200〜400時間かげて
最高700〜1300℃まで昇温することにより熱処理
し、次いで約3日間かげて2000℃以上の温度で、準
黒鉛化の程度まで熱処理することにより著るしく耐摩耗
性に富み、しかも耐浴性も優れているアルミニウム電解
槽用陰極炭素ブロックが得られることを見出し、本発明
を完成した。
Based on the above-mentioned considerations, the present inventors investigated carbon blocks with high wear resistance, and found that aggregates mainly composed of coal pitch coke and carbonaceous binder were kneaded and processed by a conventional method. After press molding, heat treatment is carried out by raising the temperature to a maximum of 700 to 1300°C for about 200 to 400 hours, and then heat treatment is carried out at a temperature of 2000°C or higher for about 3 days to the extent of quasi-graphitization. The present invention was completed based on the discovery that a cathode carbon block for aluminum electrolytic cells can be obtained which has extremely high wear resistance and excellent bath resistance.

本発明について更に詳細に説明すると、本発明の炭素ブ
ロックは、石炭ピッチコークスを主体とする骨材と、炭
素質粘結剤とを原料として製造される。
To explain the present invention in more detail, the carbon block of the present invention is manufactured using aggregate mainly composed of coal pitch coke and a carbonaceous binder as raw materials.

従来、陰極炭素ブロックは蝦焼無煙炭を主体とする骨材
を用いて製造されることが多く、石炭ピッチコークスは
蝦焼無煙炭に対する添加剤として使用されていた。
Conventionally, cathode carbon blocks have often been manufactured using aggregates mainly composed of burnt anthracite, and coal pitch coke has been used as an additive to the burnt anthracite.

これは石炭ピッチコークスは、従来の炭素ブロックの製
法では、生成する炭素ブロックの耐浴性を悪化させるた
めである。
This is because coal pitch coke deteriorates the bath resistance of the produced carbon block in conventional carbon block manufacturing methods.

しかるに本発明者らの知見によれば、石炭ピッチコーク
スを原料として、従来法による焼成を行なったのち、さ
らにこれよりもi o o o ’c以上も高い240
0℃にも達する高温で焼成して準黒鉛化したものは、耐
摩耗性に富み且つ耐浴性が著るしく向上する。
However, according to the findings of the present inventors, after calcination using coal pitch coke as a raw material by the conventional method, the io
Materials that are fired at temperatures as high as 0° C. to become quasi-graphitized have excellent wear resistance and markedly improved bath resistance.

石炭ピッチコークスとしては、比較的針状構造の発達し
たものが好ましい。
The coal pitch coke preferably has a relatively developed needle-like structure.

石炭ピッチコークスは単独で使用するのが好ましいが、
公知の他の骨材を配合することもできる。
Coal pitch coke is preferably used alone, but
Other known aggregates may also be blended.

しかしその配合量は、通常、50%未満好ましくは25
%未満に止めるべきである。
However, the amount incorporated is usually less than 50%, preferably 25%.
It should be kept below %.

本発明に係る炭素ブロックを製造するには、上述の石炭
ピッチコークスを主体とする骨材を粉砕して粒度を調整
したのち、これに粘結剤としての溶融ピッチを配合する
In order to manufacture the carbon block according to the present invention, the above-mentioned aggregate mainly composed of coal pitch coke is crushed to adjust the particle size, and then molten pitch as a binder is mixed therein.

骨材の粒度分布は、使用する骨材の種類にもよるが、そ
の1例をあげると4メッシュ以上10〜20%、4〜1
0メッシュ15〜20%、10〜65メッシュ10〜1
5%、65メッシュ以下40〜50%である。
The particle size distribution of the aggregate depends on the type of aggregate used, but examples include 4 mesh or more, 10-20%, 4-1
0 mesh 15-20%, 10-65 mesh 10-1
5%, 65 mesh or less 40-50%.

骨材一溶融ピッチ配合物は常法により加熱混練したのち
加圧成形する。
The aggregate-molten pitch mixture is heated and kneaded by a conventional method and then press-molded.

成形物を焼成炉に装入し、徐々に昇温させて最終的に7
00〜1300”cに到達させる。
The molded product is charged into a firing furnace, and the temperature is gradually raised until it reaches 7
00 to 1300”c.

次いで300℃以下まで徐冷して炉から取出し、更に電
気炉に装入して2000℃以上に加熱し、準黒鉛化する
Next, it is slowly cooled to 300° C. or lower, taken out from the furnace, and further charged into an electric furnace and heated to 2000° C. or higher to semi-graphitize it.

なお、加熱の程度は準黒鉛化に止めるべきで、黒鉛化が
進行しすぎると強度、耐摩耗性が低下して所期の目的を
達成し得ない。
The degree of heating should be limited to quasi-graphitization; if graphitization progresses too much, the strength and abrasion resistance will decrease, making it impossible to achieve the intended purpose.

ここで準黒鉛化とは次のことをいう。Here, quasi-graphitization means the following.

即ち石炭ピッチコークスを昇温しでいくと黒鉛化が進行
し、更に昇温しでいくと遂には完全に黒鉛化し、それ以
上昇温しでも、例えばそのものの格子定数が実質的に変
化しなくなる。
In other words, as the temperature of coal pitch coke is increased, graphitization progresses, and as the temperature is further increased, it finally becomes completely graphitized, and even if the temperature is increased further, for example, the lattice constant of the coke itself will not change substantially. .

このような完全黒鉛化の状態に到達する手前の黒鉛化状
態にあるものを準黒鉛化という。
The state of graphitization before reaching the state of complete graphitization is called quasi-graphitization.

以上説明したように、本発明に係る陰極炭素ブロックは
、石炭ピッチコークスを骨材として、常法により焼成ブ
ロックを製造し、次いでこれを更に加熱することにより
容易に製造することができる。
As explained above, the cathode carbon block according to the present invention can be easily produced by producing a fired block using coal pitch coke as an aggregate by a conventional method, and then further heating the block.

また、本発明に係る陰極炭素ブロックは、抗圧力、抗張
力、導電性、耐熱衝撃性など、従来から陰極炭素ブロッ
クに要求されている諸特性に加えて、著るしくすぐれた
耐摩耗性と耐浴性を有している。
In addition, the cathode carbon block according to the present invention not only has various properties conventionally required of cathode carbon blocks, such as anti-pressure, tensile strength, conductivity, and thermal shock resistance, but also has extremely excellent wear resistance and resistance. It has bath properties.

次に実施例により本発明を更に詳細に説明するが、本発
明は以下の実施例に限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples.

実施例 l 下記の特性を有する蝦焼石炭ピッチコークスを骨材とし
て、陰極炭素ブロックを製造した。
Example 1 A cathode carbon block was manufactured using as an aggregate a roasted coal pitch coke having the following characteristics.

蝦焼石炭ピッチコークスを粉砕し、20〜6oメッシュ
の部分と60メッシュ以下の部分とを重量比で3:7の
比率で配合した。
Shrimp-burned coal pitch coke was pulverized, and a portion of 20 to 6o mesh and a portion of 60 mesh or less were blended at a weight ratio of 3:7.

この骨材100重量部にバインダーピッチ(JIS水銀
法による軟化点80℃)36重量部を配合し、150℃
で60分間混練したのち、押出圧力80〜90kg/c
rAで押出成型した。
36 parts by weight of binder pitch (softening point 80°C according to the JIS mercury method) was blended with 100 parts by weight of this aggregate, and the mixture was heated to 150°C.
After kneading for 60 minutes, the extrusion pressure was 80 to 90 kg/c.
Extrusion molded using rA.

これを焼成炉に入れて徐徐に昇温し、最高温度800℃
で約500時間焼成したのち常温まで徐冷し、更に電気
炉で2400℃に加熱した。
This is placed in a firing furnace and the temperature is gradually raised to a maximum temperature of 800℃.
After firing for about 500 hours, the mixture was slowly cooled to room temperature and further heated to 2400°C in an electric furnace.

かくして製造された陰極炭素ブロックの特性は下記の通
りであった。
The properties of the cathode carbon block thus produced were as follows.

なお、表には比較のため、市販の陰極炭素ブロックの特
性も併記した。
In addition, the characteristics of a commercially available cathode carbon block are also listed in the table for comparison.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭ピッチコークスを主体とする骨材と炭素質粘結
剤との混練物を加圧成形してなる成形物を最高温度70
0〜1300℃で熱処理したのち、2000℃以上の温
度で準黒鉛化の程度まで更に熱処理することを特徴とす
るアルミニウム電解槽用陰極炭素ブロックの製造法。
1 A molded product obtained by pressure molding a kneaded material of aggregate mainly composed of coal pitch coke and a carbonaceous binder is heated to a maximum temperature of 70°C.
A method for producing a cathode carbon block for an aluminum electrolytic cell, which comprises heat treating at 0 to 1,300°C, and then further heat-treating at a temperature of 2,000°C or higher to the extent of quasi-graphitization.
JP51036970A 1976-04-02 1976-04-02 Cathode carbon block manufacturing method for aluminum electrolyzer Expired JPS5849483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51036970A JPS5849483B2 (en) 1976-04-02 1976-04-02 Cathode carbon block manufacturing method for aluminum electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51036970A JPS5849483B2 (en) 1976-04-02 1976-04-02 Cathode carbon block manufacturing method for aluminum electrolyzer

Publications (2)

Publication Number Publication Date
JPS52119615A JPS52119615A (en) 1977-10-07
JPS5849483B2 true JPS5849483B2 (en) 1983-11-04

Family

ID=12484587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51036970A Expired JPS5849483B2 (en) 1976-04-02 1976-04-02 Cathode carbon block manufacturing method for aluminum electrolyzer

Country Status (1)

Country Link
JP (1) JPS5849483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168728U (en) * 1985-04-09 1986-10-20

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254545A1 (en) * 2004-05-12 2005-11-17 Sgl Carbon Ag Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
JP5554117B2 (en) 2010-03-30 2014-07-23 日本電極株式会社 Cathode carbon block for aluminum refining and method for producing the same
DE102010038669A1 (en) * 2010-07-29 2012-02-02 Sgl Carbon Se Cathode block for an aluminum electrolysis cell and a method for its production
CN107215855A (en) * 2017-06-20 2017-09-29 中南大学 A kind of equipment for the preparation method and its use for encrypting anode carbon block

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168728U (en) * 1985-04-09 1986-10-20

Also Published As

Publication number Publication date
JPS52119615A (en) 1977-10-07

Similar Documents

Publication Publication Date Title
CN100457681C (en) High conductive high strength graphite brick for ultralarge blast furnace, its production technology and application
CN105272254A (en) Preparation method of pantograph carbon contact strip material
CN111170757A (en) Preparation method of special fine-particle graphite material
CN105645397B (en) It is a kind of for hyperfine structure graphite of EDM and preparation method thereof
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
CN112062569B (en) Method for preparing graphite crucible by using reclaimed materials
CN100494507C (en) High-density semi-graphite cathode carbon block and method for producing same
CN115108833A (en) Continuous casting graphite material and preparation method thereof
JPS5849483B2 (en) Cathode carbon block manufacturing method for aluminum electrolyzer
JP3765840B2 (en) Carbon material manufacturing method
CN108264367A (en) A kind of enhancing Delanium connector
US3567808A (en) Production of low density-high strength carbon
CN1054953A (en) Method for producing phosphoric acid by special-shaped rotary kiln
CN113658740B (en) Novel carbon composite material and preparation method of electrode paste
JPH02236292A (en) Production of carbonaceous electrode plate for electrolytic production of fluorine
US1317497A (en) Graphitized electrode and process of making the same
US2992901A (en) Production of artificial graphite
US3470275A (en) Process for making carbon agglomerates
JP5631492B2 (en) Method for producing cathode block for aluminum electrolytic cell and cathode block
RU2443623C1 (en) Method of producing higher abrasive resistance of graphitised material
US1381748A (en) Manufacture of agglomerates of various materials and their utilization
CN1055016A (en) The manufacture method of cathod carbon block used in aluminium electrolytic bath
EP0109839B1 (en) Method of making graphite electrodes
JP5087868B2 (en) Ferro-coke manufacturing method
SU737387A1 (en) Charge for producing refractory articles