JP3765840B2 - Carbon material manufacturing method - Google Patents

Carbon material manufacturing method Download PDF

Info

Publication number
JP3765840B2
JP3765840B2 JP19348894A JP19348894A JP3765840B2 JP 3765840 B2 JP3765840 B2 JP 3765840B2 JP 19348894 A JP19348894 A JP 19348894A JP 19348894 A JP19348894 A JP 19348894A JP 3765840 B2 JP3765840 B2 JP 3765840B2
Authority
JP
Japan
Prior art keywords
coke
carbon material
calcined
raw
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19348894A
Other languages
Japanese (ja)
Other versions
JPH0826709A (en
Inventor
強資 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP19348894A priority Critical patent/JP3765840B2/en
Publication of JPH0826709A publication Critical patent/JPH0826709A/en
Application granted granted Critical
Publication of JP3765840B2 publication Critical patent/JP3765840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials

Description

【0001】
【産業上の利用分野】
本発明は、炭素材の製造方法に係わり、特に等方性黒鉛に代表されるような高密度炭素材の製造に適した方法に関する。
【0002】
【従来の技術】
炭素材は、通常コークス等の骨材(フィラー)とピッチ等の結合剤(バインダー)を主な原料として使用し、一次粉砕、混ねつ、二次粉砕、成形、焼成及び黒鉛化、更には結合剤等を含浸し二次焼成する工程を経て製造されている。使用される主なコークスとしては、その素原料に基づいて、石油系コークスと石炭系コークスとの二つに分けられる。また、これらのコークスは、その熱履歴に基づいて、生コークスとか焼コークスとの二つに分けられる。石油系生コークスは、通常石油重質油に400〜550℃の熱を加え熱分解重合反応によって得ることができ、熱分解は、ディレードコーキング式やフルードコーキング式等によって行われている。また、石炭系生コークスは、通常コールタールに300〜550℃の熱を加え乾留によって得ることができ、乾留は、室炉式やディレードコーキング式等によって行われている。
【0003】
この生コークスは揮発分、水分及び硫黄分等を多く含有しており熱膨張係数が大きいため、生コークスを主な骨材として炭素材を製造する場合には、パッフィング(異常熱膨張)値が大きく、焼成工程や黒鉛化工程中に割れる場合がある。
【0004】
そこで、パッフィング値を下げるため、生コークスを1200〜1500℃の温度でか焼して揮発分等を除去し且つ熱膨張係数を低くし、結晶成長を促進している。このか焼は、ロータリーキルン、シャフトキルン、レトルト等のカルサイナーによって行われており、得られたコークスをか焼コークスを呼んでいる。か焼コークスは1200〜1500℃の熱処理を受けているため、揮発分等をほとんど含んでいないが、結合成分の一つである芳香族炭素化合物の成分(β−レジン成分、すなわちキノリンに可溶でベンゼンに不溶な成分)も完全に分解、炭化されているため焼結性が悪かった。また、この温度領域でか焼すると気孔率が上昇し、更に、かかるか焼コークスで炭素材を製造しても焼成時にほとんど収縮しないため、ピッチ等の結合剤を多量に使用したりピッチ等を含浸したりしなければ高密度の炭素材は得られない。このように多量の結合剤や含浸剤を使用して得られた炭素材は、多孔質になったり機械的強度が小さくなったりする。さらには、炭素材の物性は骨材と結合剤との結合状態によって大きく左右されるため、結合剤の量が多くなると得られた炭素材の物性が予想よりも大きく変わっていたり、ばらつきが比較的大きかったりしていた。そのため、添加する結合剤が少量で済む高密度炭素材の製造方法が多数開発されている。
【0005】
その一つに、前述した生コークスを主な骨材として使用して高密度炭素材を製追する方法がある。この方法は、生コークスの有する高い焼結性及び収縮性を利用したものである。すなわち、石油系及び石炭系の生コークスは、結合成分を多く含んでいるため焼結性が良く、更には焼成すると大きく収縮するため、これらの特性を利用して高密度の炭素材を製造するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、生コークスは石油重質油やコールタール等をディレードコーカー等の大規模な大型コーキング炉によって工業的に量産されているため、かかるコーキング炉内の位置や温度分布等に起因して、揮発分、熱膨張係数、結晶子の大きさ、気孔率等の品質のばらつきが非常に大きい。さらに生コークスは、その素原料によって異なるが、3〜20質量%の揮発分を含有しており、揮発分が大きいものほど、得られた炭素材の物性のばらつきも大きくなる傾向がある。したがって、生コークスを主な骨材として使用した場合には、物性のばらつきが大きく品質の安定した高密度の炭素材を得ることが極めて困難であった。
【0007】
そこで本発明は、焼結性の損失を抑え、物性のばらつきを低減し、品質の極めて安定した炭素材の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、600乃至800℃で熱処理した後、平均粒径15マイクロメートル(以下μmと記す)以下に粉砕したコークスを使用することにより、焼結性の損失を最小限に抑えつつ揮発分等のばらつきを抑え、その結果として品質の安定した炭素材を製造できることを見いだした。なお、本明細書においては600〜800℃の熱処理を半か焼という。また、その熱処理を行ったコークスは、熱膨張係数、結晶構造及び気孔率等の各種物性値が従来の生コークスやか焼コークスとは異なっているため、便宜上、半か焼コークスという。
【0009】
【発明の構成及び作用】
生コークス中の揮発分等は、約500℃から滅少が始まり1000℃でほとんど除去することができるが、結合成分もほぼ同じ温度領域で分解、炭化してしまう。したがって、従来のか焼コークスは、1200〜1500℃で熱処理を受けているため、結合成分及び揮発分等をほとんど含んでいない。また、従来の温度領域でか焼されたコークスは収縮性を示さない。更には、このようにコークスの熱処理温度を高くしていくと熱処理中に発生した微小き裂が拡大・進展してしまう。
【0010】
そこで本発明は、600〜800℃という生コークスのコーキング温度とか焼温度との中間温度領域で熱処理(半か焼)することにより、揮発分等の均一化及び低減化を図る。この温度領域での結合成分の減少分は、半か焼コークスを平均粒径15μm以下に粉砕することによる焼結性と結合性の向上分、及び焼成時における収縮性で補充し、密度向上を図るものである。さらには、半か焼によりコークス中に発生した微小き裂は、平均粒径15μm以下に粉砕することによって、微小き裂の進行を防ぐものである。
【0011】
本発明において半か焼する生コークスは、石油系や石炭系を問わず、その製造したコーキング装置にもよらず、通常は550℃以下でコーキングされたコークスであれば良い。例えば、モザイク状の組織が主体のモザイク状コークス、流動模様の組織が主体のニードル生コークス、モザイク状と流動模様の組織が混在しているレギュラー生コークス、生ピッチコークス、フルードコークス、ギルソナイトコークス等の生コークスを挙げることができる。
【0012】
これらの生コークスを、600〜800℃の温度領域で熱処理(半か焼)することにより揮発分等のばらつきを抑えることができる。熱処理温度の上限800℃を超えてしまうと、生コークス中の結合成分もほぼ完全に分解、炭化してしまう。そのため、熱処理による結合成分の損失分をコークスの微粉化では補うことができなくなる。更には、800℃を超えるような高温で熱処理したコークスを使って炭素材を製造しても、かかるコークスは焼成時や黒鉛化時における収縮率が極めて小さいため、平均粒径15μm以下に粉砕したコークスを使っても高密度の炭素材が得られにくい。したがって換言すれば、熱処理温度600〜800℃による結合成分の減少分は、平均粒径15μm以下にすることによる焼結性と結合性の向上分及び焼成時における収縮性で補えることを見いだしたのである。一方、熱処理温度の下限600℃未満の熱処理では、揮発分等のばらつきを十分に抑えることができず、品質の安定した炭素材は得られない。また、半か焼コークス中には、600〜800℃の熱処理を受けたことによる微小き裂が発生しているが、平均粒径が大き過ぎるとこの微小き裂が進展してしまい炭素材の物性にばらつきを与える要因になる。この観点からも、平均粒径15μm以下にすることは重要である。さらには、焼成時における半か焼コークス中の残存揮発分等はこの微小き裂を通じても除去されるので、残存揮発分等を簡単に除去でき、品質の安定化を図るためには極めて好都合な結果になる。
【0013】
また、生コークス中の炭素層は極めて破壊され易いため、生コークスを平均粒径15μm以下に粉砕した後に半か焼して骨材とした場合は、熱膨張係数、結晶子の大きさ等のばらつきが大きく、品質の安定化は図れない。
【0014】
したがって、600〜800℃に熱処理した後に平均粒径15μm以下に粉砕することにより、焼結性の損失を抑え、同一製造条件で作製した材料間において物性のばらつきの小さい品質の安定した炭素材を製造することができる。特に、物性のうちでも電気抵抗率についてばらつきの小さい炭素材を製造できる。なお、この電気抵抗率の標準偏差を125μΩ・cm以下とすることができる。
【0015】
粉砕は、ハンマーミル、ジェットミル、ボールミル等の従来から使用されている粉砕機で行えば良い。
【0016】
半か焼は、ロータリーキルンやシャフトキルン等で行っても良いし、アルゴンガスや窒素ガス等の非酸化性ガス雰囲気や、空気にさらされる表面にか焼コークス粉等のつめ粉をふりかけて酸素遮へい層(つめ粉層)を設けるなどして空気を遮断し、電気炉や抵抗加熱炉等の加熱装置で熱処理しても良い。この際、コークスは600〜800℃という温度領域に敏感に反応し、その物性に多大な影響を与えるため、炉内温度の均一性に留意する必要がある。
【0017】
室温から半か焼温度までの昇温速度は、適宜任意に調整すれば良い。しかし、あまりに遅過ぎると結合成分が分解、炭化する量が多くなってしまい、高密度化が図れない。したがって、昇温速度はあまり遅くしない方が良く100℃/時間以上が特に良い。また、半か焼温度に到達した後、すぐ冷却しても良いし、その温度に保持して炉内温度の均一性を図った後冷却しても良い。保持する場合は、結合成分の分解、炭化量を抑える観点からあまり長時間保持するのは好ましくなく、1時間以下が最も好ましい。
【0018】
半か焼コークスは100%骨材として使用して炭素材を製造しても良いし、生コークス、か焼ピッチコークスやか焼石油コークス等のか焼コークス、カーボンブラック、人造黒鉛粉及び天然黒鉛粉などの従来から骨材として使われているものと混合し、これらの混合物を使用して炭素材を製造しても良い。か焼コークス、カーボンブラック、人造黒鉛粉及び天然黒鉛粉等と混合する場合には、半か焼コークスが100質量部に対して300質量部以下の配合割合で混合するのが好ましい。300質量部を超えると、必要とする結合剤の量が多くなりすぎたり、かさ密度が低下して機械的強度が低くなったりするからである。また、半か焼コークスは焼成すると、生コークスのように大きく収縮するものではないが、半か焼コークスはまだ収縮性を有しているため均一に収縮させる必要がある。しかし、平均粒径50μmを超えるか焼コークス等と混合すると、均一収縮が難しいため物性のばらつきを与える要因になり、品質の安定した高密度炭素材を得られにくい。それ故、か焼コークス等と混合する場合は、平均粒径50μm以下のか焼コークス等が特に好ましい。また、半か焼コークスと生コークスとを混合して炭素材を製造する場合においても、生コークスの配合割合が多過ぎると炭素材の物性にばらつきが生じてしまい、本発明の意味がなくなってしまう。それ故、半か焼コークスが100質量部に対して生コークスは100質量部以下の配合割合で混合するのが特に良い。この場合においても、生コークスの平均粒径は50μm以下が好ましいが、通常は半か焼コークスの収縮率よりも生コークスの収縮率の方が大きいので、生コークスの平均粒径は小さい方が良く、平均粒径15μm以下が特に好ましい。
【0019】
このようにして得られた半か焼コークスを使用することに本発明の特徴がある。この半か焼コークスを少なくとも骨材の1種として使用し、その後は常法により、例えば、結合剤添加、混ねつ、二次粉砕、成形、焼成、必要に応じて黒鉛化等の通常の工程を経て炭素材を製造すれば良い。その結果、物性のばらつきが小さく品質の極めて安定した炭素材を得ることができ、特にかさ密度が1.79g/cm以上の高密度炭素材を得る場合に好適である。
【0020】
さらには、前記工程にピッチ含浸及び二次焼成等の通常の工程を追加するなどして更に高密度化を図っても良い。また、得られた炭素材を常法の高純度化工程に従い、例えば2000℃程度の高温下でハロゲンガス等により高純度化処理を施して灰分5質量ppm以下の高純度炭素材も製造できる。特にこのような高純度炭素材は、耐酸化性が必要な部材、シリコン単結晶引上げ装置用部材などの不純物を嫌う半導体用炭素材等に好適に使用できるものになる。
【0021】
結合剤の使用は必須ではなく、使用しなくても良いし、使用する場合には石油ピッチ、コールタールピッチ等の各種ピッチ類又はフラン系やフェノール系等の合成樹脂などの従来から結合剤として使用されているものを必要に応じて適宜選択して使用すれば良く、使用量にも特に制限はない。そのうち、石油ピッチは脂肪族炭素化合物を多く含んでおり、さらには結合力が小さいため多量に使用する必要があり、骨材との結合状態に左右される炭素材の物性にばらつきを生じさせる原因になり易い。また、フラン系やフェノール系の合成樹脂は熱処理によって硬質炭素に変化するため、半か焼コークスの均一収縮を阻害するときがあり、また半か焼コークス中に残存している揮発分等が焼成時に抜ける際に成形ブロックが部分的に多孔質になるなど、炭素材の物性のばらつきが大きくなるときがある。一方、コールタールピッチは芳香族炭化化合物に富んでおり結合成分を多く含んでいるので、結合剤を添加する量を少なくでき、炭素材の物性のばらつきをより一層小さくすることができる。
【0022】
特に好適な結合剤の使用量は、使用する結合剤やコークスの種類及びその平均粒径によって若干異なるが、目安となる使用量として、半か焼コークス100%を原料として使用する場合は半か焼コークスに対して50〜100質量%(外割)が好ましい。また、生コークス100%を原料とするときは生コークスに対して30〜90質量%(外割)、か焼コークス等100%を原料とするときはか焼コークス等に対して65〜85質量%(外割)が結合剤使用量の好適量であるため、半か焼コークスと各種コークス等とを混合する場合の結合剤使用量は、その混合割合によって上記範囲の結合剤使用量から推定することができる。
【0023】
混ねつを行う場合は、ワーナー型、パドル羽根型等の従来から使用されている各種混ねつ機で行えば良く、また加熱ニーダーも併用するなどして、通常は120〜250℃程度の温度で混ねつする。
【0024】
二次粉砕を行う場合においては、常法に従い一次粉砕と同様な装置により粉砕する。この二次粉砕は、混ねつ物を成形するために適度の粒径に粉砕するのが目的であり、通常は、平均二次粒径が10〜30μmという一次粉砕の粒径とほぼ同程度かやや大きい粒径になるように粉砕するか、本発明は特に二次粒径については制限されない。
【0025】
成形は、型押し成形、押出し成形、振動型入め成形及び冷間静水圧加圧成形等の公知の方法で行い、混ねつ物または二次粉を成形する。本発明においては、物性のばらつきを少なくし、等方的な物性を有する炭素材を製造する観点から、冷間静水圧加圧成形によって成形するのが最も好ましい。成形圧力は通常の圧力で圧縮すれば良く、例えば冷間静水圧加圧成形の場合には60〜130MPaが最適である。
【0026】
焼成は、単独炉、連続炉、トンネル炉等の焼成炉を用いるなどして常法に従い、成形品の酸化及び変形を防止するためコークス粉やケイ砂等のパッキング材中に埋めたり、窒素ガスやアルゴンガス等の非酸化性雰囲気にしたりして通常は800〜1500℃で行う。この場合、成形品はなるべく変形しない方が物性のばらつきを小さくできるため、焼成はコークス粉やケイ砂等のパッキング材中に埋めて行った方が特に好ましい。この焼成により、主にピッチ等の結合材が炭素化及び半か焼コークス中の残留揮発分が除去される。昇温速度は特に制限されず通常の速度で昇温すれば良いが、炉内温度がなるべく均一になるように昇温した方が良く、昇温速度は通常よりやや遅くした方が特に効果的である。昇温速度は使用する炉の構造、成形品の大きさ等によって異なるが、例えば5〜10℃/時間で行う。
【0027】
焼成品は、黒鉛化度があまり発達していない炭素材であるが、利用目的及び製造コストを勘案して適宜炭素材製品として使用することもできる。
【0028】
焼成工程により、焼成品は結合剤の揮散等によって形成された気孔を多く有するものになるが、この気孔中にピッチ等を含浸し、再焼成を行っても良い。このようにすれば、気孔率を減少させ、かさ密度、電気抵抗率、強度を更に向上させることができる。
【0029】
黒鉛化を行う場合においては、アチソン炉、誘導加熱炉、直接通電型電気炉等の黒鉛化炉を用いるなどして常法に従い、焼成品の酸化等を防止するためコークス粉のパッキング材中に埋めたり、窒素ガス、アルゴンガスまたは減圧乃至真空雰囲気にしたりして通常は2500〜3200℃で行う。
【0030】
さらには、黒鉛化工程後に前述と同様な理由によりピッチ等を含浸、再焼成及び/又は再黒鉛化しても良い。
【0031】
かくして得られた炭素材は、その目的に応じて通常の切削工具を用いて所望の製品形状に加工することができる。
【0032】
以上のように、生コークスを600乃至800℃で熱処理した後、平均粒径15μm以下に粉砕したコークスを少なくとも原料の1種として使用して、その後は常法の工程により炭素材を製造すれば品質の極めて安定した炭素材を得ることができる。
【0033】
このようにして得られた炭素材の用途は制約を受けず、広く一殿の用途に使用でき、例えば電極、ルツボ、ヒーター、治具、ダイス等の冶金用炭素材、電池用電極、放電加工用電極、電解加工用電極等の電気化学用炭素材、軸受、シールリング、ベーン等の機械用炭素材、ルツボ、ヒーター、ボート等の半導体用炭素材、滅速材、反射材、遮へい材等の原子力用炭素材、熱分解炭素や炭化ケイ素(SiC)等を被覆する基体炭素材などのように従来の用途に使用できる。
【0034】
【実施例】
以下、本発明を実施例によって具体的に説明する。
【0035】
実施例1〜3、比較例1
ディレードコーカーにより製造した生ピッチコークス(コーキング温度450℃)を600℃(実施例1)、700℃(実施例2)及び800℃(実施例3)の各温度で半か焼した後、平均粒径8μmに粉砕し、結合剤としてコールタールピッチを65〜70質量%添加して200℃で加熱混ねつ、二次粉砕(平均粒径14〜15μm)、冷間静水圧加圧成形(成形圧力100MPa)して成形品を得た。次いでコークス粉から成るパッキング材中に埋め、1000℃で焼成及び3000℃で黒鉛化して炭素材(寸法φ300×600mm)を20ブロック製造した。また、比較例として生ピッチコークス(コーキング温度450℃)を半か焼せずにそのまま使用して平均粒径8μmに粉砕し、実施例1〜3と同様の工程で炭素材を製造した(比較例1)。表1に実施例1〜3、比較例1の物性値及び物性のばらつきを敏感に反映する電気抵抗率を選び、その値のばらつき度を標準偏差で示す。
【0036】
【表1】

Figure 0003765840
【0037】
表1より、実施例1〜3と比較例1を比較すると、実施例1〜3のかさ密度は若干滅少しているものの、電気抵抗率の標準偏差は格段に小さくなっており、全て比較例1の標準偏差の1/2以下に低減していることが分かる。
【0038】
実施例4〜9、比較例2〜5
ディレードコーカーにより製造した生ピッチコークス(コーキング温度450℃)を700℃で半か焼して平均粒径8μmに粉砕した半か焼ピッチコークスと、か焼石油コークス(か焼温度1300℃、平均粒径15μm)又は生ピッチコークス(コーキング温度450℃、平均粒径8μm)とを各種配合割合で混合して、結合剤としてコールタールピッチを65〜75質量%(外割)添加して200℃で加熱混ねつ、二次粉砕(平均粒径13〜16μm)、冷間静水圧加圧成形(成形圧力100MPa)して成形品を得た。次いでコークス粉から成るパッキング材中に埋め、1000℃で焼成及び3000℃で黒鉛化して炭素材(寸法φ300×600mm)を20ブロック製造した(実施例4〜9)。また、比較例として生ピッチコークス(コーキング温度450℃、平均粒径8μm)とか焼石油コークス(か焼温度1300℃、平均粒径15μm)とを混合して、実施例4〜9と同様の工程で炭素材を製造した(比較例2〜5)。配合割合、物性値及び電気抵抗率の標準偏差を表2に示す。
【0039】
【表2】
Figure 0003765840
【0040】
表2より、実施例4〜7と比較例2〜5を比較すると、実施例4〜7のかさ密度は若干低下しているものの、電気抵抗率の標準偏差は格段に小さくなっており、ほぼ1/2以下になっていることが分かる。また、実施例8、9と比較例2を比較すると、半か焼ピッチコークスの配合割合が多くなる程、電気抵抗率の標準偏差が小さくなっていることが分かる。
【0041】
実施例10〜12
ディレードコーカーにより製造した生ビッチコークス(コーキング温度450℃)を700℃で半か焼した後、平均粒径15μm(実施例10)、8μm(実施例11)及び3μm(実施例12)の各種平均粒径に粉砕し、結合剤としてコールタールピッチを65〜85質量%添加して200℃で加熱混ねつ、二次粉砕(平均粒径15〜17μm)、冷間静水圧加圧成形(成形圧力100MPa)して成形品を得た。次いでコークス粉から成るパッキング材中に埋め、1000℃で焼成及び3000℃で黒鉛化して炭素材(寸法φ300×600mm)を20ブロック製造した。各物性値及び電気抵抗率の標準偏差を表3に示す。
【0042】
【表3】
Figure 0003765840
【0043】
表3より、半か焼コークスの平均粒径が15μm以下の領域内であれば、標準偏差が小さくなることが分かる。
【0044】
また、石油系生コークスであるニードル生コークス(コーキング温度480℃)を使用して実施例1〜3に記載と同様に炭素材を製造したところ、同様に電気抵抗率の標準偏差の小さい高密度炭素材を得ることができた。
【0045】
なお、以上の実施例の半か焼方法は、窒素ガス雰囲気中の電気炉に生コークスの入った黒鉛製ルツボを入れ、昇温速度200℃/時間で所定の温度(600℃、700℃又は800)の到達後、30分間保持して熱処理したものである。また、得られた各炭素材の物性測定値は、1ブロック当たり30個、合計600個の試料を採取して測定した平均値及び標準偏差である。
【0046】
【発明の効果】
表1、表2及び表3から分かるように、石油系や石炭系を問わず、600〜800℃という生コークスのコーキング温度とか焼温度との中間温度領域で熱処理(半か焼)したコークスを平均粒径15μm以下に粉砕し、骨材として炭素材を製造することで、従来の生コークスを使った製法では得られなかった、物性のばらつきが小さく品質の極めて安定した炭素材を得ることができる。また本発明においては、特にかさ密度1.79以上の高密度炭素材を歩留良く製造することができる。[0001]
[Industrial application fields]
The present invention relates to a method for producing a carbon material, and more particularly, to a method suitable for producing a high-density carbon material represented by isotropic graphite.
[0002]
[Prior art]
Carbon materials usually use aggregates (fillers) such as coke and binders (binders) such as pitch as main raw materials, primary pulverization, kneading, secondary pulverization, molding, firing and graphitization, and It is manufactured through a step of impregnating a binder and the like and performing secondary firing. The main coke used is divided into petroleum coke and coal coke based on the raw materials. Moreover, these cokes are divided into two, raw coke and calcined coke, based on the thermal history. Petroleum-based raw coke can be usually obtained by applying a heat of 400 to 550 ° C. to heavy petroleum oil by a thermal decomposition polymerization reaction, and the thermal decomposition is performed by a delayed coking method, a fluid coking method, or the like. In addition, coal-based raw coke can be obtained by dry distillation by adding heat at 300 to 550 ° C. to coal tar, and dry distillation is performed by a chamber furnace type, a delayed coking type, or the like.
[0003]
This raw coke contains a large amount of volatile components, moisture and sulfur and has a large coefficient of thermal expansion. Therefore, when producing carbon materials with raw coke as the main aggregate, the puffing (abnormal thermal expansion) value is It is large and may break during the firing process or graphitization process.
[0004]
Therefore, in order to lower the puffing value, raw coke is calcined at a temperature of 1200 to 1500 ° C. to remove volatile components and the like, and the thermal expansion coefficient is lowered to promote crystal growth. This calcination is performed by a calsiner such as a rotary kiln, shaft kiln, retort, etc., and the obtained coke is called calcined coke. Since calcined coke is heat-treated at 1200 to 1500 ° C., it contains almost no volatile matter, but it is an aromatic carbon compound component (β-resin component, that is, soluble in quinoline), which is one of the binding components. The component insoluble in benzene) was also completely decomposed and carbonized, so the sinterability was poor. Also, when calcined in this temperature range, the porosity increases, and even when a carbon material is produced with such calcined coke, it hardly shrinks during firing, so a large amount of binder such as pitch can be used or pitch can be reduced. Without impregnation, a high-density carbon material cannot be obtained. The carbon material obtained by using such a large amount of binder or impregnating agent becomes porous or has a low mechanical strength. Furthermore, since the physical properties of carbon materials are greatly affected by the bonding state between the aggregate and the binder, the physical properties of the obtained carbon materials have changed more than expected or the variations have been compared as the amount of the binder increases. It was big. Therefore, many methods for producing high-density carbon materials that require a small amount of binder to be added have been developed.
[0005]
One of them is a method of making a high density carbon material using the above-mentioned raw coke as a main aggregate. This method utilizes the high sinterability and shrinkage of raw coke. That is, petroleum-based and coal-based raw coke has a high sinterability because it contains a large amount of binding components, and further shrinks greatly when fired. Therefore, a high-density carbon material is produced using these characteristics. Is.
[0006]
[Problems to be solved by the invention]
However, raw coke is industrially mass-produced by large-scale large coking furnaces such as delayed cokers, etc., because heavy coke is volatile due to the position and temperature distribution in the coking furnace. Variations in quality such as minute, coefficient of thermal expansion, crystallite size and porosity are very large. Further, raw coke contains 3 to 20% by mass of a volatile component depending on the raw material, and the larger the volatile component, the greater the variation in the physical properties of the obtained carbon material. Therefore, when raw coke is used as the main aggregate, it has been extremely difficult to obtain a high-density carbon material with large variations in physical properties and stable quality.
[0007]
Accordingly, an object of the present invention is to provide a method for producing a carbon material that suppresses loss of sinterability, reduces variations in physical properties, and has extremely stable quality.
[0008]
[Means for Solving the Problems]
The present inventor uses a coke that has been heat-treated at 600 to 800 ° C. and then pulverized to an average particle size of 15 micrometers (hereinafter referred to as “μm”) or less, thereby minimizing loss of sinterability. As a result, we found that carbon materials with stable quality can be manufactured. In this specification, heat treatment at 600 to 800 ° C. is referred to as half-calcination. The coke subjected to the heat treatment is referred to as semi-calcined coke for convenience because various physical property values such as a coefficient of thermal expansion, a crystal structure and a porosity are different from conventional raw coke and calcined coke.
[0009]
Configuration and operation of the invention
Volatile components and the like in raw coke begin to decline at about 500 ° C. and can be almost removed at 1000 ° C., but the binding components are decomposed and carbonized in substantially the same temperature range. Therefore, since the conventional calcined coke is heat-treated at 1200 to 1500 ° C., it hardly contains a binding component and volatile components. Also, coke calcined in the conventional temperature range does not exhibit shrinkage. Furthermore, if the heat treatment temperature of the coke is increased in this way, the micro cracks generated during the heat treatment will expand and progress.
[0010]
Therefore, the present invention achieves uniformization and reduction of volatile matter by heat treatment (semi-calcination) in an intermediate temperature region between the coking temperature of green coke and the calcination temperature of 600 to 800 ° C. The decrease in the binder component in this temperature range is supplemented by the improvement in sinterability and bondability by pulverizing the semi-calcined coke to an average particle size of 15 μm or less, and the shrinkage during firing, thereby improving the density. It is intended. Furthermore, the microcracks generated in the coke by semi-calcination are pulverized to an average particle size of 15 μm or less, thereby preventing the progress of the microcracks.
[0011]
In the present invention, the raw coke that is semi-calcined may be any coke that is coke at 550 ° C. or lower, regardless of whether it is petroleum-based or coal-based, regardless of the manufactured coking apparatus. For example, mosaic coke mainly composed of mosaic structure, needle raw coke mainly composed of fluidized pattern, regular raw coke mixed with mosaic and fluidized structure, raw pitch coke, fluid coke, gilsonite Examples include raw coke such as coke.
[0012]
These raw cokes can be heat treated (semi-calcined) in a temperature range of 600 to 800 ° C. to suppress variations such as volatile matter. When the upper limit of the heat treatment temperature exceeds 800 ° C., the binding component in the raw coke is also almost completely decomposed and carbonized. Therefore, the loss of the binding component due to the heat treatment cannot be compensated for by coke pulverization. Furthermore, even when a carbon material is produced using coke heat-treated at a high temperature exceeding 800 ° C., the coke has a very small shrinkage rate during firing or graphitization, and thus is pulverized to an average particle size of 15 μm or less. Even if coke is used, it is difficult to obtain a high-density carbon material. Therefore, in other words, it has been found that the decrease in the binder component due to the heat treatment temperature of 600 to 800 ° C. can be compensated by the improvement in sinterability and bondability due to the average particle size of 15 μm or less and the shrinkage during firing. is there. On the other hand, in the heat treatment at a heat treatment temperature lower than 600 ° C., variations in volatile matter and the like cannot be sufficiently suppressed, and a carbon material with stable quality cannot be obtained. Further, in the semi-calcined coke, a micro crack is generated due to the heat treatment at 600 to 800 ° C. However, if the average particle size is too large, the micro crack develops and the carbon material It becomes a factor giving variation in physical properties. Also from this viewpoint, it is important to make the average particle size 15 μm or less. Furthermore, since residual volatiles in the semi-calcined coke at the time of firing are also removed through this microcrack, the residual volatiles can be easily removed, which is very convenient for quality stabilization. Result.
[0013]
In addition, since the carbon layer in raw coke is extremely fragile, if the raw coke is crushed to an average particle size of 15 μm or less and then calcined to form an aggregate, the coefficient of thermal expansion, crystallite size, etc. Variations are large and quality cannot be stabilized.
[0014]
Therefore, by pulverizing to an average particle size of 15 μm or less after heat treatment at 600 to 800 ° C., a stable carbon material with reduced quality can be suppressed between materials produced under the same manufacturing conditions by suppressing sinterability loss. Can be manufactured. In particular, it is possible to manufacture a carbon material with little variation in electrical resistivity among physical properties. The standard deviation of the electrical resistivity can be 125 μΩ · cm or less.
[0015]
The pulverization may be performed by a conventionally used pulverizer such as a hammer mill, a jet mill, or a ball mill.
[0016]
Semi-calcination may be carried out in a rotary kiln, shaft kiln, etc., or oxygen shielding by sprinkling swallow powder such as calcined coke powder on the surface exposed to non-oxidizing gas atmosphere such as argon gas or nitrogen gas or air Air may be blocked by providing a layer (claw powder layer) or the like, and heat treatment may be performed with a heating apparatus such as an electric furnace or a resistance heating furnace. At this time, coke reacts sensitively in the temperature range of 600 to 800 ° C. and greatly affects its physical properties, so it is necessary to pay attention to the uniformity of the furnace temperature.
[0017]
What is necessary is just to adjust arbitrarily the temperature increase rate from room temperature to half calcination temperature suitably. However, if it is too slow, the amount of the decomposition and carbonization of the binding component will increase, and the density cannot be increased. Therefore, it is better not to slow the temperature rising rate, and 100 ° C./hour or more is particularly preferable. Moreover, after reaching the half calcination temperature, it may be cooled immediately or may be cooled after maintaining the temperature to achieve uniformity in the furnace temperature. In the case of holding, it is not preferable to hold for a long time from the viewpoint of suppressing the decomposition of the binding component and the amount of carbonization, and one hour or less is most preferable.
[0018]
Semi-calcined coke may be used as 100% aggregate to produce carbon material, raw coke, calcined coke such as calcined pitch coke or calcined petroleum coke, carbon black, artificial graphite powder and natural graphite powder The carbon material may be produced by mixing with those conventionally used as aggregates such as, and using these mixtures. When mixed with calcined coke, carbon black, artificial graphite powder, natural graphite powder and the like, it is preferable that the semi-calcined coke is mixed at a blending ratio of 300 parts by mass or less with respect to 100 parts by mass. This is because if the amount exceeds 300 parts by mass, the amount of the binder required becomes too large, or the bulk density decreases and the mechanical strength decreases. In addition, when calcined coke is fired, it does not shrink as much as raw coke, but half calcined coke still has shrinkability and must be uniformly shrunk. However, when mixed with calcined coke or the like having an average particle size of more than 50 μm, uniform shrinkage is difficult, which causes variations in physical properties, and it is difficult to obtain a high-density carbon material with stable quality. Therefore, when mixed with calcined coke or the like, calcined coke or the like having an average particle size of 50 μm or less is particularly preferable. In addition, even in the case of producing a carbon material by mixing semi-calcined coke and raw coke, if the mixing ratio of raw coke is too large, the physical properties of the carbon material will vary and the meaning of the present invention will be lost. End up. Therefore, it is particularly good to mix the raw coke at a blending ratio of 100 parts by mass or less with respect to 100 parts by mass of the semi-calcined coke. Even in this case, the average particle size of the raw coke is preferably 50 μm or less, but usually the shrinkage rate of the raw coke is larger than the shrinkage rate of the half-calcined coke. The average particle size is preferably 15 μm or less.
[0019]
The use of the semi-calcined coke thus obtained is a feature of the present invention. This semi-calcined coke is used as at least one kind of aggregate, and thereafter a conventional method such as addition of binder, kneading, secondary pulverization, shaping, firing, and graphitization as required. A carbon material may be manufactured through the process. As a result, it is possible to obtain a carbon material with very little quality variation and extremely stable quality, which is particularly suitable for obtaining a high-density carbon material having a bulk density of 1.79 g / cm 3 or more.
[0020]
Furthermore, the density may be further increased by adding normal steps such as pitch impregnation and secondary firing to the above steps. Moreover, according to a conventional high-purification process, the obtained carbon material can be subjected to a high-purity treatment with, for example, a halogen gas at a high temperature of about 2000 ° C. to produce a high-purity carbon material having an ash content of 5 mass ppm or less. In particular, such a high-purity carbon material can be suitably used for a semiconductor carbon material that does not like impurities, such as a member that requires oxidation resistance and a member for a silicon single crystal pulling apparatus.
[0021]
The use of a binder is not essential, and may not be used. When used, it is conventionally used as a binder such as various pitches such as petroleum pitch and coal tar pitch, or synthetic resins such as furan and phenol. What is used may be appropriately selected and used as necessary, and the amount used is not particularly limited. Among them, petroleum pitch contains a lot of aliphatic carbon compounds, and furthermore, it has a low bonding strength, so it needs to be used in large quantities, which causes variations in the physical properties of the carbon material that depends on the state of bonding with the aggregate. It is easy to become. Also, since furan-based and phenol-based synthetic resins change to hard carbon by heat treatment, they may inhibit uniform shrinkage of semi-calcined coke, and volatiles remaining in semi-calcined coke are calcined. In some cases, the physical properties of the carbon material vary greatly, such as when the molding block becomes partially porous when it comes off. On the other hand, since coal tar pitch is rich in aromatic carbon compounds and contains a large amount of binding components, the amount of binder added can be reduced, and variations in physical properties of the carbon material can be further reduced.
[0022]
The amount of the binder that is particularly suitable varies slightly depending on the type of binder and coke used and the average particle size thereof. However, as a guide, the amount used is half when calcined coke is used as a raw material. 50 to 100% by mass (outer percent) is preferable with respect to the baked coke. When 100% raw coke is used as raw material, it is 30 to 90% by mass (external ratio) with respect to raw coke. When 100% calcined coke is used as raw material, it is 65 to 85% with respect to calcined coke. % (Outer percent) is the preferred amount of binder used, so the amount of binder used when mixing semi-calcined coke and various cokes is estimated from the amount of binder used in the above range depending on the mixing ratio. can do.
[0023]
When mixing, it may be performed by various conventional mixing machines such as a Warner type, paddle blade type, etc., and a heating kneader is also used in combination. Mix with temperature.
[0024]
When secondary pulverization is performed, the pulverization is performed by an apparatus similar to the primary pulverization according to a conventional method. The purpose of this secondary pulverization is to pulverize to an appropriate particle size in order to form a kneaded product, and it is usually about the same as the particle size of primary pulverization with an average secondary particle size of 10 to 30 μm. The present invention is not particularly limited with respect to the secondary particle size.
[0025]
The molding is performed by a known method such as stamping molding, extrusion molding, vibration mold insertion molding, cold isostatic pressing, and the like, or a mixture or secondary powder is molded. In the present invention, it is most preferable to form by cold isostatic pressing from the viewpoint of producing a carbon material having isotropic physical properties with less variation in physical properties. The molding pressure may be compressed at a normal pressure. For example, in the case of cold isostatic pressing, 60 to 130 MPa is optimal.
[0026]
Firing is carried out in accordance with conventional methods such as using a furnace such as a single furnace, continuous furnace, tunnel furnace, etc., and is embedded in packing materials such as coke powder and silica sand to prevent oxidation and deformation of the molded product, or nitrogen gas. Or in a non-oxidizing atmosphere such as argon gas ordinarily at 800 to 1500 ° C. In this case, since it is possible to reduce variations in physical properties if the molded product is not deformed as much as possible, it is particularly preferable that the firing be performed by being embedded in a packing material such as coke powder or silica sand. By this firing, the binder such as pitch is mainly carbonized and residual volatile components in the semi-calcined coke are removed. The rate of temperature rise is not particularly limited and may be raised at a normal rate, but it is better to raise the temperature so that the furnace temperature is as uniform as possible, and it is particularly effective to make the rate of temperature rise slightly slower than usual. It is. The heating rate varies depending on the structure of the furnace used, the size of the molded product, and the like, but is performed at 5 to 10 ° C./hour, for example.
[0027]
The fired product is a carbon material that has not developed so much graphitization, but can also be used as a carbon material product as appropriate in consideration of the purpose of use and production cost.
[0028]
By the firing step, the fired product has many pores formed by volatilization of the binder or the like, but the pores may be impregnated with pitch or the like and refired. In this way, the porosity can be reduced and the bulk density, electrical resistivity, and strength can be further improved.
[0029]
When performing graphitization, use a graphitization furnace such as an Atchison furnace, induction heating furnace, direct current electric furnace, etc. in accordance with ordinary methods, and in order to prevent oxidation etc. of the fired product, in the coke powder packing material It is usually carried out at 2500 to 3200 ° C. by filling it with nitrogen gas, argon gas or a reduced pressure or vacuum atmosphere.
[0030]
Further, after the graphitization step, pitch or the like may be impregnated, refired and / or regraphitized for the same reason as described above.
[0031]
The carbon material thus obtained can be processed into a desired product shape using a normal cutting tool according to the purpose.
[0032]
As described above, after the coke is heat-treated at 600 to 800 ° C. and then coke pulverized to an average particle size of 15 μm or less is used as at least one kind of raw material, a carbon material is manufactured by a conventional process thereafter. A carbon material with extremely stable quality can be obtained.
[0033]
The use of the carbon material thus obtained is not limited, and can be widely used for one application. For example, carbon materials for metallurgy such as electrodes, crucibles, heaters, jigs, dies, battery electrodes, electric discharge machining. Carbon materials for electrochemical use such as electrodes for electrodes, electrodes for electrolytic processing, carbon materials for machinery such as bearings, seal rings and vanes, carbon materials for semiconductors such as crucibles, heaters, boats, etc., speed-decreasing materials, reflecting materials, shielding materials, etc. It can be used for conventional applications such as carbon materials for nuclear power, carbon materials for substrates covering pyrolytic carbon, silicon carbide (SiC) and the like.
[0034]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0035]
Examples 1-3, Comparative Example 1
After the raw pitch coke produced by the delayed coker (coking temperature 450 ° C.) is half-calcined at temperatures of 600 ° C. (Example 1), 700 ° C. (Example 2) and 800 ° C. (Example 3), the average grain Grind to a diameter of 8 μm, add 65-70% by mass of coal tar pitch as a binder and mix by heating at 200 ° C., secondary grinding (average particle size of 14-15 μm), cold isostatic pressing (molding) Pressure was 100 MPa) to obtain a molded product. Next, it was embedded in a packing material made of coke powder, fired at 1000 ° C. and graphitized at 3000 ° C. to produce 20 blocks of carbon material (size φ300 × 600 mm). Further, as a comparative example, raw pitch coke (coking temperature 450 ° C.) was used as it was without being calcined, and was pulverized to an average particle size of 8 μm, and a carbon material was produced in the same process as in Examples 1 to 3 (Comparison) Example 1). Table 1 shows the physical property values of Examples 1 to 3 and Comparative Example 1 and the electrical resistivity that sensitively reflects the variation in physical properties, and shows the degree of variation in the standard deviation.
[0036]
[Table 1]
Figure 0003765840
[0037]
From Table 1, when comparing Examples 1 to 3 and Comparative Example 1, although the bulk density of Examples 1 to 3 is slightly reduced, the standard deviation of the electrical resistivity is much smaller, and all are comparative examples. It can be seen that the value is reduced to 1/2 or less of 1 standard deviation.
[0038]
Examples 4-9, Comparative Examples 2-5
Raw calcined pitch coke produced by a delayed coker (coking temperature 450 ° C.) and semi-calcined at 700 ° C. and ground to an average particle size of 8 μm, calcined petroleum coke (calcined temperature 1300 ° C., average grain) 15 μm in diameter) or raw pitch coke (coking temperature 450 ° C., average particle size 8 μm) in various blending ratios, and coal tar pitch as a binder is added in an amount of 65 to 75% by mass (outer percentage) at 200 ° C. A molded product was obtained by heat mixing, secondary pulverization (average particle size 13 to 16 μm), and cold isostatic pressing (molding pressure 100 MPa). Subsequently, it was embedded in a packing material made of coke powder, fired at 1000 ° C. and graphitized at 3000 ° C. to produce 20 blocks of carbon material (size φ300 × 600 mm) (Examples 4 to 9). Further, as a comparative example, raw pitch coke (coking temperature 450 ° C., average particle size 8 μm) and calcined petroleum coke (calcination temperature 1300 ° C., average particle size 15 μm) are mixed, and the same steps as in Examples 4 to 9 The carbon material was manufactured with (Comparative Examples 2 to 5). Table 2 shows the blending ratio, physical property values, and standard deviation of electrical resistivity.
[0039]
[Table 2]
Figure 0003765840
[0040]
From Table 2, when Examples 4 to 7 and Comparative Examples 2 to 5 are compared, although the bulk density of Examples 4 to 7 is slightly reduced, the standard deviation of the electrical resistivity is remarkably small, It turns out that it is less than 1/2. Moreover, when Examples 8 and 9 are compared with Comparative Example 2, it can be seen that the standard deviation of the electrical resistivity decreases as the blending ratio of the half-calcined pitch coke increases.
[0041]
Examples 10-12
Raw bitch coke produced by a delayed coker (coking temperature 450 ° C.) is semi-calcined at 700 ° C. and then averaged with various average particle sizes of 15 μm (Example 10), 8 μm (Example 11) and 3 μm (Example 12). Grind to particle size, add 65-85% by mass of coal tar pitch as binder and mix by heating at 200 ° C., secondary crush (average particle size 15-17 μm), cold isostatic pressing (molding) Pressure was 100 MPa) to obtain a molded product. Next, it was embedded in a packing material made of coke powder, fired at 1000 ° C. and graphitized at 3000 ° C. to produce 20 blocks of carbon material (size φ300 × 600 mm). Table 3 shows each physical property value and standard deviation of electrical resistivity.
[0042]
[Table 3]
Figure 0003765840
[0043]
From Table 3, it can be seen that the standard deviation is small if the average particle size of the half-calcined coke is in the region of 15 μm or less.
[0044]
Further, when carbon material was produced in the same manner as described in Examples 1 to 3 using needle raw coke (coking temperature 480 ° C.), which is petroleum raw coke, high density with a small standard deviation of electrical resistivity is also obtained. Carbon material could be obtained.
[0045]
In the semi-calcination method of the above embodiment, a graphite crucible containing raw coke is put in an electric furnace in a nitrogen gas atmosphere, and a predetermined temperature (600 ° C., 700 ° C. or 800), and heat-treated by holding for 30 minutes. Moreover, the physical property measurement value of each obtained carbon material is an average value and a standard deviation obtained by collecting 30 samples per block and measuring a total of 600 samples.
[0046]
【The invention's effect】
As can be seen from Table 1, Table 2 and Table 3, regardless of petroleum or coal, coke that has been heat-treated (semi-calcined) in the intermediate temperature range between the coking temperature and the calcining temperature of raw coke of 600 to 800 ° C. By pulverizing to an average particle size of 15 μm or less and producing a carbon material as an aggregate, it is possible to obtain a carbon material having a very stable quality with little variation in physical properties, which could not be obtained by a conventional method using raw coke. it can. In the present invention, a high-density carbon material having a bulk density of 1.79 or more can be produced with a good yield.

Claims (3)

生コークスを600乃至800℃で熱処理した後、平均粒径15マイクロメートル以下に粉砕したコークスを少なくとも原料の1種として使用して、同一製造条件で作製した材料間において物性のばらつきが小さい炭素材を製造することを特徴とする炭素材の製造方法。A carbon material having a small variation in physical properties between materials produced under the same production conditions using coke which is heat-treated at 600 to 800 ° C. and then pulverized to an average particle size of 15 micrometers or less as at least one kind of raw material. The manufacturing method of the carbon material characterized by manufacturing. 前記物性が電気抵抗率であることを特徴とする請求項1に記載の炭素材の製造方法。The method for producing a carbon material according to claim 1, wherein the physical property is electrical resistivity. 前記電気抵抗率の標準偏差が125μΩ・cm以下であることを特徴とする請求項2に記載の炭素材の製造方法。The method for producing a carbon material according to claim 2, wherein a standard deviation of the electrical resistivity is 125 μΩ · cm or less.
JP19348894A 1994-07-13 1994-07-13 Carbon material manufacturing method Expired - Lifetime JP3765840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19348894A JP3765840B2 (en) 1994-07-13 1994-07-13 Carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19348894A JP3765840B2 (en) 1994-07-13 1994-07-13 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JPH0826709A JPH0826709A (en) 1996-01-30
JP3765840B2 true JP3765840B2 (en) 2006-04-12

Family

ID=16308876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19348894A Expired - Lifetime JP3765840B2 (en) 1994-07-13 1994-07-13 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP3765840B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707084B1 (en) * 1993-06-28 1995-09-08 Vesuvius France Sa Anti-corrosion coating for refractory elements in vitreous silica.
JP2001254741A (en) * 2000-03-13 2001-09-21 Hitachi Chem Co Ltd Carbon bearing material
JP2002241763A (en) * 2001-02-16 2002-08-28 Nippon Steel Chem Co Ltd Method for producing aggregate coke for artificial graphite
AT411798B (en) * 2002-04-16 2004-05-25 Sgl Carbon Gmbh & Co METHOD FOR THE RECHARGING AND GRAPHATION OF CARBON-IMPREGNATED CARBON BODIES IN A PROCESS STEP AND OVEN TUBE FOR CARRYING OUT THIS PROCESS
WO2008044320A1 (en) * 2006-10-13 2008-04-17 Mole's Act Co., Ltd. Work conduction heating method, method for producing bonded body, method for producing sintered body and work conduction heating device
JP5072802B2 (en) * 2008-11-04 2012-11-14 東洋炭素株式会社 Method for producing high thermal conductive graphite material
JP2014144913A (en) * 2014-04-04 2014-08-14 Toyo Tanso Kk Carbon material
CN106006612B (en) * 2016-05-19 2018-01-23 大同新成新材料股份有限公司 A kind of method and device for preventing that silicon soaks in carbon product graphitizing process
CN111875379B (en) * 2020-06-15 2022-11-15 深圳市赛普戴蒙德科技有限公司 Preparation method and application of carbon-based chip special carbon material
CN116253566A (en) * 2023-03-14 2023-06-13 山东亿维新材料有限责任公司 Needle-shaped Jiao Jipei formula for preparing high-quality graphite electrode and preparation method

Also Published As

Publication number Publication date
JPH0826709A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
JPH0769731A (en) High-strength, high-density conductive ceramic
JP3765840B2 (en) Carbon material manufacturing method
JP4311777B2 (en) Method for producing graphite material
JP4430448B2 (en) Method for producing isotropic graphite material
JPH07165467A (en) Production of isotropic graphite material
CN113979768A (en) High-conductivity carbon electrode material and preparation method thereof
JPH0124724B2 (en)
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JP2910002B2 (en) Special carbon material kneading method
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPH0259468A (en) Production of isotropic graphite material modified to have high specific resistance
CN108794011A (en) A kind of preparation method from sintering carbon graphite sealing material
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
EP0136151A1 (en) Graphitic articles and their production
JP7357286B2 (en) Method for producing graphite material with high coefficient of thermal expansion and its graphite material
JP7167815B2 (en) Raw coke production method
KR100903636B1 (en) Method of preparing carbonaceous material by using wasted cordless tire powder
JP2002154874A (en) Method for manufacturing isotropic graphite material having high coefficient of thermal expansion and graphite tool and graphite base material each consisting of the isotropic graphite material
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JP4539147B2 (en) Method for producing graphite electrode for electric discharge machining
JP2808807B2 (en) Production method of raw material powder for carbon material
JPH04104954A (en) Production of oxidation resistant high-density carbon material
JPH06100366A (en) Production of ceramic-carbon composite material
KR100752918B1 (en) Method of preparing carbonaceous material by using wasted cordless tire power and coke dust

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 9

EXPY Cancellation because of completion of term