JPS5846858B2 - hand tai souchi no seizou houhou - Google Patents

hand tai souchi no seizou houhou

Info

Publication number
JPS5846858B2
JPS5846858B2 JP50136981A JP13698175A JPS5846858B2 JP S5846858 B2 JPS5846858 B2 JP S5846858B2 JP 50136981 A JP50136981 A JP 50136981A JP 13698175 A JP13698175 A JP 13698175A JP S5846858 B2 JPS5846858 B2 JP S5846858B2
Authority
JP
Japan
Prior art keywords
thin plate
flexible thin
semiconductor element
semiconductor
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50136981A
Other languages
Japanese (ja)
Other versions
JPS5260567A (en
Inventor
正雄 加地
博 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP50136981A priority Critical patent/JPS5846858B2/en
Publication of JPS5260567A publication Critical patent/JPS5260567A/en
Publication of JPS5846858B2 publication Critical patent/JPS5846858B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Dicing (AREA)

Description

【発明の詳細な説明】 本発明は一枚の半導体ウエーノ・から多数の半導体素子
ペレットを製造する半導体装置の製造方法に関し、特に
半導体ウニ・・−から半導体素子ペレットに歩留りよく
しかも能率的に細分割できる方法を提供することを目的
とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device manufacturing method for manufacturing a large number of semiconductor element pellets from a single semiconductor wafer, and particularly relates to a semiconductor device manufacturing method for manufacturing semiconductor element pellets from a semiconductor wafer with high yield and efficiency. The purpose is to provide a method that can be divided.

従来トランジスタ、サイリスタ、ダイオード等の半導体
装置は、第1図に示すように、一枚の半導体ウェー・・
1Vc多数の半導体素子2,2を形成し、ビニールシー
ト等の可撓性薄板3に貼付けた後、X方向およびY方向
にそれぞれダイヤモンドポイント等により割目線4X、
4Yを刻設し、ローラ等で押圧して各半導体素子2,2
毎に細分割してペレット化している。
Conventional semiconductor devices such as transistors, thyristors, and diodes are made of a single semiconductor wafer, as shown in Figure 1.
After forming a large number of 1Vc semiconductor elements 2, 2 and pasting them on a flexible thin plate 3 such as a vinyl sheet, a score line 4X,
4Y is carved and pressed with a roller etc. to each semiconductor element 2, 2.
Each product is finely divided and made into pellets.

あるいはこののちさらに第2図に示すように、可撓性薄
板3を全方向に引伸して、半導体素子ペレット2,2間
を離隔せしめて、ステム、リードフレーム等の素子取付
用基板(図示せず)Kマウントじやすくすることもある
Alternatively, as shown in FIG. 2, the thin flexible plate 3 is further stretched in all directions to separate the semiconductor element pellets 2, 2, and the semiconductor element pellets 2, 2 are separated from each other to form an element mounting substrate (not shown) such as a stem or lead frame. ) K-mount may be made easier.

ところで、前記亥1泪標4X、4Yをダイヤモンドポイ
ントにより形成した場合は、第3図に示すように、割目
線4X(4Y)が浅いので、ローラ等で押圧して破断し
た場合、破断面5X(5Y )が半導体ウェハー1の結
晶方向に沿って形成され、半導体素子ペレット2,2が
断面菱形になり、隣接する半導体素子ペレット2,2が
一部型なり合う。
By the way, when the above-mentioned Pig 1 mark 4X and 4Y are formed by diamond points, as shown in Fig. 3, the dividing line 4X (4Y) is shallow, so when they are broken by pressing with a roller etc., the fracture surface 5X (5Y) is formed along the crystal direction of the semiconductor wafer 1, the semiconductor element pellets 2, 2 have a rhombic cross section, and the adjacent semiconductor element pellets 2, 2 partially overlap in shape.

したがって、もしこのま工の状態で引続き前記破断した
亥泪線4X(4Y)と直交する方向の割目線4Y(4X
)に沿って破断すると、各半導体素子ペレット2,2の
上下限鋭角部が破損され、不良素子が多量に発生する。
Therefore, if you continue to work on the split line 4Y (4X) in the direction perpendicular to the broken line 4X (4Y)
), the upper and lower acute angle portions of each semiconductor element pellet 2, 2 are damaged, resulting in a large number of defective elements.

そのため本出願人は、先に、第4図に示すような製造方
法を提案した。
Therefore, the present applicant previously proposed a manufacturing method as shown in FIG.

すなわち、まず多数の半導体素子2,2を形成した半導
体ウェーハ1をビニールシート等の可撓性薄板3に貼付
け、X方向およびY方向にそれぞれダイヤモンドポイン
トにより亥1泪線4X、4Yを刻設する(第4図A)。
That is, first, a semiconductor wafer 1 on which a large number of semiconductor elements 2, 2 have been formed is attached to a flexible thin plate 3 such as a vinyl sheet, and lines 4X, 4Y are engraved with diamond points in the X direction and Y direction, respectively. (Figure 4A).

次にローラ等を図示矢印a方向に押圧して割目線4XK
沿って破断して破断面5Xを形成し、短冊状の半導体素
子連結体20Xを得る(第4図B)。
Next, press a roller etc. in the direction of the arrow a shown in the figure to make the split line 4XK.
It is broken along the same line to form a broken surface 5X to obtain a strip-shaped semiconductor element assembly 20X (FIG. 4B).

続いて可撓性薄板3を加熱しつつ前記破断面5Xと直交
する図示矢印す方向に機械的に引伸して、短冊状の半導
体素子連結体20X、20X間に微少間隙6Xを形成す
る(第4図C)。
Subsequently, the flexible thin plate 3 is heated and mechanically stretched in the direction indicated by the arrow in the figure perpendicular to the fracture surface 5X to form a minute gap 6X between the strip-shaped semiconductor element connected bodies 20X, 20X (fourth Figure C).

次に半導体素子連結体20X、20X間の微少間隙6X
と直交する図示矢印C方向にローラ等を押圧して、割目
線4Yに沿って破断して破断面5Yを形成し、多数の半
導体素子ペレット2,2を得る。
Next, there is a minute gap 6X between the semiconductor element connected bodies 20X and 20X.
A roller or the like is pressed in the direction of arrow C in the figure perpendicular to the arrow C to break along the score line 4Y to form a broken surface 5Y, thereby obtaining a large number of semiconductor element pellets 2, 2.

(第4図D)。(Figure 4D).

この後必要に応じて可撓性薄板3を全方向に引伸して、
谷半導体素子ペレット2,2間に所要寸法の間隙7Xお
よび7Yを形成する(第4図E)。
After that, if necessary, stretch the flexible thin plate 3 in all directions.
Gaps 7X and 7Y of required dimensions are formed between the valley semiconductor element pellets 2, 2 (FIG. 4E).

このような方法によれば、まず一方向の割目線4Xに沿
って破断した後、可撓性薄板3を若干9伸して半導体素
子連結体20X、20X間に微小間隙6Xを設けておい
てから、他方向の割目線4YVc沿って破断するので、
仮に割目線4X。
According to such a method, first, the flexible thin plate 3 is broken along the split line 4X in one direction, and then the flexible thin plate 3 is slightly stretched by 9 to create a minute gap 6X between the semiconductor element connected bodies 20X, 20X. Since it breaks along the split line 4YVc in the other direction,
Suppose the split line is 4X.

4Yをダイヤモンドポイントにより形威し、破断ff1
5X、5Yが第3図に示すように半導体ウェーバ1の結
晶方向に沿って斜めに形成されても、各半導体素子2,
2の一部が重なり合うこともなく細分割してペレット化
できる。
Shape 4Y with a diamond point and break ff1
Even if 5X and 5Y are formed obliquely along the crystal direction of the semiconductor wafer 1 as shown in FIG.
2 can be finely divided and pelletized without overlapping.

したがって半導体素子ペレット2,2の上下間鋭角部が
破損されないので、ペレット化工程における歩留りが著
しく上昇するといと利点がある。
Therefore, since the acute angle between the upper and lower parts of the semiconductor element pellets 2, 2 is not damaged, there is an advantage that the yield in the pelletizing process is significantly increased.

しかしながら、上記の方法に従えば、割目線4Xに沿っ
て破断後、可撓性薄板3を機械的に9伸することが必要
であり、工程が若干複雑になる。
However, if the above method is followed, it is necessary to mechanically stretch the flexible thin plate 3 by 9 degrees after breaking along the score line 4X, which makes the process somewhat complicated.

それ故、もしより簡単な方法で上記と同様に半導体素子
ペレットを歩留りよく製造できれば有利であろう。
Therefore, it would be advantageous if semiconductor device pellets could be produced with a high yield in the same manner as described above using a simpler method.

本発明はこのような点にかんがみ提案されたもので、前
述の可撓性薄板の機械的な引伸し工程を除去して工程を
簡略化することを目的とする。
The present invention has been proposed in view of these points, and an object of the present invention is to simplify the process by eliminating the above-mentioned mechanical stretching process of the flexible thin plate.

以下、本発明の実施例を図面により説明するが、その前
に本発明の基礎となる現象について説明しておく。
Embodiments of the present invention will be described below with reference to the drawings, but before doing so, the phenomena that form the basis of the present invention will be explained.

すなわち、可撓性薄板3は溶融状態の材料を圧延ローラ
で所定厚さに圧延し巻取りローラで巻取っていき、所定
寸法に切断して製造される。
That is, the flexible thin plate 3 is manufactured by rolling a molten material to a predetermined thickness with a rolling roller, winding it up with a take-up roller, and cutting it into a predetermined size.

したがって、第5図に示すように、長尺の可撓性薄板材
料30は、巻取り方向dに巻取り時の応力が残存してい
る。
Therefore, as shown in FIG. 5, stress from winding remains in the long flexible thin plate material 30 in the winding direction d.

そのためこれを切断して可撓性薄板3を製造すると、可
撓性薄板3にも巻取り時の応力が残存している。
Therefore, when the flexible thin plate 3 is manufactured by cutting this, stress from winding remains in the flexible thin plate 3 as well.

このように巻取り時の応力が残存したま又の可撓性薄板
3を加熱すると、第6図に示すように、巻取り方向dと
平行な方向では巻取り時の応力を消滅するように図示矢
印e方向の収縮力が作用し、一方巻取り方向dと直交す
る方向では、前記収縮力の影響によって図示矢印Y方向
に伸張力が作用する。
When the flexible thin plate 3 with residual stress during winding is heated, the stress during winding disappears in the direction parallel to the winding direction d, as shown in Fig. 6. A contraction force acts in the direction of the arrow e shown in the figure, while a stretching force acts in the direction of the arrow Y shown in the figure due to the influence of the contraction force in a direction perpendicular to the winding direction d.

このため可撓性薄板3は巻取り方向と平行な方向に収縮
し、巻取り方向と直交する方向には伸張する性質を有す
る。
Therefore, the flexible thin plate 3 has the property of contracting in a direction parallel to the winding direction and expanding in a direction perpendicular to the winding direction.

本発明は可撓性薄板3の前記巻取り時の残存応力による
伸張作用を利用するもので、第7図により各工程を順を
追って説明する。
The present invention utilizes the elongation effect of the residual stress of the flexible thin plate 3 at the time of winding, and each step will be explained in order with reference to FIG.

すなわち、まず多数の半導体送手2,2の形成された半
導体ウェーバ1を可撓性薄板3に貼付けて、X方向およ
びY方向にそれぞれダイヤモンドポイントにより割目線
4X、4Yを形成する(第7図A)。
That is, first, the semiconductor wafer 1 on which a large number of semiconductor senders 2, 2 are formed is attached to the flexible thin plate 3, and the score lines 4X, 4Y are formed by diamond points in the X direction and the Y direction, respectively (FIG. 7). A).

次に可撓性薄板3の巻取り方向dと直交する図示矢印a
′方向に鋼製ローラ等を押圧して、可撓性薄板30巻取
り方向dと平行な亥1泪線4Xに沿って破断して破断面
5Xを形成し、短冊状の半導体素子連結体20Xを得る
Next, an arrow a shown perpendicular to the winding direction d of the flexible thin plate 3
Pressing a steel roller or the like in the ' direction, the flexible thin plate 30 is fractured along the line 4X parallel to the winding direction d to form a fracture surface 5X, thereby forming a strip-shaped semiconductor element assembly 20X. get.

このとき可撓性薄板3はその可撓性によってローラの曲
面に沿って屈曲するのに対し、半導体素子連結体20X
は屈曲しないため、半導体素子連結体20は長さ方向の
中心線部のみで線接着の状態となる(第7図B)。
At this time, the flexible thin plate 3 bends along the curved surface of the roller due to its flexibility, whereas the semiconductor element connected body 20X
Since the semiconductor element assembly 20 is not bent, the semiconductor element assembly 20 is line-bonded only at the longitudinal centerline portion (FIG. 7B).

続いて半導体素子連結体20Xが貼付けられた可撓性薄
板3をヒータを内蔵したホットプレート上に載置するか
、あるいは赤外@電球で照射する。
Next, the flexible thin plate 3 to which the semiconductor element assembly 20X is attached is placed on a hot plate with a built-in heater, or irradiated with an infrared light bulb.

すると可撓性薄板3は前述したよ5に巻取り方向dと平
行な図示矢印e方向に収縮し、一方巻取り方向dと直交
する図示矢印Y方向に伸張して、各半導体素子連結体2
0X間に微小間隙6Xが形成される(第7図C)。
Then, as described above, the flexible thin plate 3 contracts in the direction of the arrow e shown in the drawing, which is parallel to the winding direction d, and expands in the direction of the arrow Y, which is perpendicular to the winding direction d.
A minute gap 6X is formed between 0X (FIG. 7C).

次いで可撓性薄板3の巻取り方向dと平行方向cZ y
ローラを押圧して、巻取り方向dと直交する方向の亥1
泪線4Yに沿つって破断して、破断ff15Yを形成し
、多数の半導体素子ペレット2,2を得る(第7図D)
Next, the direction cZ y parallel to the winding direction d of the flexible thin plate 3
1 in the direction perpendicular to the winding direction d by pressing the roller
It is broken along the tear line 4Y to form a break ff15Y to obtain a large number of semiconductor element pellets 2, 2 (FIG. 7D).
.

こののち必要により可撓性薄板3を全方向に引伸して各
半導体素子ペレット2,2間に間隙7X、7Yを形成す
る(第7図E)。
Thereafter, if necessary, the flexible thin plate 3 is stretched in all directions to form gaps 7X, 7Y between the respective semiconductor element pellets 2, 2 (FIG. 7E).

このように可撓性薄板30巻取り時の残存応力による伸
張作用を利用すれば、機械的に伸張せしめる必要がない
ので、伸張装置および伸張作業が不要になる利点があり
、かつペレット化工程で半導体素子ペレットの隅角部が
破損されることがない。
In this way, if the stretching action of the residual stress at the time of winding up the flexible thin plate 30 is used, there is no need to mechanically stretch it, so there is an advantage that a stretching device and stretching work are not required, and it can be used in the pelletizing process. Corners of the semiconductor element pellet are not damaged.

なお、可撓性薄板3の加熱伸張工程に利用する熱源とし
て、ホットプレートを用いた場合は、可撓性薄板30半
導体素子連結体20Xの貼付けられていない部分が主と
して伸張し、一方赤外線電球で照射した場合は、可撓性
薄板3の半導体素子連結体20Xの貼付けられている部
分が主として伸張する。
Note that when a hot plate is used as a heat source for the heating and stretching process of the flexible thin plate 3, the portions of the flexible thin plate 30 where the semiconductor element connected body 20X is not attached will mainly expand, while an infrared light bulb will cause the expansion. When irradiated, the portion of the flexible thin plate 3 to which the semiconductor element assembly 20X is attached mainly expands.

これは、赤外線は可撓性薄板3を透過し、一方半導体素
子連結体20Xは赤外線を吸収するため、半導体素子連
結体20Xの貼付げられている部分の方が高湿となるた
めと思われる。
This seems to be because the infrared rays pass through the flexible thin plate 3, while the semiconductor element assembly 20X absorbs the infrared rays, so the area where the semiconductor element assembly 20X is attached becomes more humid. .

以上のように本発明によれば、可撓性薄板の巻取り時の
残存応力による伸張作用を利用するので、機械的に伸張
せしめなくても、ペレット化主程で半導体素子ペレット
の隅角部が破損されることが防止できて、半導体素子ペ
レットを歩留りよく製造できるのみならず、伸張装置お
よび伸張作業が不要になり、設備費および工数を削減で
きて原価低減が図れるという効果を奏する。
As described above, according to the present invention, since the stretching action of the residual stress during winding of the flexible thin plate is utilized, the corner portion of the semiconductor element pellet can be Not only can semiconductor element pellets be manufactured with a high yield by preventing the pellets from being damaged, but also the stretching device and stretching work are no longer necessary, reducing equipment costs and man-hours, resulting in cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は可撓性薄板に貼付けられた半導体ウェーバの斜
視図、第2図は半導体ウェーバを半導体素子ペレツ)K
細分割した後可撓性薄板を伸張せしめた状態を示す斜視
図、第3図は従来方法の欠点を説明するための細分割さ
れた半導体素子ペレットの状態を示す要部拡大側面図、
第4図は本発明の前提となる半導体装置の製造方法を説
明するための各工程の平面図、第5図および第6図は本
発明の基礎となる現象を説明するための可撓性薄板の平
面図、第7図は本発明に係る半導体装置の製造方法を説
明するための各工程における平面図である。 1・・・・・・半導体ウェーバ、2・・・・・・半導体
素子、20X・・・・・・半導体素子連結体、3・・・
・・・可撓性薄板、4X、4Y・・・・・値1泪線、5
X、5Y60.・・・破断面、6X・・・・・・微小間
隙、d・・・・可撓性薄板の巻取り方向。
Figure 1 is a perspective view of a semiconductor wafer attached to a flexible thin plate, and Figure 2 is a perspective view of a semiconductor wafer attached to a flexible thin plate.
FIG. 3 is a perspective view showing a state in which the thin flexible plate is stretched after being finely divided; FIG.
FIG. 4 is a plan view of each process for explaining the method of manufacturing a semiconductor device, which is the premise of the present invention, and FIGS. 5 and 6 are flexible thin plates for explaining the phenomenon that is the basis of the present invention. FIG. 7 is a plan view of each step for explaining the method of manufacturing a semiconductor device according to the present invention. DESCRIPTION OF SYMBOLS 1...Semiconductor weber, 2...Semiconductor element, 20X...Semiconductor element connection body, 3...
...flexible thin plate, 4X, 4Y...value 1 tear line, 5
X, 5Y60. ...Fracture surface, 6X...Minute gap, d...Winding direction of flexible thin plate.

Claims (1)

【特許請求の範囲】[Claims] 1 多数の半導体素子を形成した半導体ウェー・・を可
撓性薄板に貼付けて個々の半導体素子に細分割するもの
において、前記半導体ウエーノ1をまず可撓性薄板の巻
取り方向と直交する方向の亥]泪線に沿って破断する工
程と、全体を加熱して可撓性薄板を巻取り時の残存応力
を利用して前記巻取り方向と直交する方向に伸張せしめ
る工程と、半導体ウェーハを可撓性薄板の巻取方向と平
行する割目線に沿って破断する工程を含むことを特徴と
する半導体装置の製造方法。
1 In a method in which a semiconductor wafer formed with a large number of semiconductor elements is attached to a flexible thin plate and subdivided into individual semiconductor elements, the semiconductor wafer 1 is first cut in a direction perpendicular to the winding direction of the flexible thin plate.亥】A process of breaking along the tear line, a process of heating the entire flexible thin plate and stretching it in a direction perpendicular to the winding direction using the residual stress during winding, and a process of making the semiconductor wafer flexible. 1. A method of manufacturing a semiconductor device, comprising the step of breaking a flexible thin plate along a score line parallel to a winding direction.
JP50136981A 1975-11-13 1975-11-13 hand tai souchi no seizou houhou Expired JPS5846858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50136981A JPS5846858B2 (en) 1975-11-13 1975-11-13 hand tai souchi no seizou houhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50136981A JPS5846858B2 (en) 1975-11-13 1975-11-13 hand tai souchi no seizou houhou

Publications (2)

Publication Number Publication Date
JPS5260567A JPS5260567A (en) 1977-05-19
JPS5846858B2 true JPS5846858B2 (en) 1983-10-19

Family

ID=15187970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50136981A Expired JPS5846858B2 (en) 1975-11-13 1975-11-13 hand tai souchi no seizou houhou

Country Status (1)

Country Link
JP (1) JPS5846858B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624199B2 (en) * 1982-07-30 1994-03-30 株式会社日立製作所 Wafer processing method
US5279992A (en) * 1982-07-30 1994-01-18 Hitachi, Ltd. Method of producing a wafer having a curved notch
US5230747A (en) * 1982-07-30 1993-07-27 Hitachi, Ltd. Wafer having chamfered bend portions in the joint regions between the contour of the wafer and the cut-away portion of the wafer
JPH04352452A (en) * 1991-05-30 1992-12-07 Sharp Corp Dividing method for wafer
US5413659A (en) * 1993-09-30 1995-05-09 Minnesota Mining And Manufacturing Company Array of conductive pathways

Also Published As

Publication number Publication date
JPS5260567A (en) 1977-05-19

Similar Documents

Publication Publication Date Title
CN105336875B (en) Flexible display device and its release method
JPH0616441A (en) Method for cutting brittle plate and device therefor
BE843501A (en) METHOD AND DEVICE FOR PRODUCING PRE-MILLED SOFT BENDING EDGES IN SINGLE-LAYER THERMOPLASTIC SHEETS
KR970060413A (en) Wafer dicing / bonding sheet and semiconductor device production process
ES543176A0 (en) DATA SUPPORT WITH A PRINTED CIRCUIT MODULE AND METHOD FOR ITS MANUFACTURE
BR7601162A (en) LOW CARBON STEEL SHEET AND STRIP, RECOVERED AND COLD REDUCED, AND PROCESS FOR ITS PRODUCTION
JPS5846858B2 (en) hand tai souchi no seizou houhou
EP0317136A3 (en) A method of producing a semiconductor integrated circuit device
KR920004514B1 (en) Manufacturing apparatus of semiconductor elements
JP3537670B2 (en) Semiconductor chip manufacturing method and dicing tape
JP2015079825A (en) Expander, breaking apparatus and method for segmenting
JPS5586173A (en) Manufacture of photo display device
BR7506289A (en) PRESSURE-SENSITIVE REUSABLE TRANSFER ELEMENT AND PROCESS FOR THE SAME PRODUCTION
JPH0212944A (en) Sheet enlarging apparatus for manufacture of semiconductor device
KR100936415B1 (en) Fabricating method of flexible array substrate and substrate module
JP6406532B2 (en) Fragment material substrate cutting device
HUP9903709A2 (en) Polarising panel and method for making same
JPH0666392B2 (en) Method for manufacturing semiconductor device
JPS6011314A (en) Pelletizing method
JPS5843430A (en) Production of liquid crystal display element
CN201131082Y (en) Process board for preventing thermal expansion
JPH08225776A (en) Applying material and production thereof
CN108958548A (en) Surface has ultra-thin glass of touch-control film layer and preparation method thereof, display device
JP2563169Y2 (en) Substrate dividing device and substrate sheet structure
JPS5993421A (en) Manufacture of liquid crystal display element