JPS5826076A - Ceramic sintered body and manufacture - Google Patents

Ceramic sintered body and manufacture

Info

Publication number
JPS5826076A
JPS5826076A JP56124101A JP12410181A JPS5826076A JP S5826076 A JPS5826076 A JP S5826076A JP 56124101 A JP56124101 A JP 56124101A JP 12410181 A JP12410181 A JP 12410181A JP S5826076 A JPS5826076 A JP S5826076A
Authority
JP
Japan
Prior art keywords
boride
weight
powder
sintered body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56124101A
Other languages
Japanese (ja)
Other versions
JPH0244784B2 (en
Inventor
小松 通奏
柘植 章彦
博康 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56124101A priority Critical patent/JPS5826076A/en
Publication of JPS5826076A publication Critical patent/JPS5826076A/en
Publication of JPH0244784B2 publication Critical patent/JPH0244784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、窒化ケイ素を主成分とするセラミックス焼結
体及びその製造方法に関し、更に詳しくは、高密度で、
機械的強度及び耐熱衝撃性が優れ、且つ800〜100
0℃の温度領域で、長時間酸化雰囲気下にあっても機械
的強健の低化度合が小さいセラミックス焼結体及びその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic sintered body containing silicon nitride as a main component and a method for manufacturing the same, and more specifically, to a ceramic sintered body mainly composed of silicon nitride,
Excellent mechanical strength and thermal shock resistance, and 800-100
The present invention relates to a ceramic sintered body that exhibits a small degree of decrease in mechanical strength even when exposed to an oxidizing atmosphere for a long time in a temperature range of 0°C, and a method for manufacturing the same.

セラミックス焼結体は、熱的性質が優れ、且つ高密度を
有しているために、各種構造材料の先端にあるものとし
て各産業分野で広く注目を集めていゐが、その代表的な
ものとして窒化ケイ素の焼結体がある。
Ceramic sintered bodies have excellent thermal properties and high density, so they are attracting wide attention in various industrial fields as being at the forefront of various structural materials. There is a sintered body of silicon nitride.

従来から、窒化ケイ素焼結体の製造においては、反応焼
結法、ホットプレス法及び普通焼結法が一般に採用され
ている。
Conventionally, in the production of silicon nitride sintered bodies, reaction sintering methods, hot pressing methods, and ordinary sintering methods have generally been employed.

このうち、反応焼結法は、金属ケイ素(Sl)の粉末で
予め必要とする形を成形し、これを窒素又はアンモニア
ガス雰囲気中で徐々に加熱して窒化と同時に焼結すると
いう方法である。
Among these, the reactive sintering method is a method in which metallic silicon (Sl) powder is molded into the required shape in advance, and this is gradually heated in a nitrogen or ammonia gas atmosphere to sinter at the same time as nitriding. .

また、ホットプレス法は、窒化ケイ素(81,N、 )
の粉末に、焼結助剤(例えば、Ys Oa ehl!1
0 # A40n)を添加し、これを所定のm(例えば
黒鉛の型)の中で1700〜1800℃の高温下、15
0〜500kv/dc)圧力を印加して焼結する方法で
ある。この方法によれば、高密度で機械的強度も大きく
、かつ耐熱衝撃性又は高温酸化雰囲気下での機械的!l
l[の低下が小さい等の優れ良熱的性質を有する焼結体
を得ることができる。しかし、一方で、この方法は複雑
で大型形状の焼結体を得ることが困難で、しかも量産性
に劣るという欠点を有する。
In addition, the hot press method uses silicon nitride (81,N, )
powder, a sintering aid (for example, Ys Oa ehl!1
0 #A40n) and heated it in a predetermined m (e.g. graphite mold) at a high temperature of 1700 to 1800°C for 15 minutes.
This is a method of sintering by applying pressure (0 to 500 kv/dc). According to this method, high density and high mechanical strength can be obtained, and thermal shock resistance or mechanical strength under high temperature oxidizing atmosphere can be achieved. l
A sintered body having excellent thermal properties such as a small decrease in l[ can be obtained. However, on the other hand, this method has the disadvantage that it is difficult to obtain a sintered body with a complicated and large shape, and furthermore, it is inferior in mass productivity.

他方、普通焼結法は、S l 、N、粉末と焼結助剤を
/譬うフインのような粘結剤で予め成形し、これを非酸
化性雰囲気下でホットプレスすることなくそのまま加熱
して焼結する方法である。しかし、この方法では、高密
度で機械的強度及び耐熱衝撃性に優れた焼結体を得るこ
とは困難である。
On the other hand, in the normal sintering method, S l , N, powder, and a sintering aid are preformed with a binder such as a fin, and then heated as is without hot pressing in a non-oxidizing atmosphere. This method involves sintering. However, with this method, it is difficult to obtain a sintered body with high density and excellent mechanical strength and thermal shock resistance.

そのため1本発明者らは、上記普通焼結法に関し種々の
検討を加えた結果、ホットプレス法に匹敵して、機械的
強度・耐熱衝撃性にすぐれた高密度焼結体を製造できる
普通焼結法を提案した(特開昭55−113674号、
特開昭55−116670号)。
Therefore, as a result of various studies regarding the above-mentioned ordinary sintering method, the present inventors have developed an ordinary sintering method that can produce high-density sintered bodies with excellent mechanical strength and thermal shock resistance, comparable to the hot pressing method. proposed a method (Japanese Patent Application Laid-open No. 55-113674,
JP-A-55-116670).

しかしながら、これらの方法で得られた窒化ケイ素焼結
体の高温酸化雰囲気下における機械的強度の低下に対す
る抵抗性は必ずしも満足のいくものではなかった。
However, the resistance of the silicon nitride sintered bodies obtained by these methods to a decrease in mechanical strength under a high-temperature oxidizing atmosphere was not necessarily satisfactory.

本発明者らは、更に上記の点に関し、鋭意研究を重ねた
結果、本発明を完成するに到った。
The present inventors further conducted intensive research regarding the above points, and as a result, completed the present invention.

本発明の目的は、高密度で耐熱衝撃性に優れ、しかも、
800〜1000℃の温度領域で、長時間酸化雰囲気下
にあっても機械的強度の低下が小さいセラミックス焼結
体、とプわけ窒化ケイ素を主成分とする★ツミツクス焼
結体及びその製造方法を提供することである。
The purpose of the present invention is to have high density and excellent thermal shock resistance, and
Ceramic sintered bodies whose mechanical strength decreases little even when exposed to an oxidizing atmosphere for long periods of time in the temperature range of 800 to 1000°C, in particular, Tsumics sintered bodies whose main component is silicon nitride, and their manufacturing method. It is to provide.

即ち、本発明のセラミックス焼結体は、酸化イツトリウ
ム(YmOa ) 0.1−10重量%;酸化アル建エ
クム(A hot ) O,五〜10重1慢;章化アル
ミニウム(A息N)0.1〜lO重量優;硼化チタy(
TiBx)、硼化Δナゾクム(VBs )、硼化クロム
(CrB)、硼化ジルコニウム(ZrBs)、硼化ニオ
ブ(NbB)、硼化モリノデン(MoBv) 、硼化ハ
フニウム(HfBs)、硼化タンタル(TaB、)、 
 及び硼化タングステン(WB)のそれぞれの硼化物か
ら成る群よプ遺ばれる少なくとも1種の硼化物0.1〜
5重量優;及び残部は窒化ケイ素(81,N4)から成
ることを4?徴とするものである。
That is, the ceramic sintered body of the present invention contains yttrium oxide (YmOa) 0.1-10% by weight; aluminum oxide (Ahot) O, 5-10%; .1~1O weight superiority; titanium boride y (
TiBx), Δnazocum boride (VBs), chromium boride (CrB), zirconium boride (ZrBs), niobium boride (NbB), molynodene boride (MoBv), hafnium boride (HfBs), tantalum boride ( TaB, ),
and tungsten boride (WB), at least one type of boride remaining in the group consisting of borides of 0.1~
5 by weight; and the remainder consists of silicon nitride (81, N4). It is a sign.

本発明のセラ建ツクス焼結体は、81aNn t’主成
分とするものであり、Sl、N、は70重量−以上の配
合比で用いられることが好ましい、使用されるSiAは
、α相型、β相型のいずれであってもよいが、α相型が
好んで用いられる。
The ceramic sintered body of the present invention has 81aNnt' as the main component, and it is preferable that Sl and N are used in a blending ratio of 70% by weight or more.The SiA used is α phase type. , β-phase type may be used, but α-phase type is preferably used.

Yl偽及びム1■0.はいずれも焼結促進剤として機能
する。これら成分は、その配合比がそれぞれ10重量−
を超えると、得られた焼結体の機械的強度及び耐熱衝撃
性が低下して好ましくない、これらの成分は、通常、両
者を合わせて3〜15重量修の配合比にあることが好ま
しい、    “ムmNは、主成分であるSl、N、の
焼結過程における蒸発を抑制する機能のほか、他の成分
と反応して焼結に資する液相を生成して全体の焼結促進
に寄与する。その配合比が10重量Lst超えると、得
られた焼結体の機械的強度及び耐熱衝撃性を低下せしめ
る。
Yl fake and mu1■0. Both function as sintering accelerators. These components each have a blending ratio of 10% by weight.
Exceeding the above is undesirable because the mechanical strength and thermal shock resistance of the obtained sintered body decrease.It is usually preferable that these components be in a blending ratio of 3 to 15% by weight in total. In addition to suppressing the evaporation of the main components Sl and N during the sintering process, mN reacts with other components to generate a liquid phase that contributes to sintering, contributing to the overall sintering process. If the blending ratio exceeds 10 weight Lst, the mechanical strength and thermal shock resistance of the obtained sintered body will be reduced.

ま た 、  ’rts禽 、  ’/B@  s  
CrB  %  Zrfb 、 NbB  s   M
oa露 、N Bt 、Tak s WB  などの硼
化物は、いずれも、上記したYIO畠、 At、0.な
どの焼結促進剤の機能を助長するだけでなく、焼結体表
面に酸化抵抗の大急い硼ケイ酸系ガラス質の保護被膜を
形成するために、得られた焼結体の、800〜1000
℃、酸化雰凹気下における機械的強度の低下を防止する
機能を有する。4$に、MoBv 、 CrB、TIB
、はその効果に資すること大である。しかしながら、そ
れらの配合比が5重量−を超えると、かえって焼結体O
機械的強度及び耐熱衝撃性を低下せしめて好ましくない
Also, 'rts bird,'/B@s
CrB%Zrfb, NbBsM
Borides such as OA, N Bt, and Taks WB are all manufactured by the above-mentioned YIO Hatake, At, 0. In addition to promoting the function of the sintering accelerator such as 1000
It has the function of preventing a decrease in mechanical strength under conditions such as temperature and oxidizing atmosphere. 4$, MoBv, CrB, TIB
, greatly contributes to its effectiveness. However, if their blending ratio exceeds 5% by weight, the sintered body becomes O
This is undesirable because it reduces mechanical strength and thermal shock resistance.

本発明のセ2ンツクス焼結体の製造方法は、酸化イ・ク
トリウム(YloM)粉末0.1〜10重量%;酸化ア
ル建ニウムCAosom )粉末0.1−10重量%;
窒化アル建ニウム(A五N)粉末0.1−101!jk
%;硼化チタン(TIB*)、硼化バナジウム(VBm
)、硼化クロム(CrB)、硼化ジルコニウム(Zrl
h)、硼化ニオブ(NbB)、硼化モリブデン(MoB
s)、硼化ハフニウム(HfBm)−硼化タンタル(T
a馬)、及び硼化タングステン(WB)のそれぞれの硼
化物粉末から成る群よシ選dれる少なくとも1種の硼化
物役末0.1〜5重量−:及び残部が窒化ケイ素(81
1N4 )粉末から成る混合粉末を成形し、該成形体を
非酸化性雰囲気中で焼結することを特徴とするものであ
る。
The method for producing a sintered body of the present invention includes: 0.1 to 10% by weight of YloM oxide (YloM) powder; 0.1 to 10% by weight of Aluminum oxide (CAosom) powder;
Alkenium nitride (A5N) powder 0.1-101! jk
%; titanium boride (TIB*), vanadium boride (VBm
), chromium boride (CrB), zirconium boride (Zrl
h), niobium boride (NbB), molybdenum boride (MoB)
s), hafnium boride (HfBm)-tantalum boride (T
a) and tungsten boride (WB), and the balance is silicon nitride (81
1N4) powder is molded, and the molded body is sintered in a non-oxidizing atmosphere.

本発明方法において、これらの各取分の混合は、通常の
が一ル建ル等の粉砕混合機により、n−ブチルアルコー
ル等の溶媒を用いて行なうことができる。
In the method of the present invention, these respective fractions can be mixed using a conventional pulverizing mixer such as a single-build mixer using a solvent such as n-butyl alcohol.

このように調製された混合粉末に、パラフィン等の粘結
剤を添加して適宜な圧力を印加し、所定形状の成形体と
する。
A binder such as paraffin is added to the mixed powder thus prepared, and an appropriate pressure is applied to form a molded body into a predetermined shape.

この成形体を非酸化性雰囲気中、1500〜1900℃
、好ましくは1600〜1800℃で加熱して焼結せし
め、焼結体とする。非酸化性雰囲気としては、窒素、ア
ルゴン等があげられる。酸化性雰囲気では81.N、が
酸化してSiO,になるため不可である。
This molded body was heated to 1500 to 1900°C in a non-oxidizing atmosphere.
, preferably by heating at 1,600 to 1,800° C. to sinter it to form a sintered body. Examples of the non-oxidizing atmosphere include nitrogen, argon, and the like. 81 in an oxidizing atmosphere. This is not possible because N is oxidized to become SiO.

なお、この焼結時に、50〜500ky/−の圧力を印
加したホットプレス状態、または、非酸化性ガス雰囲気
中、加圧状態で焼結してもよい、或いは、畳通焼結法に
よる焼結を行なった後に、更に加圧雰囲気中で焼結を行
なったものであっても焼結体の特性は何ら損なわれるも
のではない。
In addition, during this sintering, sintering may be performed in a hot press state with a pressure of 50 to 500 ky/- applied, or in a pressurized state in a non-oxidizing gas atmosphere, or sintering by the Tatami sintering method. Even if the sintered body is further sintered in a pressurized atmosphere after sintering, the properties of the sintered body are not impaired in any way.

以下において、本発明を、実施例及び参考例を掲げて更
に詳細に説明する。
The present invention will be explained in more detail below with reference to Examples and Reference Examples.

実施例及び参考例 表に示したように1各成分を所定の配合比(重量嗟)で
配合し、ここKn−ブチルアルコールを適量添加した後
、tムライニングI−ルオルで24時間それぞれ混合し
て、本発明に係る実施例として13種類、並びに参考例
として9種類、計22種類の混合粉末を調製した。なお
、81 、N4の粉末は、a相!181.N485%を
含む平均粒径1.27gの粉末である。また、Y、O,
粉末の平均粒径は1.0μ、AA、0.粉末の平均粒径
は0.5μ、AjNの平均粒径は15jI、各種の備化
物の平均粒径は1.0μであつ九。
As shown in the Examples and Reference Examples table, each component was blended at a predetermined blending ratio (by weight), an appropriate amount of Kn-butyl alcohol was added thereto, and the mixture was mixed for 24 hours using a t-ml lining I-luol. A total of 22 types of mixed powders were prepared, including 13 types as examples according to the present invention and 9 types as reference examples. In addition, the powder of 81 and N4 is a phase! 181. It is a powder with an average particle size of 1.27 g containing 485% N. Also, Y, O,
The average particle size of the powder is 1.0μ, AA, 0. The average particle size of the powder is 0.5μ, the average particle size of AjN is 15JI, and the average particle size of various compounds is 1.0μ.

得られた混合粉末に、更にパラフィンを7重量−添加し
た後、室温下、700kf/−の成形圧で長さ6o■1
幅40m1及び厚み1o■の板状体を成形した。得られ
た各成形体を、まず700℃で加熱処理してノ譬2フィ
ンを熱分解除去し、ついで窒素ガスを通流(341/m
in ) Lながら1750℃で焼結した。
After adding 7 weights of paraffin to the obtained mixed powder, it was molded to a length of 6o1 at room temperature under a molding pressure of 700kf/-.
A plate-shaped body with a width of 40 m1 and a thickness of 10 mm was molded. Each of the obtained molded bodies was first heat-treated at 700°C to remove the two fins by thermal decomposition, and then passed through nitrogen gas (341/m2).
sintered at 1750° C. in ) L.

得られた各焼結体につき、相対密度、室温下での抗折強
度、空気中、800℃、900’C11000’Cで、
それぞれ5000時間酸化処理し九後の室温下での抗折
強度、並びに耐熱衝撃性を測定した。
For each obtained sintered body, relative density, bending strength at room temperature, in air, 800°C, 900'C11000'C,
Each sample was oxidized for 5,000 hours, and after nine months, the bending strength and thermal shock resistance at room temperature were measured.

それらの結果を、実施例1−13及び参考例1〜9とし
て表に示した。それぞれの測定項目は以下の仕様罠従っ
た。
The results are shown in the table as Examples 1-13 and Reference Examples 1-9. Each measurement item followed the following specification traps.

相対密度:組成比から算出した理論密度に対する相対比
(情で示した。
Relative density: Relative ratio to the theoretical density calculated from the composition ratio (expressed in figures).

抗折強度:3点曲げ強度試験によるもので、試片のサイ
ズ3X3X30箇、クロス ヘッドスピード0.5sm/min、ス/母ン20■、
温度室温。測定は各試片4 枚につ自行ないその平均値で示した。
Transverse bending strength: Based on 3-point bending strength test, sample size 3x3x30, crosshead speed 0.5sm/min,
Temperature room temperature. Measurements were carried out on four specimens of each specimen, and the average value is shown.

耐熱衝撃性:抗折強度測定用試験片と同一形状の試験片
をある温度に加熱し死後、水 中に投入して急冷し、試験片へのク ラック発生の有無を螢光探傷法で観 察し、クラック発生時における加熱 温度と水温との差ΔTをもって表示し た。
Thermal shock resistance: A test piece with the same shape as the test piece for measuring bending strength is heated to a certain temperature, and after death, it is placed in water and rapidly cooled, and the presence or absence of cracks in the test piece is observed using fluorescence flaw detection. It is expressed as the difference ΔT between the heating temperature and the water temperature at the time of crack generation.

表から明らかなように、本発明方法によって得られた焼
結体(実施例1〜13)は、相対密fは理論密度の[S
以上と高密度であシ、またその抗折強度も85神/−以
上と大きく、耐熱衝撃性%jTで表わしてほぼ700℃
以上である。とシわけ、1100〜1000℃で500
0時間の酸化処理後にあってもその抗折強健の低下の小
さいことが判明し九。
As is clear from the table, the relative density f of the sintered bodies obtained by the method of the present invention (Examples 1 to 13) is the theoretical density [S
It is a high-density material with a high bending strength of 85 K/- or more, and has a thermal shock resistance of approximately 700°C expressed in %jT.
That's all. 500℃ at 1100~1000℃
It was found that even after 0 hours of oxidation treatment, the decrease in bending strength was small.

以上詳述したように、本発明方法はホットプレスするこ
とを必要としないので大蓋生産に適合し、しかも高!a
jで耐熱衝撃性にすぐれ、かつ800〜1000℃の酸
化雰囲気下における機械的強度の低下の小さい焼結体t
m造で自るので、その工業的有用性は大である。
As detailed above, the method of the present invention does not require hot pressing, so it is suitable for producing large lids and is moreover cost-effective. a
A sintered body t which has excellent thermal shock resistance in j and has a small decrease in mechanical strength in an oxidizing atmosphere at 800 to 1000 °C
Since it can be manufactured by m construction, its industrial usefulness is great.

Claims (2)

【特許請求の範囲】[Claims] (1)  酸化イツトリウム0.1〜10重量−工酸化
アル々ニウム0.1−10重量−二窒化アルミニウム0
.1〜10重量饅;硼化チタン、硼化バナジウム、硼化
クロム、硼化ジルコニウム、錫化エオツ、硼化モリブデ
ン、硼化ハフニウム、硼化タンタル、及び硼化タングス
テンのそれぞれの硼化物から成る群よ)選ばれる少なく
とも1種の硼化物0.1〜5重量−二及び残部は窒化ケ
イ素から成ることを特徴とするセラミックス焼結体。
(1) Yttrium oxide 0.1-10 weight - Engineered aluminum oxide 0.1-10 weight - Aluminum dinitride 0
.. 1 to 10% by weight; a group consisting of each boride of titanium boride, vanadium boride, chromium boride, zirconium boride, sulfur stanride, molybdenum boride, hafnium boride, tantalum boride, and tungsten boride 2) A ceramic sintered body comprising 0.1 to 5% by weight of at least one selected boride and the balance consisting of silicon nitride.
(2)  酸化イツトリウム粉末0.1〜lO重量−;
酸化アル々ニウム麺末0.1〜lO重量−;輩化アル2
ニウム粉末0.1〜lO重量%;硼化チタン、硼化バナ
ジウム、硼化クロム、硼化ジルコニウム、硼化二オシ、
硼化モリブデン、硼化ハフニウム、硼化タンタル、及び
硼化タングステンOそれぞれの硼化物粉末から成る群よ
シ選ばれる少なくとも1種の硼化物粉末0.1〜5重量
−二及び残部が窒化ケイ窒粉末から成る混合粉末を成形
し、該成形体を非酸化性雰囲気中で焼結することを特徴
とするセラミックス焼結体の製造方法。
(2) Yttrium oxide powder 0.1 to 1O weight;
Aluminum oxide noodle powder 0.1~1O weight-; aluminum oxide 2
Nium powder 0.1-10% by weight; titanium boride, vanadium boride, chromium boride, zirconium boride, dioxin boride,
At least one boride powder selected from the group consisting of boride powders of molybdenum boride, hafnium boride, tantalum boride, and tungsten boride O, with 0.1 to 5% by weight and the balance being silicon nitride. 1. A method for producing a ceramic sintered body, which comprises molding a mixed powder consisting of powder and sintering the molded body in a non-oxidizing atmosphere.
JP56124101A 1981-08-10 1981-08-10 Ceramic sintered body and manufacture Granted JPS5826076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124101A JPS5826076A (en) 1981-08-10 1981-08-10 Ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124101A JPS5826076A (en) 1981-08-10 1981-08-10 Ceramic sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS5826076A true JPS5826076A (en) 1983-02-16
JPH0244784B2 JPH0244784B2 (en) 1990-10-05

Family

ID=14876945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124101A Granted JPS5826076A (en) 1981-08-10 1981-08-10 Ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS5826076A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232970A (en) * 1983-05-13 1984-12-27 三菱マテリアル株式会社 Abrasion resistant sialon base ceramics
EP0133289A2 (en) * 1983-07-29 1985-02-20 Kabushiki Kaisha Toshiba Wear-resistant member and manufacturing method thereof
JPS6197167A (en) * 1984-10-17 1986-05-15 住友電気工業株式会社 Silicon nitride sintered body and manufacture
US5589429A (en) * 1993-12-27 1996-12-31 Ngk Spark Plug Co., Ltd. Aluminum nitride sintered body and process for producing the same
WO2013035302A1 (en) * 2011-09-05 2013-03-14 株式会社 東芝 Silicon nitride sintered body, method for producing same, and abrasion-resistant member and bearing each produced using same
EP2915793A4 (en) * 2012-10-30 2016-06-01 Toshiba Kk Silicon nitride sintered body and wear resistant member using same
CN109942302A (en) * 2019-03-20 2019-06-28 广东工业大学 A kind of boride activeness and quietness silicon nitride ceramics and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232970A (en) * 1983-05-13 1984-12-27 三菱マテリアル株式会社 Abrasion resistant sialon base ceramics
JPS6257596B2 (en) * 1983-05-13 1987-12-01 Mitsubishi Metal Corp
EP0133289A2 (en) * 1983-07-29 1985-02-20 Kabushiki Kaisha Toshiba Wear-resistant member and manufacturing method thereof
JPS6197167A (en) * 1984-10-17 1986-05-15 住友電気工業株式会社 Silicon nitride sintered body and manufacture
US5589429A (en) * 1993-12-27 1996-12-31 Ngk Spark Plug Co., Ltd. Aluminum nitride sintered body and process for producing the same
WO2013035302A1 (en) * 2011-09-05 2013-03-14 株式会社 東芝 Silicon nitride sintered body, method for producing same, and abrasion-resistant member and bearing each produced using same
EP2915793A4 (en) * 2012-10-30 2016-06-01 Toshiba Kk Silicon nitride sintered body and wear resistant member using same
JPWO2014069268A1 (en) * 2012-10-30 2016-09-08 株式会社東芝 Silicon nitride sintered body and wear-resistant member using the same
US9440887B2 (en) 2012-10-30 2016-09-13 Kabushiki Kaisha Toshiba Silicon nitride sintered body and wear resistant member using the same
CN109942302A (en) * 2019-03-20 2019-06-28 广东工业大学 A kind of boride activeness and quietness silicon nitride ceramics and preparation method thereof

Also Published As

Publication number Publication date
JPH0244784B2 (en) 1990-10-05

Similar Documents

Publication Publication Date Title
JPS5826077A (en) Ceramic sintered body and manufacture
JPH0244786B2 (en)
US3262763A (en) High temperature-resistant materials of aluminum, boron, nitrogen, and silicon and preparation thereof
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
US3953221A (en) Fully dense ceramic article and process employing magnesium oxide as a sintering aid
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JPS5826076A (en) Ceramic sintered body and manufacture
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JPH0116791B2 (en)
JPS6236991B2 (en)
JP2573230B2 (en) Silicon nitride ceramics
JPH01264973A (en) Production of sintered body of beta-sialon
JP2736386B2 (en) Silicon nitride sintered body
JPS6152110B2 (en)
JPS61158866A (en) Ceramic sintered body and manufacture
JPS5988372A (en) Manufacture of silicon nitride formed body
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JPS6110073A (en) Aluminum nitride sintered body
JPS62265173A (en) Silicon carbide whisker-reinforced composite material
JP2581128B2 (en) Alumina-sialon composite sintered body
JPS63112471A (en) Silicon nitride base ceramics and manufacture
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPS6020347B2 (en) Manufacturing method of silicon nitride sintered body
SU1694553A1 (en) High temperature ceramic material
JPH03164472A (en) Production of silicon nitride sintered body