JPH0116791B2 - - Google Patents

Info

Publication number
JPH0116791B2
JPH0116791B2 JP56084920A JP8492081A JPH0116791B2 JP H0116791 B2 JPH0116791 B2 JP H0116791B2 JP 56084920 A JP56084920 A JP 56084920A JP 8492081 A JP8492081 A JP 8492081A JP H0116791 B2 JPH0116791 B2 JP H0116791B2
Authority
JP
Japan
Prior art keywords
oxide
carbide
weight
sintered body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56084920A
Other languages
Japanese (ja)
Other versions
JPS57200266A (en
Inventor
Michasu Komatsu
Akihiko Tsuge
Hiroyasu Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56084920A priority Critical patent/JPS57200266A/en
Publication of JPS57200266A publication Critical patent/JPS57200266A/en
Publication of JPH0116791B2 publication Critical patent/JPH0116791B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、窒化ケイ素を主成分とするセラミツ
クス焼結体、更に詳しくは、普通焼結法によつて
高密度で、耐熱衝撃性に優れ、高温酸化雰囲気下
にあつても機械的強度の低下の小さいセラミツク
ス焼結体に関する。 熱的性質にすぐれ、かつ高密度のセラミツクス
焼結体は、各種構造材料の先端にあるものとして
各産業分野で広く注目を集めているが、その代表
的なものとして窒化ケイ素の焼結体がある。 従来から、窒化ケイ素焼結体の製造において
は、反応焼結法、ホツトプレス法及び普通焼結法
が一般には採用されている。 このうち、反応焼結法は、金属ケイ素(Si)の
粉末で予め必要とする形を成形し、これを窒素又
はアンモニアガス雰囲気中で徐々に加熱して窒化
と同時に焼結するという方法である。 また、ホツトプレス法は、窒化ケイ素
(Si3N4)の粉末に、焼結助剤(例えば、Y2O3
MgO、Al2O3)を添加し、これを所定の型(例え
ば黒鉛の型)の中で1700〜1800℃の高温下、150
〜500Kg/cm2の圧力を印加して焼結する方法であ
る。この方法によれば、高密度で機械的強度も大
きく、かつ耐熱衝撃性又は高温酸化雰囲気下での
機械的強度低下に対する抵抗などの熱的性質にす
ぐれた焼結体を得ることができる。しかし、一方
で、この方法は複雑で大型形状の焼結体を得るこ
とが困難で、しかも量産性に劣るという欠点を有
する。 他方、普通焼結法は、Si3N4粉末と焼結助剤を
パラフインのような粘結剤で予め成形し、これを
非酸化性雰囲気下でホツトプレスすることなくそ
のまま加熱して焼結する方法である。しかし、こ
の方法では、高密度で機械的強度の大きい焼結
体、とりわけ高温酸化雰囲気下での機械的強度低
下に対する抵抗性の大きい焼結体を得ることは困
難である。 そのため、本発明者らは、上記普通焼結法に関
し種々の検討を加えた結果、ホツトプレス法に匹
敵して、機械的強度・耐熱衝撃性にすぐれた高密
度焼結体を製造できる普通焼結法を提案した(特
願昭54−19013号、特願昭54−21383号)。 しかしながら、これらの方法で得られた窒化ケ
イ素焼結体の高温酸化雰囲気下における機械的強
度の低下に対する抵抗性は必ずしも満足のいくも
のではなかつた。 本発明者らは、更に上記の点に関し、鋭意研究
を重ねた結果、本発明を完成するに到つた。 本発明の目的は、普通焼結法によつて、高密度
で耐熱衝撃性にすぐれ、しかも高温酸化雰囲気下
にあつても機械的強度の低下に対する抵抗性の大
きいセラミツクス焼結体、とりわけ窒化ケイ素焼
結体を提供することである。 本発明のセラミツクス焼結体は、酸化イツトリ
ウム(Y2O3)10重量%以下;酸化アルミニウム
(Al2O3)10重量%以下;窒化アルミニウム
(AlN)10重量%以下;酸化ニツケル(NiO)、酸
化コバルト(CoO)、酸化ボロン(B2O3)、酸化
クロム(Cr2O3)、酸化ニオブ(Nb2O5)、酸化タ
ンタル(Ta2O5)、酸化ハフニウム(HfO2)、炭
化クロム(Cr3C2)、炭化ニオブ(NbC)、炭化タ
ンタル(TaC)、炭化ハフニウム(HfC)若しく
は炭化モリブデン(Mo2C)から成る群より選ば
れる少くとも1種の酸化物又は炭化物5重量%以
下;及び残部は窒化ケイ素から成ることを特徴と
するものである。 本発明のセラミツクス焼結体は、酸化イツトリ
ウム粉末10重量%以下;酸化アルミニウム粉末10
重量%以下;窒化アルミニウム粉末10重量%以
下;酸化ニツケル、酸化コバルト、酸化ボロン、
酸化クロム、酸化ニオブ、酸化タンタル、酸化ハ
フニウム、炭化クロム、炭化ニオブ、炭化タンタ
ル、炭化ハフニウム若しくは炭化モリブデンから
成る群より選ばれる少くとも1種の酸化物又は炭
化物の粉末5重量%以下;及び残部は窒化ケイ素
から成る混合粉末を成形し、該成形体を非酸化性
雰囲気中で焼結することにより製造することがで
きる。 ここで、各成分のうち、Si3N4は主成分であ
る。用いるSi3N4はα相型、β相型のいずれであ
つてもよいが、α相型が好んで用いられる。ま
た、Si3N4は70重量%以上の配合比で用いられる
ことが好ましい。 Y2O3及びAl2O3はいずれも焼結促進剤として機
能する。これら成分は、その配合比がそれぞれ10
重量%を超えると、得られた焼結体の機械的強度
及び耐熱衝撃性が低下して好ましくない。通常、
両者を合わせて3〜15重量%の配合比にあること
が好ましい。 AlNは、主成分のSi3N4の焼結過程における蒸
発を抑制する機能のほか、他の成分と反応して焼
結に資する液相を生成して全体の焼結促進に寄与
する。その配合比が10重量%を超えると、得られ
た焼結体の機械的強度及び耐熱衝撃性を低下せし
める。 また、NiO、CoO、B2O3、Cr2O3、Nb2O5
Ta2O5、HfO2、Cr3C2、NbC、TaC、HfC、
Mo2Cなどの酸化物又は炭化物は、いずれも上記
したY2O3、Al2O3などの焼結促進剤の機能を助長
するだけでなく、得られた焼結体の高温酸化雰囲
気下における機械的強度の低下を防止する機能を
有する。とくに、Cr3O2、Mo2Cはその効果に資
すること大である。しかしながら、それらの配合
比が5重量%を超えると、かえつて焼結体の機械
的強度及び耐熱衝撃性を低下せしめて好ましくな
い。 本発明の焼結体を製造するに際しては、これら
の各成分の混合は、通常のボールミル等の粉砕混
合機により、n−ブチルアルコール等の溶媒を用
いて行なうことができる。 このように調製された混合粉末にパラフイン等
の粘結剤を添加して適宜な圧力を印加し、所定形
状の成形体とする。 この成形体を非酸化性雰囲気中、1500〜1900
℃、好ましくは1600〜1800℃で加熱して焼結せし
め、焼結体とする。非酸化性雰囲気としては、窒
素、アルゴン等があげられる。酸化性雰囲気では
Si3N4が酸化してSiO2になるため不可である。な
お、この焼結時に、50〜500Kg/cm2の圧力を印加
したホツトプレス状態で焼結してもよい。 以下に、本発明を実施例に基づいて説明する。 実施例 表に示したように、各成分を所定の配合比(重
量%)で配合し、ここにn−ブチルアルコールを
適量添加した後、ゴムライニングボールミルで24
時間それぞれ混合して38種類の混合粉末を調製し
た。なお、Si3N4の粉末は、α相型Si3N485%を
含む平均粒径1.2μの粉末である。また、Y2O3
末の平均粒径は1.0μ、Al2O3粉末の平均粒径は
0.5μ、AlNの平均粒径は1.5μ、各種の酸化物及び
炭化物の平均粒径は1.0μであつた。 得られた混合粉末に、更にパラフインを7重量
%添加した後、室温下、700Kg/cm2の成形圧で長
さ60mm幅40mm厚み10mmの板状体を成形した。得ら
れた各成形体を、まず700℃で加熱処理してパラ
フインを熱分解除去し、ついで窒素ガスを通流
(3/min)しながら1750℃で焼結した。 得られた各焼結体につき、相対密度、室温下で
の抗折強度、空気気中、1000℃で1000時間酸化処
理した後の室温下での抗折強度、空気中1200℃で
1000時間酸化処理した後の室温下での抗折強度及
び耐熱衝撃性を測定した。 それらの結果を、各焼結体の試片番号に対応さ
せて表に示した。それぞれの測定項目は以下の仕
様にしたがつた。 相対密度:組成比から算出した理論密度に対する
相対比(%)で示した。 抗折強度:3点曲げ強度試験によるもので、試片
のサイズ3×3×30mm、クロスヘツドスピード
0.5mm/min、スパン20mm、温度室温。測定は
各試片4枚につき行ないその平均値で示した。 耐熱衝撃性:抗折強度測定用試験片と同一形状の
試験片をある温度に加熱した後水中に投入して
急冷し、試験片へのクラツク発生の有無を螢光
探傷法で観察し、クラツク発生時における加熱
温度と水温との差△Tをもつて表示した。 表から明らかなように、本発明の焼結体(試片
番号1〜25)は、相対密度は理論密度の95%以上
と高密度であり、またその抗折強度も85Kg/cm2
上と大きく、耐熱衝撃性も△Tで表わしてほぼ
700℃以上である。とりわけ、1000℃及び1200℃
で1000時間の酸化処理後にあつてもその抗折強度
の低下の小さいことが判明した。 以上詳述したように、本発明の焼結体は、ホツ
トプレスするとを必要せずに製造できるので大量
生産に適合し、しかも高密度で耐熱衝撃性に優
れ、かつ高温酸化雰囲気下における機械的強度の
低下が小さいので、その工業的有用性は大であ
る。
The present invention relates to a ceramic sintered body containing silicon nitride as a main component, and more specifically, to a ceramic sintered body made by a normal sintering method, it has high density, excellent thermal shock resistance, and has low mechanical strength even under a high-temperature oxidizing atmosphere. This invention relates to small ceramic sintered bodies. Ceramic sintered bodies with excellent thermal properties and high density are attracting wide attention in various industrial fields as being at the forefront of various structural materials, and silicon nitride sintered bodies are a representative example. be. Conventionally, in the production of silicon nitride sintered bodies, reaction sintering methods, hot pressing methods, and ordinary sintering methods have generally been employed. Among these, the reactive sintering method is a method in which metal silicon (Si) powder is molded into the required shape in advance, and this is gradually heated in a nitrogen or ammonia gas atmosphere to sinter it at the same time as nitriding. . In addition, the hot press method adds sintering aids (e.g., Y 2 O 3 ,
MgO, Al 2 O 3 ) is added, and this is heated at a high temperature of 1700 to 1800℃ in a specified mold (for example, a graphite mold) for 150°C.
This is a method of sintering by applying a pressure of ~500 Kg/cm 2 . According to this method, it is possible to obtain a sintered body that has high density, high mechanical strength, and excellent thermal properties such as thermal shock resistance or resistance to decrease in mechanical strength under high-temperature oxidizing atmosphere. However, on the other hand, this method has the disadvantage that it is difficult to obtain a sintered body with a complicated and large shape, and furthermore, it is inferior in mass productivity. On the other hand, in the normal sintering method, Si 3 N 4 powder and sintering aid are preformed with a binder such as paraffin, and this is heated and sintered as it is without hot pressing in a non-oxidizing atmosphere. It's a method. However, with this method, it is difficult to obtain a sintered body with high density and high mechanical strength, especially a sintered body with high resistance to decrease in mechanical strength in a high temperature oxidizing atmosphere. Therefore, as a result of various studies regarding the above-mentioned ordinary sintering method, the present inventors found that ordinary sintering is capable of producing high-density sintered bodies with excellent mechanical strength and thermal shock resistance, comparable to the hot pressing method. (Japanese Patent Application No. 54-19013, Patent Application No. 21383-1983). However, the resistance of the silicon nitride sintered bodies obtained by these methods to a decrease in mechanical strength under a high-temperature oxidizing atmosphere was not necessarily satisfactory. The present inventors further conducted intensive research regarding the above points, and as a result, completed the present invention. An object of the present invention is to produce a ceramic sintered body using a conventional sintering method, which has high density, excellent thermal shock resistance, and high resistance to decrease in mechanical strength even in a high-temperature oxidizing atmosphere, especially silicon nitride. An object of the present invention is to provide a sintered body. The ceramic sintered body of the present invention contains yttrium oxide (Y 2 O 3 ) 10% by weight or less; aluminum oxide (Al 2 O 3 ) 10% by weight or less; aluminum nitride (AlN) 10% by weight or less; nickel oxide (NiO). , cobalt oxide (CoO), boron oxide (B 2 O 3 ), chromium oxide (Cr 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), hafnium oxide (HfO 2 ), At least one oxide or carbide selected from the group consisting of chromium carbide (Cr 3 C 2 ), niobium carbide (NbC), tantalum carbide (TaC), hafnium carbide (HfC), or molybdenum carbide (Mo 2 C) 5 % by weight or less; and the remainder consists of silicon nitride. The ceramic sintered body of the present invention includes yttrium oxide powder of 10% by weight or less; aluminum oxide powder of 10% by weight or less;
Weight % or less; Aluminum nitride powder 10 weight % or less; Nickel oxide, cobalt oxide, boron oxide,
5% by weight or less of powder of at least one oxide or carbide selected from the group consisting of chromium oxide, niobium oxide, tantalum oxide, hafnium oxide, chromium carbide, niobium carbide, tantalum carbide, hafnium carbide, or molybdenum carbide; and the remainder can be produced by molding a mixed powder made of silicon nitride and sintering the molded body in a non-oxidizing atmosphere. Here, among each component, Si 3 N 4 is the main component. The Si 3 N 4 used may be either an α-phase type or a β-phase type, but an α-phase type is preferably used. Further, it is preferable that Si 3 N 4 is used in a blending ratio of 70% by weight or more. Both Y 2 O 3 and Al 2 O 3 function as sintering accelerators. These ingredients have a mixing ratio of 10
If it exceeds % by weight, the mechanical strength and thermal shock resistance of the obtained sintered body will decrease, which is not preferable. usually,
It is preferable that the combined ratio of both is 3 to 15% by weight. AlN not only has the function of suppressing the evaporation of the main component Si 3 N 4 during the sintering process, but also reacts with other components to generate a liquid phase that contributes to sintering, thereby contributing to the overall sintering process. If the blending ratio exceeds 10% by weight, the mechanical strength and thermal shock resistance of the obtained sintered body will be reduced. Also, NiO, CoO, B 2 O 3 , Cr 2 O 3 , Nb 2 O 5 ,
Ta2O5 , HfO2 , Cr3C2 , NbC , TaC, HfC ,
Oxides or carbides such as Mo 2 C not only promote the functions of the sintering accelerators such as Y 2 O 3 and Al 2 O 3 described above, but also help the resulting sintered body in a high-temperature oxidizing atmosphere. It has the function of preventing a decrease in mechanical strength. In particular, Cr 3 O 2 and Mo 2 C greatly contribute to this effect. However, if the blending ratio thereof exceeds 5% by weight, it is not preferable because the mechanical strength and thermal shock resistance of the sintered body are reduced. In producing the sintered body of the present invention, these components can be mixed using a conventional grinding mixer such as a ball mill using a solvent such as n-butyl alcohol. A binder such as paraffin is added to the mixed powder thus prepared, and an appropriate pressure is applied to form a molded body into a predetermined shape. This molded body was heated to 1500 to 1900 in a non-oxidizing atmosphere.
It is sintered by heating at 1600 to 1800°C, preferably 1600 to 1800°C, to form a sintered body. Examples of the non-oxidizing atmosphere include nitrogen, argon, and the like. In an oxidizing atmosphere
This is not possible because Si 3 N 4 oxidizes to become SiO 2 . Incidentally, during this sintering, sintering may be performed in a hot press state where a pressure of 50 to 500 kg/cm 2 is applied. The present invention will be explained below based on examples. Example As shown in the table, each component was blended at a predetermined blending ratio (wt%), an appropriate amount of n-butyl alcohol was added thereto, and then milled using a rubber lined ball mill for 24 hours.
Thirty-eight types of mixed powders were prepared by mixing for different times. Note that the Si 3 N 4 powder is a powder containing 85% α-phase type Si 3 N 4 and having an average particle size of 1.2 μm. Also, the average particle size of Y2O3 powder is 1.0μ, and the average particle size of Al2O3 powder is
The average particle size of AlN was 1.5μ, and the average particle size of various oxides and carbides was 1.0μ. After further adding 7% by weight of paraffin to the obtained mixed powder, it was molded into a plate-shaped body having a length of 60 mm, a width of 40 mm, and a thickness of 10 mm at a molding pressure of 700 Kg/cm 2 at room temperature. Each of the obtained molded bodies was first heat-treated at 700°C to thermally decompose and remove paraffin, and then sintered at 1750°C while passing nitrogen gas (3/min). For each sintered body obtained, the relative density, bending strength at room temperature, bending strength at room temperature after oxidation treatment at 1000℃ for 1000 hours in air, and bending strength at 1200℃ in air
After oxidation treatment for 1000 hours, the bending strength and thermal shock resistance at room temperature were measured. The results are shown in the table in correspondence with the sample number of each sintered body. Each measurement item was in accordance with the following specifications. Relative density: Shown as a relative ratio (%) to the theoretical density calculated from the composition ratio. Transverse bending strength: Based on 3-point bending strength test, specimen size 3 x 3 x 30 mm, crosshead speed
0.5mm/min, span 20mm, temperature room temperature. Measurements were performed on four specimens of each sample, and the average value is shown. Thermal shock resistance: A test piece with the same shape as the test piece for measuring bending strength is heated to a certain temperature, then put into water and cooled down rapidly.The presence or absence of cracks in the test piece is observed using fluorescence flaw detection. The difference ΔT between the heating temperature and the water temperature at the time of occurrence is expressed. As is clear from the table, the sintered bodies of the present invention (sample numbers 1 to 25) have a high relative density of 95% or more of the theoretical density, and also have a bending strength of 85 kg/cm 2 or more. It is large, and its thermal shock resistance is also expressed as △T.
The temperature is 700℃ or higher. Among others, 1000℃ and 1200℃
It was found that even after oxidation treatment for 1000 hours, the decrease in bending strength was small. As detailed above, the sintered body of the present invention can be manufactured without the need for hot pressing, making it suitable for mass production.Moreover, the sintered body has high density, excellent thermal shock resistance, and mechanical strength under high-temperature oxidizing atmosphere. Since the decrease in the value is small, its industrial usefulness is great.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 酸化イツトリウム10重量%以下;酸化アルミ
ニウム10重量%以下;窒化アルミニウム10重量%
以下;酸化ニツケル、酸化コバルト、酸化ボロ
ン、酸化クロム、酸化ニオブ、酸化タンタル、酸
化ハフニウム、炭化クロム、炭化ニオブ、炭化タ
ンタル、炭化ハフニウム若しくは炭化モリブデン
から成る群より選ばれる少くとも1種の酸化物又
は炭化物5重量%以下;及び残部は窒化ケイ素か
ら成るセラミツクス焼結体。
1 Yttrium oxide 10% by weight or less; aluminum oxide 10% by weight or less; aluminum nitride 10% by weight
At least one oxide selected from the group consisting of: nickel oxide, cobalt oxide, boron oxide, chromium oxide, niobium oxide, tantalum oxide, hafnium oxide, chromium carbide, niobium carbide, tantalum carbide, hafnium carbide, or molybdenum carbide Or a ceramic sintered body consisting of 5% by weight or less of carbide; and the remainder being silicon nitride.
JP56084920A 1981-06-04 1981-06-04 Ceramic sintered body and manufacture Granted JPS57200266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56084920A JPS57200266A (en) 1981-06-04 1981-06-04 Ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56084920A JPS57200266A (en) 1981-06-04 1981-06-04 Ceramic sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS57200266A JPS57200266A (en) 1982-12-08
JPH0116791B2 true JPH0116791B2 (en) 1989-03-27

Family

ID=13844141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56084920A Granted JPS57200266A (en) 1981-06-04 1981-06-04 Ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS57200266A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860676A (en) * 1981-09-30 1983-04-11 日本特殊陶業株式会社 Silicon nitride sintered body and manufacture
JPS6172684A (en) * 1984-09-18 1986-04-14 株式会社東芝 High strength high abrasion resistance sliding member and manufacture
JPH0699191B2 (en) * 1984-12-22 1994-12-07 京セラ株式会社 Method for manufacturing silicon nitride sintered body
JPS61158866A (en) * 1984-12-28 1986-07-18 株式会社東芝 Ceramic sintered body and manufacture
JPS61266359A (en) * 1985-05-20 1986-11-26 日本碍子株式会社 Silicon nitride sintered body and manufacture
JPS62153169A (en) * 1985-12-25 1987-07-08 株式会社東芝 Silicon nitride ceramic sintered body
JPS6389458A (en) * 1986-09-30 1988-04-20 日立金属株式会社 Stoke
JP2505179B2 (en) * 1986-12-16 1996-06-05 日本碍子株式会社 High-strength atmospheric pressure sintered silicon nitride sintered body and method for producing the same
US5094986A (en) * 1989-04-11 1992-03-10 Hercules Incorporated Wear resistant ceramic with a high alpha-content silicon nitride phase
US5023214A (en) * 1989-04-11 1991-06-11 Hercules Incorporated Silicon nitride ceramics containing a metal silicide phase
JP2021046333A (en) 2019-09-18 2021-03-25 株式会社東芝 Structure and circuit board
CN110818432B (en) * 2019-11-19 2024-05-17 华南理工大学 Superfine high-entropy boride nano powder and preparation method thereof

Also Published As

Publication number Publication date
JPS57200266A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
JPH0244785B2 (en)
JPH0244786B2 (en)
EP0015421B1 (en) Method of producing sintered body of ceramics
US3953221A (en) Fully dense ceramic article and process employing magnesium oxide as a sintering aid
CN101218188B (en) Sintered yttria, anticorrosion member and process for producing the same
US4467043A (en) Dense shaped articles of polycrystalline α-silicon carbide and process for the manufacture thereof by hot-pressing
JPH0116791B2 (en)
US2982619A (en) Metallic compounds for use in hightemperature applications
US4326039A (en) Dense shaped articles of polycrystalline β-silicon carbide and process for the manufacture thereof by hot-pressing
JP2535768B2 (en) High heat resistant composite material
JPH09268072A (en) Production of silicon nitride sintered compact
JPH0244784B2 (en)
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
US5545362A (en) Production method of sintered silicon nitride
JP3810806B2 (en) Sintered silicon nitride ceramics
JPH0247426B2 (en)
JPS6125676B2 (en)
JPS63218584A (en) Ceramic sintered body
JP3002567B2 (en) Manufacturing method of chromium carbide ceramics
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH05238829A (en) Sintered silicone nitride ceramic
JPS5874571A (en) Manufacture of silicon nitride sintered body
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPH07206521A (en) Sintered titanium boride, its production and baking jig