JPS58194254A - Manufacturing method of battery separator - Google Patents

Manufacturing method of battery separator

Info

Publication number
JPS58194254A
JPS58194254A JP57076829A JP7682982A JPS58194254A JP S58194254 A JPS58194254 A JP S58194254A JP 57076829 A JP57076829 A JP 57076829A JP 7682982 A JP7682982 A JP 7682982A JP S58194254 A JPS58194254 A JP S58194254A
Authority
JP
Japan
Prior art keywords
separator
electrolyte
sulfuric acid
affinity
immersing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57076829A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
石川 孝志
Hiroshi Kawano
川野 博志
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57076829A priority Critical patent/JPS58194254A/en
Publication of JPS58194254A publication Critical patent/JPS58194254A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To manufacture a battery separator with excellent electrolytic affinity by sulfonation-processing woven or unwoven cloth made of olefin series resin and immersing it in alkaline aqueous solution of a high concentration. CONSTITUTION:Woven or unwoven cloth made of olefin series resin is sulfonation-processed by immersing it in a fuming sulfuric acid or a heat concentrated sulfuric acid. Then the affinity to an electrolyte is increased by cleaning the cloth by water, immediately immersing it in aqueous solution such as NaOH and KOH of a high concentration, and forming a sulfonic radical connected to an olefin into alkaline salt.

Description

【発明の詳細な説明】 現在、各種の一次電池や二次電池、さらには燃料電池が
ポータプル機器、移動用、据置用、予備用さらには独立
電源などに利用さnている。
DETAILED DESCRIPTION OF THE INVENTION Currently, various types of primary batteries, secondary batteries, and even fuel cells are used for portable devices, mobile devices, stationary devices, backup devices, and independent power sources.

これらの電池全構成要素に分けると、大部分の電池は、
正極、負極、電解質、セパレータ、容器などから族9立
っている。
When divided into all these battery components, most batteries are
Group 9 consists of positive electrode, negative electrode, electrolyte, separator, container, etc.

電池の特性をすぐf′したものにするために電憧の果た
す役割が大きいことは勿論であり、正僕、負極の改良は
、永久に続けらnる課題で必ることは当然であるが、セ
パレータの役割も見過すことはできない。
It goes without saying that electromagnetism plays a major role in quickly improving the characteristics of batteries, and it goes without saying that the improvement of positive and negative electrodes is an ongoing task. , the role of separators cannot be overlooked.

電池におけるセパレータの最も大きな役割は、正極と負
極全隔離して電子的な短絡を防止することである。その
ために−次電池では耐電解液性が重視され、二次電池で
はその他に充電時での酸化に対して耐えることが要求さ
れる。
The most important role of a separator in a battery is to completely isolate the positive and negative electrodes to prevent electronic short circuits. For this reason, electrolyte resistance is important in secondary batteries, and secondary batteries are also required to withstand oxidation during charging.

セパレータの他の重要な特性として電解液の保持性があ
る。電解液を豊富に用いる系と、密閉形のようにセパレ
ータに電解液を保持させる系とに分けると、このような
電解液の保持性はとくに後者の系で重要なことは当然で
ある。このような電解液の保液性を重視して、とくに密
閉形の一次。
Another important property of the separator is its ability to retain electrolyte. When divided into systems that use an abundant amount of electrolyte and systems that retain electrolyte in a separator, such as a closed type, it is natural that such electrolyte retention is particularly important in the latter system. This kind of electrolyte retaining property is emphasized, especially the sealed type primary.

二次電池では、天然繊維系の不織布や織布が用いらnて
いる。また、アルカリ電解液を用いる場合には、耐アル
カリ性全考慮してポリアミドから成る不織布や織布が最
もよく用いられている。しかし、このように電解液の保
持性にすぐfした材料は、一般的には、耐アルカリ性や
耐酸性に関しては問題があり、たとえばポリアミドは、
一応の耐アルカリ性は有しているが、高温度のもとや非
常に長期にわたると強度が低下し、短絡の原因になるこ
とが知らnている。もちろん天然繊維、つ筐ルセルロー
ス系ではこのような傾向はさらに顕著である。
In secondary batteries, natural fiber-based nonwoven fabrics and woven fabrics are used. Furthermore, when an alkaline electrolyte is used, nonwoven fabrics or woven fabrics made of polyamide are most often used in consideration of their alkali resistance. However, such materials that have excellent electrolyte retention properties generally have problems with respect to alkali resistance and acid resistance. For example, polyamide
Although it has a certain degree of alkali resistance, it is known that its strength decreases when exposed to high temperatures or for a very long period of time, causing short circuits. Of course, this tendency is even more pronounced with natural fibers and cellulose.

こnらに対して、オレフィン系樹脂、とくにポリエチレ
ンやポリプロピレン全材料とする不織布や織布は、耐電
解液性や耐酸化性の点ですぐれている。したがって電池
の長寿命化のためのセパレータ材料とじては好ましいと
いえる。ところが、これらポリエチレンやポリプロピレ
ン製のセパレータは、電讐液への親和性が極端に悪く、
またその保持性も悪い。3j1.状では、このような点
全緩和するために、界面活性剤全オレフィン系樹脂の不
織布や織布に含浸させて、電解液への親和性や保持性の
改良をはかつている。しかし、電解液への親和性があっ
て、なお電池内で電解液に長期にわたって影響を受けず
、また耐酸化性も十分にあるような界面活性剤がないの
で、このような界面活性剤の処理では、初期の電池特性
はよくても、長期にわたると電解液のセパレータへの保
持の低下−に伴う特性劣下全もたらしていた。
In contrast, nonwoven fabrics and woven fabrics made entirely of olefin resins, particularly polyethylene or polypropylene, are superior in electrolyte resistance and oxidation resistance. Therefore, it can be said to be preferable as a separator material for extending battery life. However, these polyethylene and polypropylene separators have extremely poor affinity for electrolyte solution.
Moreover, its retention is also poor. 3j1. In order to alleviate these problems, nonwoven fabrics or woven fabrics are impregnated with a surfactant based on an all-olefin resin to improve the affinity and retention of the electrolyte. However, there is no surfactant that has an affinity for the electrolyte, is not affected by the electrolyte for a long time in the battery, and has sufficient oxidation resistance. In this treatment, although the initial battery characteristics were good, over a long period of time, the retention of the electrolyte in the separator deteriorated, resulting in a total deterioration of the characteristics.

このようなオレフィン系樹脂セパレータの親水性を大に
して、それ自体が電解液との親和性をよくするための最
も簡単な方法として、発煙硫酸やクロル硫酸あるいは、
熱濃硫酸などによるスルフォン化処理がある。このスル
フォン化処理をスることにより、オレフィン系樹脂のセ
パレータの電解液親和性は向上するため、前記欠点が大
幅に解消さ九ることかわかった。その理由としては、オ
レフィン系樹脂中の水素原子が5O3Hにおきかわり、
その−8O3Hが電解液と親和性があるためである。
The easiest way to increase the hydrophilicity of such an olefin resin separator and improve its affinity with the electrolyte is to use fuming sulfuric acid, chlorosulfuric acid,
Sulfonation treatment using hot concentrated sulfuric acid, etc. is available. It has been found that by carrying out this sulfonation treatment, the electrolyte affinity of the olefin resin separator is improved, so that the above-mentioned drawbacks are largely eliminated. The reason is that the hydrogen atoms in the olefin resin are replaced by 5O3H,
This is because -8O3H has an affinity for the electrolytic solution.

このようにスルフォン化処理全すると親和性が向上する
が、また界面活性剤を用いて処理したものと比較すると
若干劣っている。
In this way, complete sulfonation treatment improves affinity, but it is also slightly inferior to that treated with a surfactant.

そこで、本発明は、スルフォン化したセパレータの親和
性、吸水性をより向上させる方法を提供するものである
。すなわち、本発明は、オレフィン系樹脂のセパレータ
を発煙硫酸あるいは、熱濃酸中でスルフォン化処理をし
、水洗後すぐ高濃度の水酸化ナトリウム、水酸化カリウ
ム等の水溶液中に浸せきすることを特徴とする。
Therefore, the present invention provides a method for further improving the affinity and water absorption of a sulfonated separator. That is, the present invention is characterized in that an olefin resin separator is sulfonated in fuming sulfuric acid or hot concentrated acid, and immediately after washing with water, it is immersed in a highly concentrated aqueous solution of sodium hydroxide, potassium hydroxide, etc. shall be.

本発明の処理をしたでパレータは親和性が著しく向上す
る。これは、オレフィンに入った−5o3H基が、−8
o3にもしくは−8O5Naになるためであると考えら
れる。
The affinity of the parator is significantly improved by the treatment of the present invention. This means that the -5o3H group in the olefin is -8
This is thought to be due to the change to o3 or -8O5Na.

なおスルフォン化処理したセパレータ全水洗し乾燥した
のちアルカリ処[−してもセパレータが撥水性を示し、
充分にアルカリが浸透しないことがわかった。すなわち
、スルフォン化したセパレータをアルカリ浸せきをする
場合は、スルフォン化処理をし水洗後、セパレータ中に
水分が残存している時にアルカリ中に浸せきをすること
が重要である。
The sulfonated separator was completely washed with water, dried, and then treated with an alkali solution.
It was found that the alkali did not penetrate sufficiently. That is, when immersing a sulfonated separator in alkali, it is important to immerse it in alkali while water remains in the separator after the sulfonation treatment and washing with water.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

第1図は本発明によるセパレータの処理工程全示す。1
はオレフィン系樹脂繊維の不織布または織布からなる長
尺帯状のセパレータ材料であり、ロール2に巻かnてい
る。3は市販の濃硫酸(98%)4を収容した耐酸性の
容器であシ、図示しない加熱装置により110℃±1℃
に保持されている。6は攪拌装置である。6はセパレー
タ材料1を濃硫酸4中に浸せきするためのガイドロール
である。7は材料1vi″駆動するためのロールで、材
料1からこれに含まnている濃硫酸を絞りとる役目も有
する。8は稀硫酸9全収容した容器で、濃硫酸で処理後
のセパレータに含″1nた濃硫酸全直接水で水洗すると
硫酸の稀′しゃく熱により熱収縮や変形を起こすため、
セパレータから濃硫酸を徐々に稀しやくするためのもの
である。なお1oはガイドロールである。
FIG. 1 shows the entire process of processing a separator according to the invention. 1
is a long belt-shaped separator material made of nonwoven or woven fabric of olefin resin fibers, and is wound around a roll 2. 3 is an acid-resistant container containing commercially available concentrated sulfuric acid (98%) 4, heated to 110°C ± 1°C by a heating device (not shown).
is maintained. 6 is a stirring device. 6 is a guide roll for immersing the separator material 1 in concentrated sulfuric acid 4. 7 is a roll for driving the material 1vi'', and also has the role of squeezing out the concentrated sulfuric acid contained in the material 1.8 is a container containing all of the dilute sulfuric acid 9, and the roll contained in the separator after being treated with concentrated sulfuric acid is If you wash the product directly with 1n concentrated sulfuric acid, it will cause heat shrinkage and deformation due to the oxidation heat of the sulfuric acid.
This is to make it easier to gradually dilute concentrated sulfuric acid from the separator. Note that 1o is a guide roll.

この槽で稀しやくされたセパレータ材料1は、駆動用ロ
ール11によりセパレータ材料中に含1fした稀硫酸全
絞りとられる。12は攪拌装置である。稀しやく処理後
のセパレータ材料1はガイドロール13によシ水洗槽1
4へ浸せきされる。セパレータ中の稀硫酸は、水により
て置換さn洗浄さnる。この例では、攪拌しているが、
ジーノド水流等で、表面に水を吹き付けると一層洗浄効
果が上がる。この水洗槽を出たセパレータ材料1は、ロ
ール16により内に含まf′した水を絞ジとる。このと
きセパレータ材料は、軽く水分金倉んだ状態で、アルカ
リ処理槽16に浸せきさせる。アルカリ処理液17には
、苛性カリ(30%)全使用した。この内で処理を終わ
ったセパレータ材R1は、絞クロール18を通過後水洗
、乾燥さする。
The separator material 1 diluted in this tank is completely squeezed out by a drive roll 11 containing 1f of dilute sulfuric acid contained in the separator material. 12 is a stirring device. After the diluted treatment, the separator material 1 is transferred to the guide roll 13 in the washing tank 1.
4. The dilute sulfuric acid in the separator is replaced by water and washed. In this example, we are stirring, but
Spraying water onto the surface with a jet or similar device will further increase the cleaning effect. The separator material 1 that has exited the washing tank is squeezed out by a roll 16 to remove the water contained therein. At this time, the separator material is immersed in the alkali treatment tank 16 in a state where it is lightly moistened. For the alkaline treatment liquid 17, all caustic potash (30%) was used. The treated separator material R1 is washed with water and dried after passing through the squeezing crawler 18.

上記のセパレータ材料1として、厚さ0.2g。The above separator material 1 has a thickness of 0.2 g.

多孔度60%の市販のポリプロピレン不織布を用いた。A commercially available polypropylene nonwoven fabric with a porosity of 60% was used.

この不織布を0.556ma汚の速度で搬送し、濃硫酸
への浸せき時間を1時間とした。
This nonwoven fabric was transported at a speed of 0.556 ma, and immersed in concentrated sulfuric acid for 1 hour.

以上のようにして得らfしたセパレータをAとする。ま
たポリプロピレン不織布に上記のアルカリ浸せき処理を
しないものをBとした。′!1′た比較例として、濃硫
酸処理をしないポリプロピレン不織布をC1こnに界面
活性剤の0.3重量%水溶液を含浸し、乾燥したものを
Dとする。
Let A be the separator obtained as described above. In addition, B was a polypropylene nonwoven fabric that was not subjected to the alkali immersion treatment described above. ′! As a comparative example, a polypropylene nonwoven fabric that was not treated with concentrated sulfuric acid was impregnated with a 0.3% by weight aqueous solution of a surfactant and dried.

まず、こnらのセパレータの親液性を比較するため、幅
4(1’mの帯状にし、その先端を苛性カリの3o重量
%水溶液に浸せきし、30秒経過時点での平均の液吸い
上げ高さを調べた。その結果、Cの吸い上げはほぼ0、
Dは約16龍、Aは約17+15、Bは約12.、であ
った。このことから、Aは界面活性剤を入れたものとほ
ぼ同等の性能があり、従来のものと比較し電解液の親和
性がよいことがわかる。
First, in order to compare the lyophilic properties of these separators, they were made into a strip with a width of 4 (1'm), the tip of which was immersed in a 30% by weight aqueous solution of caustic potash, and the average liquid wicking height after 30 seconds As a result, the absorption of C was almost 0,
D is about 16 dragons, A is about 17+15, and B is about 12. ,Met. From this, it can be seen that A has almost the same performance as the one containing a surfactant and has better affinity with the electrolyte than the conventional one.

つぎに、各セパレータを用いて単2形の密閉形ニッケル
ーカドミウムアルカリ蓄電池を構成した。
Next, each separator was used to construct a AA sealed nickel-cadmium alkaline storage battery.

この電池の6時間率の放電容量は2Ahとした。The discharge capacity of this battery at a 6-hour rate was 2 Ah.

まず、第2図に0.4Aで7時間充電後の2A放電(2
6℃)の結果を示す。親液性が劣るCは、やや性能が悪
い。また0℃での2A放電では、第3図のようにC1さ
らにDも劣化してきて、低温はど親水性が劣る悪影響が
現nていることがわかる。つぎに、各電池を0.4Aで
7時間充電し2Aで放電する条件で充放電を繰り返した
。第4図は、このサイクルを60o回繰ジ返した後の2
6℃での2A放電の結果であり、Cは勿−のことDでも
界面活性剤の低下により性能は大幅に低下している。本
発明によるセパレータの優秀さが明らかである。なおり
がAと同等の性能を示すのは、セパレータが電解液とな
じみAと同じ効果があったものと考えられる。
First, Fig. 2 shows a 2A discharge after 7 hours of charging at 0.4A (2
6°C) are shown. C, which has poor lyophilicity, has somewhat poor performance. Furthermore, in the case of 2A discharge at 0° C., as shown in FIG. 3, C1 and D also deteriorated, and it can be seen that there is an adverse effect of poor hydrophilicity at low temperatures. Next, each battery was repeatedly charged and discharged under conditions of charging at 0.4 A for 7 hours and discharging at 2 A. Figure 4 shows 2 after repeating this cycle 60 times.
These are the results of a 2A discharge at 6°C, and the performance of both C and D is significantly lowered due to a decrease in surfactant. The superiority of the separator according to the invention is obvious. The reason why Naori showed the same performance as A is thought to be that the separator was compatible with the electrolyte and had the same effect as A.

なお、各電池の組み立て時に、電解液の注入速度を調べ
たところ、水酸化リチウム2oy−/lを含む比重1.
26の苛性カリを6CC入nる際に、Cはそのままでは
ほとんど入らないため減圧にして注入した。Aでは約3
6秒程度で、Bは46秒、Dは約36秒程度であった。
In addition, when assembling each battery, the injection rate of the electrolyte was examined, and it was found that the specific gravity was 1.2 oy-/l containing lithium hydroxide.
When adding 6 CC of caustic potash from No. 26, almost no carbon was added as it was, so the injection was carried out under reduced pressure. Approximately 3 at A
The time for B was about 46 seconds, and the time for D was about 36 seconds.

このことから本発明のセパレータは、注液速度をはやめ
る効果があることもわかった。
From this, it was also found that the separator of the present invention has the effect of speeding up the liquid injection rate.

実施例では、オレフィン系樹脂としてポリプロピレンを
用い、また、電池としてアルカリ電池を用いたが、勿論
その他にポリエチレンでも同じ効果があり、酸性電解液
を用いる電池についても同様に適用できる。
In the examples, polypropylene was used as the olefin-based resin and an alkaline battery was used as the battery, but of course polyethylene can also have the same effect, and the same can be applied to batteries using acidic electrolytes.

以上のように本発明によれば、オレフィン系樹脂のスル
フォン化した場合の電解液の親水性及び保持性をさらに
向上させることができる。
As described above, according to the present invention, it is possible to further improve the hydrophilicity and retention of the electrolyte when the olefin resin is sulfonated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のセパレータの製造工程を示す図、第2
図、第3図及び第4図は各種セパレータを用いたニッケ
ルーカドミウム電池の放電特性の比較を示す。 1・・・・・織布又は不織布、4・・・・・・濃硫酸、
9・・・−・・稀硫酸、14・・・・・・水洗槽、16
・・・−・・アルカリ処理槽。
Figure 1 is a diagram showing the manufacturing process of the separator of Example, Figure 2 is a diagram showing the manufacturing process of the separator of the example.
3 and 4 show a comparison of the discharge characteristics of nickel-cadmium batteries using various separators. 1... Woven fabric or non-woven fabric, 4... Concentrated sulfuric acid,
9... Dilute sulfuric acid, 14... Washing tank, 16
・・・-・・・Alkali treatment tank.

Claims (1)

【特許請求の範囲】[Claims] オンフィン系樹脂からなる織布もしくは、不織布をスル
フォン化処理し、ついで高濃度のアルカリ水溶液中に浸
せき処理することを特徴とする電池用セパレータの製造
法。
A method for producing a battery separator, which comprises sulfonating a woven fabric or non-woven fabric made of an onfin resin, and then immersing it in a highly concentrated alkaline aqueous solution.
JP57076829A 1982-05-07 1982-05-07 Manufacturing method of battery separator Pending JPS58194254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076829A JPS58194254A (en) 1982-05-07 1982-05-07 Manufacturing method of battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076829A JPS58194254A (en) 1982-05-07 1982-05-07 Manufacturing method of battery separator

Publications (1)

Publication Number Publication Date
JPS58194254A true JPS58194254A (en) 1983-11-12

Family

ID=13616564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076829A Pending JPS58194254A (en) 1982-05-07 1982-05-07 Manufacturing method of battery separator

Country Status (1)

Country Link
JP (1) JPS58194254A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457568A (en) * 1987-08-26 1989-03-03 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH01132042A (en) * 1987-11-17 1989-05-24 Matsushita Electric Ind Co Ltd Manufacture of separator for battery
US5204197A (en) * 1990-03-26 1993-04-20 Daiwabo Create Co., Ltd. Separator material for storage batteries and method for making the same
US5354617A (en) * 1991-10-23 1994-10-11 Kanai Juyo Kogyo Co. Ltd. Non-woven fabric sheet separator material for storage batteries and method for making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457568A (en) * 1987-08-26 1989-03-03 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH01132042A (en) * 1987-11-17 1989-05-24 Matsushita Electric Ind Co Ltd Manufacture of separator for battery
US5204197A (en) * 1990-03-26 1993-04-20 Daiwabo Create Co., Ltd. Separator material for storage batteries and method for making the same
US5354617A (en) * 1991-10-23 1994-10-11 Kanai Juyo Kogyo Co. Ltd. Non-woven fabric sheet separator material for storage batteries and method for making the same
US5487944A (en) * 1991-10-23 1996-01-30 Kanai Juyo Kogyo Co., Ltd. Non-woven fabric sheet separator material for storage batteries and method for making the same

Similar Documents

Publication Publication Date Title
KR980012684A (en) Sealed Lead Acid Battery
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JPS58194254A (en) Manufacturing method of battery separator
JPH0732008B2 (en) Method for manufacturing battery separator
JP2762443B2 (en) Manufacturing method of battery separator
JPS58194255A (en) Manufacturing method of battery separator
JPH06140018A (en) Separator for alkali battery and its manufacture
JP2590520B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JPH0729559A (en) Separator for alkaline battery
JPH08236094A (en) Separator for alkaline storage battery
JP2590519B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPH02216757A (en) Alkaline zinc storage battery
JPH01248460A (en) Separator for battery and manufacture thereof
JP2003051302A (en) Separator for alkaline secondary battery
JPH0434842A (en) Enclosed type secondary battery
JPH10247485A (en) Separator for secondary battery
JPS58184261A (en) Sealed storage battery
JP2005032643A (en) Separator for alkaline secondary battery
JPS58115760A (en) Manufacture of negative electrode plate for sealed nickel-cadmium storage battery
JPS58186172A (en) Alkaline battery
JPH0211981B2 (en)
JPS6220258A (en) Sealed nickel-cadmium storage battery
JPH06338308A (en) Separator for alkaline battery
JPH04121948A (en) Separater for alkaline battery and its manufacture