JPS58194255A - Manufacturing method of battery separator - Google Patents

Manufacturing method of battery separator

Info

Publication number
JPS58194255A
JPS58194255A JP57076848A JP7684882A JPS58194255A JP S58194255 A JPS58194255 A JP S58194255A JP 57076848 A JP57076848 A JP 57076848A JP 7684882 A JP7684882 A JP 7684882A JP S58194255 A JPS58194255 A JP S58194255A
Authority
JP
Japan
Prior art keywords
water
solution
separator
organic solvent
sulfonation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57076848A
Other languages
Japanese (ja)
Inventor
Hiromichi Ogawa
小川 博通
Takashi Ishikawa
石川 孝志
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57076848A priority Critical patent/JPS58194255A/en
Publication of JPS58194255A publication Critical patent/JPS58194255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To manufacture a battery separator with excellent durability and properties of electrolytic impregnation by sulfonation-processing a porus body made of an olefin (co)polymer and immersing it in an organic solvent which is insouble in water and sulfonated solutions, and then in water. CONSTITUTION:After a belt-type separator material 1 such as woven or unwoven cloth made of an olefin polymer or copolymer is drawn from a coil 2, immersed in the sulfonated solution 4 in a sulfonating container 3, and sulfonation-processed, then the solution 4 is squeezed by rollers 6 and 6. Then the stuck solution 4 is replaced with a solvent 8 by immersing the separator material in an organic solvent 8 contained in a organic solvent container 7 which is substantially insoluble in the water and solution 4. Subsequently, after the solvent 8 is squeezed by a roller 10, the stuck solvent 8 is replaced with water 12 by immersing the separator material in the water 12 within a cleaning water container 11. Then after a sulfonic radical is changed into alkaline salt by immersing the separator material in an alkaline aqueous solution 16 within an alkaline container 15, the aqueous solution 16 is squeezed by a roller 18.

Description

【発明の詳細な説明】 本発明は、各種−次および二次電池などに適用される電
池用セパレータの製造法に関するもので、密閉形蓄電池
や開放形でもとくに高容量を必要とする蓄電池に好適な
セパレータを提供するものである。すなわち、本発明は
、現用セパレータを簡単な方法で、耐久性の劣化はほと
んどなく電解液含浸性を向上させるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a battery separator that is applied to various primary and secondary batteries, and is suitable for sealed storage batteries and open storage batteries that require particularly high capacity. This provides a separator with a wide range of properties. That is, the present invention improves the electrolyte impregnability of existing separators using a simple method with almost no deterioration in durability.

このようなセパレータの性質は、他の通常の据置用、予
備用などの電池にも必要であるから、本  − 発明のセパレータはこれら電池にも有用である。
Such properties of the separator are also necessary for other ordinary stationary and spare batteries, so the separator of the present invention is also useful for these batteries.

各種の一次、二次電池などには、通常正極と負極の短絡
防止や電解液保持などの目的でセパレータが使用されて
いる。セパレータの形状としては、電池の種類や用途に
より異なるが、一般的には、鉛蓄電池への棒状、あなあ
き波板、多孔性シート、紙状とガラスマントの併用など
の適用、アルカリ電池には織布状、不織布、多孔性シー
ト、フィルムの利用、さらには−次電池には紙状、織布
、不織布などが利用されている。
Separators are usually used in various primary and secondary batteries for the purpose of preventing short circuits between the positive and negative electrodes and retaining electrolyte. The shape of the separator varies depending on the type and purpose of the battery, but in general, it is rod-shaped for lead-acid batteries, perforated corrugated sheet, porous sheet, a combination of paper and glass cloak, etc., and for alkaline batteries Woven fabrics, non-woven fabrics, porous sheets, and films are used, and paper-shaped, woven fabrics, and non-woven fabrics are used for secondary batteries.

さらに材料からみると、酸を電解液とする電池には、ポ
リ塩化ビニル、ポリエチレ/、ポリスチレン、ガラス、
フェノール樹脂等で強化した紙などが用いられる。アル
カリ電解液では代表的なものがポリアミドであシ、その
他に塩化ビニル−アクリロニトリル共重合体、ポリプロ
ピレン、ポリエチレン、ポリ塩化ビニルなども用いられ
る。また、同じく膜状として、セロファン、ポリビニル
アルコール、各種イオン交換膜なども検討されている。
Furthermore, in terms of materials, batteries that use acid as an electrolyte include polyvinyl chloride, polyethylene, polystyrene, glass,
Paper reinforced with phenol resin or the like is used. A typical alkaline electrolyte is polyamide, and other examples include vinyl chloride-acrylonitrile copolymer, polypropylene, polyethylene, and polyvinyl chloride. In addition, cellophane, polyvinyl alcohol, various ion exchange membranes, and the like are also being considered as membrane-like membranes.

なお、中性電解液の場合には、天然繊維やその誘導体も
用いられる。
Note that in the case of a neutral electrolyte, natural fibers and derivatives thereof may also be used.

これら電池のセパレータとして最も要求される性質は電
解液の保持性である。これに劣ると一次電池の場合には
、放電容量や電圧が劣化し、またとくに長期保存後の容
量の維持が不可能になる。
The property most required for separators in these batteries is the ability to retain electrolyte. If it is inferior to this, in the case of a primary battery, the discharge capacity and voltage will deteriorate, and it will be impossible to maintain the capacity, especially after long-term storage.

このような傾向は、二次電池でも同様である。さらに密
閉形二次電池では、電解液の保持性の他に充電時に正極
から発生する酸素をできるだけすみやかに負極に到達さ
せるためにセパレータは多孔性であることが必要である
。なお、開放形でたとえ電解液が豊富に存在していても
、極間の電解液が電極周辺から拡散し難くなり、かわい
てしまうことにより性能や寿命が劣化してしまう。した
がって、この場合にもセパレータの含液性は極めて重要
なのである。
This tendency is also the same for secondary batteries. Furthermore, in a sealed secondary battery, the separator needs to be porous in order not only to retain the electrolyte but also to allow oxygen generated from the positive electrode during charging to reach the negative electrode as quickly as possible. In addition, even if there is an abundance of electrolyte in an open type, the electrolyte between the electrodes will be difficult to diffuse from around the electrodes, and the electrolyte will dry up, resulting in deterioration of performance and life. Therefore, in this case as well, the liquid impregnability of the separator is extremely important.

そこでこれらの材料をみると、たとえばアルカリ電解液
系の電池のポリアミドは、電解液の保持性の点で優れて
いるので、耐アルカリ性の点ではやや問題であるが広く
用いられている。一方のポリエチレンやポリプロピレン
等のポリオレフィンの不織布や織布け、ポリアミドより
も耐久性の点でははるかに優れているので、電池セパレ
ータとして電池の長期保存や充放電の繰り返しには非常
に有利な性質をもっている。しかし、電解液の保持性に
ついては、界面活性剤によって向上させようとしている
が、界面活性剤の耐久性やセパレータからはなれてしま
うことなどから十分でなかった。
Looking at these materials, for example, polyamide for alkaline electrolyte-based batteries has excellent electrolyte retention, and is widely used, although its alkali resistance is somewhat problematic. On the other hand, polyolefins such as polyethylene and polypropylene are much more durable than non-woven fabrics, woven fabrics, and polyamides, so they have very advantageous properties as battery separators for long-term storage and repeated charging and discharging of batteries. There is. However, attempts have been made to improve the retention of the electrolyte by using surfactants, but this has not been sufficient due to the durability of the surfactants and their tendency to separate from the separator.

このようにオレフィン系樹脂の不織布や織布に電解液の
含浸性が向上するとセパレータとして極めて好ましいこ
とから、オレフィン系樹脂をスルフォン化してこれを抄
紙し、その後で加熱成形したり、あるいはオレフィンに
アクリル酸等をグラフト重合したり、さらにこれをスル
フォン化するなどの試みが提案されている。
If olefin resin non-woven fabrics or woven fabrics have improved electrolyte impregnation properties, they are extremely desirable as separators. Attempts have been made to graft polymerize acids, etc., and to further sulfonate them.

本発明は、これら従来の方法に比べてはるかに蘭学でし
かも電解液含浸型やとくに高容量電池のセパレータとし
て適当な電解液含浸性を持つようにできる一つの有効な
方法を提供するものである。
The present invention provides an effective method that is much more advanced than these conventional methods and that can be used as an electrolyte-impregnated separator, particularly as a separator for high-capacity batteries. .

具体的には、ポリエチレンやポリプロピレンなどのオレ
フィンの重合体あるいは共重合体からなる多孔体、たと
えば不織布、織布、フェルト、シートなどを発煙硫酸あ
るいはクロル硫酸に浸せきして不織布や織布のままスル
フォン化し、ついでとの織布や不織布などを、水および
スルフォン化溶液と実質的に相溶性でない有機溶媒にふ
れさせることにより、付着しているスルフォン化溶液の
大部分を有機溶媒と置換し、ついでこの有機溶媒を水と
置換して洗浄を完了することを特徴とするのである。
Specifically, a porous material made of an olefin polymer or copolymer such as polyethylene or polypropylene, such as nonwoven fabric, woven fabric, felt, or sheet, is soaked in fuming sulfuric acid or chlorosulfuric acid to form a sulfonate material while the nonwoven fabric or woven fabric is in use. By exposing the woven fabric or non-woven fabric to water and an organic solvent that is substantially incompatible with the sulfonation solution, most of the adhering sulfonation solution is replaced with the organic solvent, and then the sulfonation solution is removed. It is characterized in that the organic solvent is replaced with water to complete the cleaning.

すなわち、従来はスルフォン化後において直接水洗をす
ると、フィルムでは当然であるが、このような織布や不
織布でも水洗時の発熱によって変形や強度低下をもたら
すことがわかり、その一つの解決策として、硫酸等の溶
液を順次稀釈しておき、これに浸せきすることを提案し
た。壕だ、その他にアセトンで洗浄後水洗することも明
らかにされている。しかし、前者では、水洗によりかな
りの量の硫酸が流出し、後者では、その他にアセトンも
消費することが経済的な点で改良の余地を残していた。
In other words, it has been found that conventionally, when washing directly with water after sulfonation, it is natural for films, but even such woven and non-woven fabrics cause deformation and strength reduction due to the heat generated during washing.As one solution to this problem, He proposed diluting a solution such as sulfuric acid in advance and immersing it in the diluted solution. It has also been revealed that the trench should be washed with acetone and then washed with water. However, in the former case, a considerable amount of sulfuric acid flows out when washing with water, and in the latter case, acetone is also consumed, leaving room for improvement from an economic point of view.

  − そこで本発明では、オレフィンの重合体や共重合体が耐
薬品性の点で極めて優れていることに着目し、スルフォ
ン化処理後に、水およびスルフォン化溶液と実質的に相
溶性のない有機溶媒で織布や不織布に残っているスルレ
フオン化用溶液を置換し、ついでこれを水と置換する方
法を採るのである。この方法によれば、スルフォン化用
の溶液は、水で稀釈されることも、また他の溶液と混合
もしないので、そのまま再利用ができる。また、有機溶
媒も水と分離するので、その貰ま利用できる。。
- Therefore, in the present invention, we focused on the fact that olefin polymers and copolymers have extremely excellent chemical resistance. The solution for sullefluorination remaining in the woven or nonwoven fabric is replaced with water, and then this is replaced with water. According to this method, the sulfonation solution is neither diluted with water nor mixed with other solutions, so it can be reused as is. In addition, since the organic solvent is separated from water, it can be used as is. .

織布や不織布において、このようなスルフォン(IZ用
浴溶液有機溶媒、有機溶媒と水の置換は、織布や不織布
などが多孔性で繊維状の複雑な形状をしているので困難
であると考えられるが、実際には工業的規模で有効に再
活用できるのである。
In woven fabrics and non-woven fabrics, it is difficult to replace sulfone (IZ bath solution organic solvent, organic solvent and water) because woven fabrics and non-woven fabrics have porous, fibrous and complex shapes. However, in reality, it can be effectively reused on an industrial scale.

なお、スルフォン化のためには、公知の発煙硫酸やクロ
ル硫酸、さらには濃硫酸を用いればよく、発煙硫酸など
では6o’c以下、濃硫酸では100〜120″Cの温
度が好ましい。また1、これらと水に実質的に相溶性で
ない有機溶媒としては、四塩化炭素、l・ルエン、トリ
クロルエチレン、ベンゼンなど通常の炭化水素が最も有
効である。
For sulfonation, known oleum, chlorosulfuric acid, or even concentrated sulfuric acid may be used. For oleum, the temperature is preferably 6 o'C or less, and for concentrated sulfuric acid, the temperature is preferably 100 to 120"C. As organic solvents that are substantially incompatible with these and water, common hydrocarbons such as carbon tetrachloride, 1.luene, trichloroethylene, and benzene are most effective.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図はセパレータの製造装置を示す。1はオレフィン
の重合体からなる織布、不織布などの帯状のセパレータ
材で、コイル2からくり出される。
FIG. 1 shows a separator manufacturing apparatus. 1 is a belt-shaped separator material made of olefin polymer, such as woven fabric or non-woven fabric, which is cut out from the coil 2.

3はスルフォン化のための溶液4を収容したスルフォン
化槽であり、セパレータ材1はローラ6.5により案内
されて溶液4に浸漬された後、絞りローラ6.6により
スルフォン化溶液が絞り取られる。7は水及び前記の溶
液4に対して実質的に不溶性の有機溶媒8を収容した有
機溶媒槽であり、槽3を通過後のセパレータ材1はロー
ラ9により溶媒8に浸漬され、ローラ10により溶媒が
絞りとられる。11は水12を収容した水洗槽で、槽7
を通過後のセパレータ材1をロー213で水に浸せきし
、ローラ14で水を絞シとるものである。
3 is a sulfonation tank containing a solution 4 for sulfonation, and after the separator material 1 is guided by a roller 6.5 and immersed in the solution 4, the sulfonation solution is squeezed out by a squeezing roller 6.6. It will be done. 7 is an organic solvent tank containing water and an organic solvent 8 that is substantially insoluble in the solution 4, and the separator material 1 after passing through the tank 3 is dipped in the solvent 8 by rollers 9, and The solvent is squeezed out. 11 is a washing tank containing water 12; tank 7;
After passing through the separator material 1, the separator material 1 is immersed in water with a row 213, and the water is squeezed out with a roller 14.

15はアルカリ水溶液16を収容した槽で、ローラ17
によりセパレータ材1を溶液16に浸せきし、ロー21
8により液を絞りとる。なお、19特開昭58−194
255(3) はセパレータ材の送りローラであり、各種には攪拌装置
を備えている。
15 is a tank containing an alkaline aqueous solution 16;
Soak the separator material 1 in the solution 16, and
8. Squeeze out the liquid. In addition, 1985-194 Japanese Patent Application Publication No.
255(3) is a separator material feed roller, and each type is equipped with a stirring device.

次に具体例を説明する。Next, a specific example will be explained.

市販の厚さ約0.2rran、多孔度約eo%のポリプ
ロピレン製不織布を9896の濃硫酸に120°Cで2
6分間浸せきしてスルフォン化した。この場合に、不織
布の幅は、400 rtanとし、これをtsoflの
スルフォン化浴中を通過させつつ処理をしだ。
A commercially available polypropylene nonwoven fabric with a thickness of about 0.2 rran and a porosity of about EO% was soaked in 9896 concentrated sulfuric acid at 120°C for 2 hours.
It was sulfonated by soaking for 6 minutes. In this case, the width of the nonwoven fabric was set to 400 rtan, and the process was carried out while passing it through a tsofl sulfonation bath.

ローラ間を通すことによって不織布に含まれている濃硫
酸を約80%除去し、ついで、四塩化炭素浴中を6分間
不織布に振動を加えつつ通過させ、同じくローラ間を通
して約80%の四塩化炭素を主とする溶液を除去し、最
後に同じく水中を通過させ、最後に流水で洗浄した。こ
れをか性カリ水溶液中に浸せきしてからセパレータとし
た。
Approximately 80% of the concentrated sulfuric acid contained in the nonwoven fabric is removed by passing it between rollers, and then the nonwoven fabric is passed through a carbon tetrachloride bath for 6 minutes while being vibrated, and approximately 80% of the concentrated sulfuric acid contained in the nonwoven fabric is removed by passing it between rollers. The carbon-based solution was removed, and finally it was also passed through water and finally washed with running water. This was immersed in a caustic potassium aqueous solution and then used as a separator.

この工程中、四塩化炭素溶液中に濃硫酸が徐々に増して
きたので、1日に1回分液p斗により両者を分離して、
それぞれの浴中にもどし、また、水と四塩化炭素も同様
に分離して四塩化炭素はもとの浴中にもどした。このよ
うな一連の工程により、処理に用いられる濃硫酸以外に
は、はとんど溶液の減少はなく、少なくとも98%以上
の再生が濃硫酸、四塩化炭素ともに可能であった。なお
、含浸される溶液が1oo%ローラにより除去できれば
、このような手段は必要としないが、勿論100%は不
可能としても、これに近くまで除くように加圧すると、
セパレータが不必要に加圧され、電解液含浸能力が低下
し、電気抵抗が増すなどの悸害が生じる。また、遠心分
離機による分離も100%に近づけることは不可能であ
る。なお、アセトンで置換して水洗する場合には、蒸溜
によりアセトンを回収する必要があり、また、流失しだ
スルフォン化層溶液を濃縮してもとの状態にすることは
経済的に成り立たない。これらに比べるとスルフォン化
層溶液を順次希釈し、これを用いて洗浄する方法は損失
が少ないが、それでもスルフォン化層溶液の損失はまぬ
がれない。
During this process, concentrated sulfuric acid gradually increased in the carbon tetrachloride solution, so once a day, the two were separated using a separating pot.
Water and carbon tetrachloride were similarly separated, and carbon tetrachloride was returned to the original bath. Through this series of steps, there was almost no loss of solution other than the concentrated sulfuric acid used in the treatment, and it was possible to regenerate at least 98% of both concentrated sulfuric acid and carbon tetrachloride. Note that if the impregnated solution can be removed by a 10% roller, such means will not be necessary, but of course it is impossible to remove 100%, but if pressure is applied to remove it close to this,
The separator is unnecessarily pressurized, the electrolyte impregnation ability is reduced, and electrical resistance is increased, causing disturbances. Furthermore, it is impossible to achieve separation close to 100% using a centrifugal separator. In addition, when replacing with acetone and washing with water, it is necessary to recover acetone by distillation, and it is not economically viable to concentrate the sulfonated layer solution that has been washed away to its original state. Compared to these methods, the method of sequentially diluting the sulfonated layer solution and using this for cleaning causes less loss, but the loss of the sulfonated layer solution is still inevitable.

本発明は、このように、スルフォン化後の織布や不織布
に残ったスルフォン化層溶液をまず不溶性の有機溶媒で
置換し、さらにこれを水で置換す1Q、− ることを最終工程中に加えるものである。したがって実
施例のようにスルフォン化−有機溶媒で置換−水で置換
−水洗のようにしてもよく、スルフォン化−スルフォン
化溶液の希釈液で置換、その後に有機溶媒置換−水で置
換の工程にしてもよい。
In the present invention, the sulfonated layer solution remaining on the woven fabric or nonwoven fabric after sulfonation is first replaced with an insoluble organic solvent, and then this is further replaced with water during the final step. It is something to add. Therefore, as in the example, the steps of sulfonation-replacement with organic solvent-replacement with water-washing with water may be used, or the steps of sulfonation-replacement with a diluted sulfonation solution, followed by organic solvent replacement-replacement with water. You can.

このようにして得られたセパレータを用いて単2形の電
池を構成した。このセパレータの電池をAとし、比較の
ために、未処理のものをB1ポリアミドをCとした。
A AA battery was constructed using the separator thus obtained. The battery of this separator was designated as A, and for comparison, the untreated battery was designated as B1, and the polyamide was designated as C.

まず、常温での30での放電曲線を第2図に示す。初期
電圧には各々それほどの差はないが、とくにBについて
は、放電末期に他よりもやや早く電圧低下するのが認め
られる。
First, the discharge curve at 30° C. at room temperature is shown in FIG. Although there is not much difference in the initial voltages, it is observed that the voltage of B in particular decreases a little earlier than the others at the end of discharge.

つぎに各電池を45°Cで1/10Cの電流で17時間
充電し、1Cで終止電圧0,7V、まで放電する条件で
充放電をした。なお、この場合に、この条件で25サイ
クルを行うごとに放置の影響も調べるために、同じ46
°Cで20日間放置しておき、ついで充放電を繰り返す
条件を用いた。サイクル数と放電容量の関係を第3図に
示す。
Next, each battery was charged at 45° C. with a current of 1/10 C for 17 hours, and charged and discharged under conditions of discharging at 1 C to a final voltage of 0.7 V. In this case, in order to examine the effect of leaving the device unattended every 25 cycles under these conditions, the same 46
A condition was used in which the battery was left for 20 days at °C and then repeatedly charged and discharged. FIG. 3 shows the relationship between the number of cycles and discharge capacity.

第3図より、明らかなように、ポリアミドを用いたCは
、サイクル初期においてはすぐれた特性を示すが、耐ア
ルカリ性、耐酸化性に劣るだめに、不織布が崩壊し、部
分短絡により急激に容量が低下してしまう。これに対し
てポリプロピレンを用いたBでは、耐アルカリ性や耐酸
化性にはすぐれているので、急激な容量低下はないが、
含液性に劣るために、充放電を繰り返すとセパレータに
電解液が不足し、容量の減少が著しい。
As is clear from Figure 3, C using polyamide exhibits excellent characteristics at the beginning of the cycle, but due to poor alkali resistance and oxidation resistance, the nonwoven fabric collapses and the capacity rapidly increases due to partial short circuits. will decrease. On the other hand, B, which uses polypropylene, has excellent alkali resistance and oxidation resistance, so there is no sudden capacity loss.
Because of its poor liquid-retaining properties, repeated charging and discharging causes a shortage of electrolyte in the separator, resulting in a significant decrease in capacity.

これに対して本発明のポリプロピレン不織布をスルフォ
ン化し、これを不溶性の有機溶媒、さらに水で置換した
セパレータを用いたAでは%BICいずれよりもすぐれ
た寿命特性を示している。
On the other hand, A, which uses a separator in which the polypropylene nonwoven fabric of the present invention is sulfonated and replaced with an insoluble organic solvent and further with water, exhibits superior life characteristics to both %BIC.

なお、本発明のセパレータは、実施例のような密閉形ア
ルカリ電池や鉛電池、さらにはゲル電解質を用いた鉛電
池のみでなく、電解液が豊富に用いられる開放形でも、
有効であり、フィルム状セパレータと併用してもよい。
The separator of the present invention can be used not only for sealed alkaline batteries, lead batteries, and even lead batteries using gel electrolytes as in the examples, but also for open types that use an abundant electrolyte.
It is effective and may be used in combination with a film separator.

以上のように、ポリオレフィンとくにポリエチレン、ポ
リプロピレン、ポリブテンなどからなる特開昭58−1
94255(4) 不織布、織布等を発煙硫酸やクロル硫酸等のスルフォン
化溶液中に浸せきし、ついで、これをスルフォン化溶液
や水と実質的に不溶性の有機溶媒で置換し、さらにこれ
を水で置換する工程で得られたセパレータは、特性や寿
命の向上を電池にもたらし、またスルフォン化用溶液の
浪費を抑制できる。
As mentioned above, JP-A-58-1 is made of polyolefins, especially polyethylene, polypropylene, polybutene, etc.
94255 (4) Non-woven fabrics, woven fabrics, etc. are immersed in a sulfonating solution such as oleum or chlorosulfuric acid, then this is replaced with a sulfonating solution or an organic solvent substantially insoluble in water, and then this is soaked in water. The separator obtained in the process of replacing the sulfonation solution with sulfonation solution can improve the characteristics and lifespan of the battery, and can also reduce the waste of the sulfonation solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のセ・くレータの製造装置の構成を示す
図、第2図は各種七ノ(レータを用いたニッケルーカド
ミウム電池の放電特性を示す図、第3図は充放電サイク
ルに伴う章放電容量の変化を示す図である。 1・・・・−セパレータ材、3・・・・・スルフォン化
槽、4−・・スルフォン化溶液、7・・・−有機溶媒槽
、8−・・有機溶媒、11・・・・−・水洗槽、12・
・水。
Figure 1 is a diagram showing the configuration of the cell generator manufacturing apparatus of the example, Figure 2 is a diagram showing the discharge characteristics of nickel-cadmium batteries using various types of batteries, and Figure 3 is the charge/discharge cycle. 1 is a diagram illustrating changes in discharge capacity in accordance with 1. Separator material, 3. Sulfonation tank, 4. Sulfonation solution, 7. Organic solvent tank, 8. --- Organic solvent, 11 --- Washing tank, 12.
·water.

Claims (1)

【特許請求の範囲】[Claims] オレフィンの重合体もしくはオレフィンを主とする共重
合体からなる多孔体をスルフォン化処理する工程と、次
にスルフォン化のための溶液及び水に実質的に不溶性の
有機溶媒に浸せきする工程と、前記有機溶媒を水で置換
する工程とを有する電池用セパレータの製造法。
A step of sulfonating a porous body made of an olefin polymer or a copolymer mainly composed of olefins, and then immersing it in a solution for sulfonation and an organic solvent substantially insoluble in water; A method for producing a battery separator, comprising the step of replacing an organic solvent with water.
JP57076848A 1982-05-08 1982-05-08 Manufacturing method of battery separator Pending JPS58194255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076848A JPS58194255A (en) 1982-05-08 1982-05-08 Manufacturing method of battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076848A JPS58194255A (en) 1982-05-08 1982-05-08 Manufacturing method of battery separator

Publications (1)

Publication Number Publication Date
JPS58194255A true JPS58194255A (en) 1983-11-12

Family

ID=13617073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076848A Pending JPS58194255A (en) 1982-05-08 1982-05-08 Manufacturing method of battery separator

Country Status (1)

Country Link
JP (1) JPS58194255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643442A (en) * 1984-09-17 1987-02-17 Kanzaki Kokyukoki Mfg. Co., Ltd. Fluid supply system for working vehicles
JPS62115657A (en) * 1985-11-13 1987-05-27 Matsushita Electric Ind Co Ltd Sealed nickel-hydrogen storage battery
JP2017004931A (en) * 2015-06-11 2017-01-05 住友化学株式会社 Separator cleaning method, separator manufacturing method, and film cleaning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643442A (en) * 1984-09-17 1987-02-17 Kanzaki Kokyukoki Mfg. Co., Ltd. Fluid supply system for working vehicles
JPS62115657A (en) * 1985-11-13 1987-05-27 Matsushita Electric Ind Co Ltd Sealed nickel-hydrogen storage battery
JP2017004931A (en) * 2015-06-11 2017-01-05 住友化学株式会社 Separator cleaning method, separator manufacturing method, and film cleaning method

Similar Documents

Publication Publication Date Title
US5759711A (en) Liquid-circulating battery
JP6431352B2 (en) Secondary battery
US5362582A (en) Battery separator
KR980012684A (en) Sealed Lead Acid Battery
KR20210118212A (en) Separator media for electrochemical cells
US20020187400A1 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JPS58194255A (en) Manufacturing method of battery separator
US3147150A (en) Battery electrode separator
JPS58194254A (en) Manufacturing method of battery separator
JPS58175256A (en) Manufacture of separator for battery
JP3306412B2 (en) Surface treatment method for polyphenylene sulfide fiber or polysulfone fiber
EP0221645A1 (en) Improved alkaline battery separator and method for making same
JP2762443B2 (en) Manufacturing method of battery separator
JP4454260B2 (en) Separator for alkaline secondary battery
JPH06101323B2 (en) Battery separator
JPH06140018A (en) Separator for alkali battery and its manufacture
JP2000082454A (en) Separator for secondary battery
JPH0729559A (en) Separator for alkaline battery
JP2003051302A (en) Separator for alkaline secondary battery
JPH02216757A (en) Alkaline zinc storage battery
JP2590520B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPS6119056A (en) Separator for battery
KR19980060843A (en) Separator for nickel-metal hydride battery and its manufacturing method
JPH06338308A (en) Separator for alkaline battery
JP2002008722A (en) Manufacturing method for nonaqueous electrolyte secondary battery having polymer electrolyte