JP2762443B2 - Manufacturing method of battery separator - Google Patents

Manufacturing method of battery separator

Info

Publication number
JP2762443B2
JP2762443B2 JP62290015A JP29001587A JP2762443B2 JP 2762443 B2 JP2762443 B2 JP 2762443B2 JP 62290015 A JP62290015 A JP 62290015A JP 29001587 A JP29001587 A JP 29001587A JP 2762443 B2 JP2762443 B2 JP 2762443B2
Authority
JP
Japan
Prior art keywords
separator
sulfuric acid
woven fabric
gas
battery separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62290015A
Other languages
Japanese (ja)
Other versions
JPH01132042A (en
Inventor
正一 池山
宗久 生駒
和隆 岩崎
博志 川野
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62290015A priority Critical patent/JP2762443B2/en
Priority to US07/272,998 priority patent/US5100723A/en
Priority to DE3887460T priority patent/DE3887460T2/en
Priority to EP19880119142 priority patent/EP0316916B1/en
Publication of JPH01132042A publication Critical patent/JPH01132042A/en
Priority to US07/795,141 priority patent/US5213722A/en
Application granted granted Critical
Publication of JP2762443B2 publication Critical patent/JP2762443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポリオレフィン系樹脂繊維により構成され
る電池用セパレータの製造法に関するものである。 従来の技術 従来、たとえば密閉形アルカリ蓄電池用セパレータと
してはポリアミド系樹脂繊維からなる不織布が広く用い
られてきた。これは、ポリアミド系樹脂繊維の不織布が
適度な強度、親水性およびガス透過性を有しているため
である。しかしながら、ポリアミド系樹脂繊維は耐アル
カリ性や耐酸化性に関しては必ずしも十分であるとは言
い難く、電池の使用条件が、とくに高温度のもとや非常
に長期に亘ると強度が低下し、内部短絡の原因になるこ
とが知られている。さらに、最近の研究結果から、高温
度のもとでの保存や、過充電時に発生する酸素ガスによ
るポリアミド系樹脂繊維の分解生成物が電池特性に悪影
響を及ぼすことが明らかになってきた。すなわち、それ
は自己放電の増大につながるということである。 そこで適切な耐熱性を有し、高温度,高濃度のアルカ
リ中でも分解しないセパレータ材料として、ポリプロピ
レン等のオレフィン系樹脂の採用が注目されてきた。と
ころが、ポリオレフィン系樹脂は親水性が乏しく電池用
セパレータとして必要な保液性に難点があるため、以下
のような親水化処理に関する提案がなされてきた。 (1) 界面活性剤を樹脂の表面に付着させる。 (2) 親水性を有する基、たとえばアクリル酸などを
グラフト重合させる。 (3) 適切な温度と濃度の条件にある発煙硫酸や濃硫
酸中に樹脂を浸漬し、スルフォン基(−SO3H)を樹脂中
に導入する。 発明が解決しようとする問題点 しかしながら、このような従来の方法では次に述べる
ような問題点があった。前記(1)の方法では、セパレ
ータが高温度,高濃度のアルカリ中で、しかも過充電時
に正極で発生する酸素ガスに触れることにより、界面活
性剤がポリオレフィン系樹脂材料から離脱し、不純物と
なってアルカリ水溶液中に溶解する結果、自己放電を増
大させる原因となる。前記(2)の方法も同様に、電池
内での苛酷な酸化によりアクリル酸イオンがアルカリ水
溶液中に溶出して、自己放電を増大させる。これに対し
て(3)の方法では、前記(1),(2)のような不純
物あるいは不純物イオンが溶出することがほとんどな
く、極めて自己放電の低減に有効であった。 ところが、スルフォン化剤として発煙硫酸や濃硫酸等
の液体を用いた場合は、ポリオレフィン系樹脂繊維の不
織布,織布を均一にスルフォン化するための発煙硫酸や
濃硫酸の濃度,温度,浸漬時間等の条件が狭い範囲に制
限されるため、工業的には種々の問題となることが予想
される。 たとえば、生産性の観点からスルフォン化剤を高濃度
あるいは高温度にすると短時間処理が可能となるが、こ
れらの条件の若干の変動でスルフォン化が不均一になる
危険性を有し、場合によってはスルフォン化されやすい
部分が酸化、さらには炭化される部分が生じ、セパレー
タの機械的強度が低下する危険性もある。逆にスルフォ
ン化剤が低濃度あるいは低温の場合はスルフォン化に長
時間を要し、生産性に劣ってコストアップとなる。 本発明は、これら問題点を解決するもので、均一な親
水性を有するセパレータを、簡易で工業化に適した製造
法を提供することを目的とする。 問題点を解決するための手段 この問題点を解決するために本発明は、表面層がポリ
エチレンであって、その内部がポリプロピレンからなる
繊維で構成された不織布もしくは織布を、三酸化硫黄
(SO3)と乾燥空気または窒素ガスとの混合ガス中でス
ルフォン化処理を施し、ついで、水,希硫酸水溶液,あ
るいはアルカリ水溶液の少なくとも1種に浸漬すること
を特徴とするものである。 作用 この構成による製造法はスルフォン化剤に反応性に富
む三酸化イオウ(SO3)ガスを用いるので、不織布ある
いは織布を構成するポリオレフィン系樹脂繊維のスルフ
ォン化処理を短時間で均一に行うことができる。しか
し、ポリオレフィン系樹脂繊維は、表面層がポリエチレ
ンであって、その内部がポリプロピレンからなる2層構
造であるため、スルフォン化は繊維の表面層附近のみで
なされ、内部まで処理されないので、セパレータの機械
的強度の低下をきたさない。また、三酸化イオウ(S
O3)ガスの濃度は反応に最適な値に乾燥空気等で容易に
調節できるので工業的にも適している。つぎに、スルフ
ォン化処理を施したポリオレフィン系樹脂繊維からなる
不織布あるいは織布は、水あるいは低濃度の硫酸水溶液
に浸漬することで、副反応で生じた低分子のポリオレフ
ィンの分解生成物や未反応の三酸化イオウ(SO3)等の
付着物が除去できるので、電気特性に悪影響を及ぼさな
い。さらに、スルフォン化した後、あるいは、水洗した
後にアルカリ水溶液に浸漬することは、スルフォン化ポ
リオレフィン系樹脂繊維の親水性のより向上に効果的で
ある。 実施例 実施例1 平均径約15μm,平均長約40mmのポリプロピレン製繊維
の集合体を解きほぐして分散させ、不織布を構成する。
この際、ポリエチレンを分散させた溶液を均一にふりか
け、前記繊維どうしに結着性を付与させる。得られた不
織布を150℃の熱ロール間に通過させて各繊維どうしを
熱融着させ、最終的に厚さ0.2mm、各孔度約60%で、ポ
リプロピレンに対するポリエチレン量を約20%とする。
なおこの製造過程でポリエチレンを分散させた溶媒は飛
散するので、ほぼ完全にポリオレフィン系樹脂で構成さ
れた不織布が得られ、これを構成する繊維は内部がポリ
プロピレン、表面層附近はポリエチレンという構造にな
る。この不織布(厚さ0.2mm,目付重量約75g/m2)を50×
2000mmに裁断し、フッ素樹脂製のネットを介して渦巻き
状にして、反応容器内に収納し真空排気した後、三酸化
イオウ(SO3)ガス20容積%を含む窒素ガスを、前記容
器内に大気圧になるまで導入して25℃で5分間反応させ
た。その後反応容器内の反応ガスを完全に除去して前記
不織布をとり出した。このようにして三酸化イオウ(SO
3)ガスで処理を施した不織布に、以下に述べる後処理
を施して親水性を有するセパレータを得た。 (A) 流水中に約10分間浸漬した後、約70℃で乾燥。 (B) 流水中に約10分間浸漬した後、約10重量%の苛
性カリ水溶液中に約15分間浸漬し、水洗、約70℃で乾
燥。 (C) 約10%の希硫酸水溶液中に約10分間浸漬した
後、水洗、約70℃で乾燥。 (D) 後処理なし。 また、比較品としてスルフォン化処理を施していない
不織布に不織布重量の約0.5重量%の界面活性剤を付着
させたセパレータEと発煙硫酸による親水化処理をした
セパレータFを作製した。この場合、処理は不織布を温
度35℃,濃度20%の発煙硫酸中に30分間浸漬し、水洗,
乾燥を施して得た。 まず、これらのセパレータの親水性を比較するため、
幅50mmの帯状にし、その先端を苛性カリの30重量%水溶
液に浸漬し、1分経過時点での平均の液吸い上げ高さを
調べた。その結果を第1表に示す。 本発明品のA,B,Cは比較品E,Fおよびポリアミド系樹脂
繊維不織布と同等の電解液に対する親和性を有し、短時
間のスルフォン化処理で効果が得られることがわかる。
さらに、本発明品Bのようにアルカリ水溶液に浸漬処理
を施すと親和性は向上する。これは、オレフィンに入っ
た−SO3H基が−SO3Kになるためであると考えられる。 また、一般にスルフォン化処理を施すとオレフィンが
副反応の酸化を受けて機械的強度が低下する。そこで、
試作セパレータとして幅20mm,長さ35mmのものを長さ方
向に引張り、切断されるまでの荷重を測定した。その結
果を第2表に示す。表中の値はそれぞれ5枚の不織布の
平均値である。 ここで、切断荷重は工業化に際しての経験値から約6k
g以上が必要とされる。この基準値を採用するとすれ
ば、本発明品A,B,Cは十分な機械的強度を有し、電解液
との親和性が同程度の発煙硫酸による処理品Fに比較し
て、機械的強度が大きいことがわかる。これは、本発明
のように反応性に富むガスで短時間の処理を施すことに
より、スルフォン化がポリオレフィン系樹脂繊維の表面
層附近のみで、繊維の内部までされないためと考えられ
る。 つぎに、実施例で得られたセパレータA,B,C,Dおよび
比較品のセパレータE,Fとポリアミド系セパレータを汎
用のAAサイズのNi−Cd電池に応用し、完全写電後45℃で
1ケ月保存したときの自己放電を調べた結果を第3表に
示す。ここで、自己放電の評価は、同一の試験条件で保
存前の放電容量に対する保存後の放電容量の比率、すな
わち残存容量率で示した。 この結果から、本発明によるセパレータA,B,Cを使用
した電池は、自己放電が極めて少なく、しかもバラツキ
幅も小さいことがわかる。また、スルフォン化処理は本
発明による方法であっても、後処理を施さないセパレー
タDを用いた電池の自己放電は、本発明品に比較して大
きく、しかもバラツキ幅も大きいことがわかる。この理
由は、本発明品のセパレータではスルフォン化処理で生
じる不純物を後処理によって除去できることによる効果
と考えられる。 実施例2 実施例1と同様にポリプロピレン樹脂とポリエチレン
樹脂とで構成された不織布を、反応容器内に収納し真空
排気した後、三酸化イオウガス20容積%を含む乾燥空気
を、前記容器内に大気圧になるまで導入して25℃で5分
間反応させた。その後反応容器内の反応ガスを完全に除
去して前記不織布をとり出した。ついで、約10%の希硫
酸水溶液中に約10分間浸漬した後、水洗,乾燥を施して
親水性を有するセパレータを得た。このようにして得た
セパレータを実施例と同様な方法で、親水性,機械的強
度、およびNi−Cd電池での自己放電を調べた。その結果
吸液高さ27mm/分,切断荷重7.1Kg,残存容量68〜71%と
希釈ガスに窒素ガスを使用した場合と同等のセパレータ
特性および電池特性を得られた。この結果から本発明の
工業的価値が大きいことがわかる。 なお、本実施例では不織布についてのみ記載したが、
織布についても同様な効果が認められた。また、本発明
の製造法によるセパレータは、アルカリ水溶液を使用す
る他の電池に対してはもちろんのこと、その他の水溶液
および有機電解質を用いる電池に対しても適用が可能で
あり、化学的な安定性と親液性にすぐれることから保存
性および電解液の注液性の向上に有効である。また、本
発明はポリオレフィン系樹脂繊維をスルフォン化処理し
た後、不織布あるいは織布としてセパレータとする場合
にも適用できる。 発明の効果 以上の説明から明らかなように、本発明によれば表面
層がポリエチレンであって、その内部がポリプロピレン
からなる2層構造の繊維で構成された不織布あるいは織
布を乾燥空気等で希釈した三酸化イオウガスで処理して
スルフォン化し、ついで水,希硫酸,アルカリ水溶液等
に浸漬処理することにより均一な親水性を有するセパレ
ータを簡単な方法で作製でき、その工業的価値は大であ
る。また、このセパレータを適用したNi−Cd電池などで
は自己放電特性が著しく改善できるという効果がえられ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a battery separator composed of polyolefin-based resin fibers. 2. Description of the Related Art Conventionally, nonwoven fabrics made of polyamide resin fibers have been widely used, for example, as separators for sealed alkaline storage batteries. This is because the non-woven fabric of polyamide resin fibers has appropriate strength, hydrophilicity and gas permeability. However, polyamide resin fibers are not always sufficient in terms of alkali resistance and oxidation resistance, and the strength of the battery is reduced especially under high temperatures or for a very long period of time. It is known to cause. Furthermore, recent research results have revealed that storage products at high temperatures and decomposition products of polyamide resin fibers due to oxygen gas generated during overcharge adversely affect battery characteristics. That is, it leads to an increase in self-discharge. Therefore, olefin-based resins such as polypropylene have attracted attention as a separator material having appropriate heat resistance and not decomposing even at high temperature and high concentration of alkali. However, polyolefin-based resins have poor hydrophilicity and have difficulty in retaining liquid required as a battery separator, and therefore, the following proposals regarding a hydrophilic treatment have been made. (1) A surfactant is attached to the surface of the resin. (2) A group having hydrophilicity, such as acrylic acid, is graft-polymerized. (3) the resin was immersed in fuming sulfuric acid or concentrated sulfuric acid in the appropriate temperature and concentration conditions, the sulfone group (-SO 3 H) is introduced into the resin. Problems to be Solved by the Invention However, such a conventional method has the following problems. In the method (1), the surfactant is separated from the polyolefin-based resin material by being exposed to oxygen gas generated at the positive electrode at the time of overcharging while the separator is in a high-temperature, high-concentration alkali, and is separated from the polyolefin resin material. As a result, the self-discharge is increased. Similarly, in the method (2), acrylate ions are eluted into the alkaline aqueous solution due to severe oxidation in the battery, and self-discharge is increased. On the other hand, in the method (3), impurities or impurity ions as described in the above (1) and (2) were hardly eluted, which was extremely effective in reducing self-discharge. However, when a liquid such as fuming sulfuric acid or concentrated sulfuric acid is used as the sulfonating agent, the concentration, temperature, immersion time, etc. of fuming sulfuric acid or concentrated sulfuric acid for uniformly sulfonating a nonwoven or woven fabric of polyolefin resin fibers are used. Is limited to a narrow range, it is expected that various problems will occur industrially. For example, from the viewpoint of productivity, when the sulfonating agent is used at a high concentration or at a high temperature, the treatment can be performed in a short time, but there is a risk that the sulfonation becomes non-uniform due to a slight change in these conditions. There is a risk that a portion which is easily sulphonated is oxidized and further carbonized, resulting in a decrease in mechanical strength of the separator. Conversely, when the sulfonating agent has a low concentration or a low temperature, it takes a long time to sulfonate, resulting in poor productivity and increased cost. An object of the present invention is to solve these problems, and an object of the present invention is to provide a method for easily producing a separator having uniform hydrophilicity and suitable for industrialization. Means for Solving the Problems In order to solve this problem, the present invention relates to a method for converting a nonwoven fabric or a woven fabric having a surface layer made of polyethylene and the inside of which is made of polypropylene into sulfur trioxide (SO 3 ) performing sulfonation treatment in a mixed gas of dry air or nitrogen gas, and then immersing in at least one of water, a dilute sulfuric acid aqueous solution, or an alkaline aqueous solution. The production method using this configuration uses a highly reactive sulfur trioxide (SO 3 ) gas as the sulfonating agent, so that the sulfonation of the polyolefin resin fibers constituting the nonwoven fabric or woven fabric can be uniformly performed in a short time. Can be. However, since the polyolefin resin fiber has a two-layer structure in which the surface layer is made of polyethylene and the inside is made of polypropylene, sulfonation is performed only near the surface layer of the fiber, and the inside is not treated. Does not cause a decrease in target strength. In addition, sulfur trioxide (S
The concentration of the O 3 ) gas can be easily adjusted to an optimum value for the reaction with dry air or the like, so that it is industrially suitable. Next, the non-woven fabric or woven fabric made of the sulfonated polyolefin-based resin fiber is immersed in water or a low-concentration aqueous sulfuric acid solution to decompose low-molecular-weight polyolefins produced by side reactions and unreacted products. Since the deposits such as sulfur trioxide (SO 3 ) can be removed, the electrical characteristics are not adversely affected. Further, immersion in an alkaline aqueous solution after sulfonation or after washing with water is effective in further improving the hydrophilicity of the sulfonated polyolefin-based resin fiber. EXAMPLES Example 1 An aggregate of polypropylene fibers having an average diameter of about 15 μm and an average length of about 40 mm is loosened and dispersed to form a nonwoven fabric.
At this time, the solution in which the polyethylene is dispersed is sprinkled uniformly to give the fibers a binding property. The obtained non-woven fabric is passed between hot rolls at 150 ° C. to heat-bond each fiber to each other. Finally, the thickness is 0.2 mm, each porosity is about 60%, and the amount of polyethylene to polypropylene is about 20%. .
Since the solvent in which polyethylene is dispersed in this manufacturing process is scattered, a nonwoven fabric made of a polyolefin resin is obtained almost completely, and the fibers constituting the structure have a structure in which the inside is polypropylene and the vicinity of the surface layer is polyethylene. . This non-woven fabric (thickness 0.2 mm, basis weight about 75 g / m 2 ) is 50 ×
After being cut into 2000 mm and spirally wound through a fluororesin net, housed in a reaction vessel and evacuated, a nitrogen gas containing 20% by volume of sulfur trioxide (SO 3 ) gas is introduced into the vessel. The reaction mixture was introduced at atmospheric pressure and reacted at 25 ° C. for 5 minutes. Thereafter, the reaction gas in the reaction vessel was completely removed, and the nonwoven fabric was taken out. In this way, sulfur trioxide (SO
3 ) The non-woven fabric treated with the gas was subjected to the following post-treatment to obtain a hydrophilic separator. (A) Immerse in running water for about 10 minutes, then dry at about 70 ° C. (B) After immersion in running water for about 10 minutes, immersion in about 10% by weight aqueous caustic potassium solution for about 15 minutes, washing with water, and drying at about 70 ° C. (C) Immerse in a 10% dilute sulfuric acid aqueous solution for about 10 minutes, wash with water, and dry at about 70 ° C. (D) No post-processing. Further, as comparative products, a separator E in which a surfactant of about 0.5% by weight of the nonwoven fabric was adhered to a nonwoven fabric which had not been sulfonated, and a separator F which had been hydrophilized with fuming sulfuric acid were prepared. In this case, the treatment is performed by immersing the nonwoven fabric in fuming sulfuric acid at a temperature of 35 ° C and a concentration of 20% for 30 minutes, washing with water,
Obtained by drying. First, to compare the hydrophilicity of these separators,
A strip having a width of 50 mm was formed, and its tip was immersed in a 30% by weight aqueous solution of potassium hydroxide, and the average liquid suction height after 1 minute was examined. Table 1 shows the results. It can be seen that A, B, and C of the product of the present invention have the same affinity to the electrolytic solution as the comparative products E and F and the nonwoven fabric of polyamide resin fiber, and the effect can be obtained by the sulfonation treatment in a short time.
Further, when immersion treatment is performed in an aqueous alkali solution as in the case of the product B of the present invention, the affinity is improved. This, -SO 3 H group containing olefin is considered to be because become -SO 3 K. In general, when a sulfonation treatment is performed, the olefin is oxidized by a side reaction, and the mechanical strength is reduced. Therefore,
A prototype separator having a width of 20 mm and a length of 35 mm was pulled in the length direction, and the load until cutting was measured. Table 2 shows the results. Each value in the table is an average value of five nonwoven fabrics. Here, the cutting load is about 6k from the empirical value at the time of industrialization.
g or more is required. If this reference value is adopted, the products A, B, and C of the present invention have sufficient mechanical strength, and have a higher mechanical strength than the product F treated with fuming sulfuric acid having the same affinity for the electrolyte. It can be seen that the strength is large. This is presumably because the sulfonation is performed only in the vicinity of the surface layer of the polyolefin-based resin fiber and not to the inside of the fiber by performing a short-time treatment with a highly reactive gas as in the present invention. Next, the separators A, B, C, D obtained in the examples and the separators E, F and the polyamide separator of the comparative product were applied to a general-purpose AA size Ni-Cd battery, and after complete electrophotography at 45 ° C. Table 3 shows the results of examining the self-discharge when stored for one month. Here, the self-discharge was evaluated by the ratio of the discharge capacity after storage to the discharge capacity before storage under the same test conditions, that is, the remaining capacity ratio. From these results, it is understood that the batteries using the separators A, B, and C according to the present invention have extremely small self-discharge and a small variation width. Further, it can be seen that even when the sulfonation treatment is the method according to the present invention, the self-discharge of the battery using the separator D which is not subjected to the post-treatment is larger than that of the product of the present invention, and the variation width is larger. This is considered to be due to the effect that impurities generated in the sulfonation treatment can be removed by post-treatment in the separator of the present invention. Example 2 A nonwoven fabric composed of a polypropylene resin and a polyethylene resin was housed in a reaction vessel and evacuated as in Example 1, and then dry air containing 20% by volume of sulfur trioxide gas was introduced into the vessel. The reaction was introduced at 25 ° C for 5 minutes. Thereafter, the reaction gas in the reaction vessel was completely removed, and the nonwoven fabric was taken out. Then, the film was immersed in an aqueous solution of about 10% dilute sulfuric acid for about 10 minutes, washed with water and dried to obtain a hydrophilic separator. The separator thus obtained was examined for hydrophilicity, mechanical strength, and self-discharge in a Ni-Cd battery in the same manner as in the examples. As a result, the separator characteristics and battery characteristics were the same as those obtained when nitrogen gas was used as the liquid absorption height of 27 mm / min, the cutting load was 7.1 kg, the remaining capacity was 68 to 71%, and the dilution gas was nitrogen. From these results, it can be seen that the industrial value of the present invention is great. In this example, only the nonwoven fabric is described,
Similar effects were observed for woven fabric. Further, the separator according to the production method of the present invention can be applied not only to other batteries using an alkaline aqueous solution, but also to batteries using other aqueous solutions and organic electrolytes. It is effective in improving the storage stability and the injectability of the electrolytic solution because of its excellent properties and lyophilicity. The present invention can also be applied to a case where a polyolefin-based resin fiber is subjected to sulfonation treatment and then used as a separator as a nonwoven fabric or a woven fabric. Effect of the Invention As is apparent from the above description, according to the present invention, a non-woven fabric or a woven fabric having a surface layer of polyethylene and the interior of which is formed of a two-layer fiber made of polypropylene is diluted with dry air or the like. A separator having uniform hydrophilicity can be produced by a simple method by treating with sulfonated sulfur trioxide gas to form a sulfonate and then immersing in water, dilute sulfuric acid, an alkaline aqueous solution or the like, and its industrial value is great. In addition, in a Ni-Cd battery or the like to which this separator is applied, there is obtained an effect that the self-discharge characteristics can be significantly improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川野 博志 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−115657(JP,A) 特開 昭51−103884(JP,A) 特開 昭58−89774(JP,A) 特開 昭58−194254(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/16──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroshi Kawano 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-62-115657 (JP, A) JP-A-51-103884 (JP, A) JP-A-58-89774 (JP, A) JP-A-58-194254 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) H01M 2/16

Claims (1)

(57)【特許請求の範囲】 1.表面層がポリエチレンであって、その内部がポリプ
ロピレンからなる繊維で構成された不織布もしくは織布
を、三酸化硫黄(SO3)と乾燥空気または窒素ガスとの
混合ガス中でスルフォン化処理し、ついで、水、希硫酸
溶液あるいはアルカリ水溶液中において浸漬処理する工
程を有することを特徴とする電池用セパレータの製造
法。 2.水あるいは希硫酸溶液中に浸漬した後、アルカリ水
溶液中に浸漬する工程を有する特許請求の範囲第1項に
記載の電池用セパレータの製造法。
(57) [Claims] A non-woven fabric or woven fabric whose surface layer is made of polyethylene and the inside of which is made of polypropylene is sulfonated in a mixed gas of sulfur trioxide (SO3) and dry air or nitrogen gas. A method for producing a battery separator, comprising a step of immersion treatment in water, a dilute sulfuric acid solution or an aqueous alkaline solution. 2. The method for producing a battery separator according to claim 1, further comprising a step of immersing in a water or diluted sulfuric acid solution and then immersing in an alkaline aqueous solution.
JP62290015A 1987-11-17 1987-11-17 Manufacturing method of battery separator Expired - Lifetime JP2762443B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62290015A JP2762443B2 (en) 1987-11-17 1987-11-17 Manufacturing method of battery separator
US07/272,998 US5100723A (en) 1987-11-17 1988-11-17 Separator material for storage batteries
DE3887460T DE3887460T2 (en) 1987-11-17 1988-11-17 Separator material for storage batteries and method for the production thereof.
EP19880119142 EP0316916B1 (en) 1987-11-17 1988-11-17 Separator material for storage batteries and method for making the same
US07/795,141 US5213722A (en) 1987-11-17 1991-11-20 Method of making a separator material for a storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290015A JP2762443B2 (en) 1987-11-17 1987-11-17 Manufacturing method of battery separator

Publications (2)

Publication Number Publication Date
JPH01132042A JPH01132042A (en) 1989-05-24
JP2762443B2 true JP2762443B2 (en) 1998-06-04

Family

ID=17750679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290015A Expired - Lifetime JP2762443B2 (en) 1987-11-17 1987-11-17 Manufacturing method of battery separator

Country Status (1)

Country Link
JP (1) JP2762443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186892A1 (en) 2012-06-14 2013-12-19 ニッポン高度紙工業株式会社 Fiber using olefin resin, nonwoven fabric using same, and separator for alkali storage battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203262B2 (en) 2002-05-22 2008-12-24 三菱製紙株式会社 Nonwoven fabric for separators for alkaline batteries
JP5029875B2 (en) * 2007-01-25 2012-09-19 Dic株式会社 Surface modification method of resin molding board by sulfur trioxide gas.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103884A (en) * 1975-03-10 1976-09-14 Sumitomo Chemical Co KYOSANSEIKACHIONKOKANSENINO SEIZOHO
JPS5889774A (en) * 1981-11-24 1983-05-28 Matsushita Electric Ind Co Ltd Cell
JPS58194254A (en) * 1982-05-07 1983-11-12 Matsushita Electric Ind Co Ltd Manufacturing method of battery separator
JPS62115657A (en) * 1985-11-13 1987-05-27 Matsushita Electric Ind Co Ltd Sealed nickel-hydrogen storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186892A1 (en) 2012-06-14 2013-12-19 ニッポン高度紙工業株式会社 Fiber using olefin resin, nonwoven fabric using same, and separator for alkali storage battery

Also Published As

Publication number Publication date
JPH01132042A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US5100723A (en) Separator material for storage batteries
EP0450449B1 (en) Separator material for storage batteries and method for making the same
US5213722A (en) Method of making a separator material for a storage battery
JP2762443B2 (en) Manufacturing method of battery separator
EP1248306A2 (en) The process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JPH11144698A (en) Separator for secondary battery
JP3306412B2 (en) Surface treatment method for polyphenylene sulfide fiber or polysulfone fiber
JPH06101323B2 (en) Battery separator
JPS58175256A (en) Manufacture of separator for battery
JPH1167182A (en) Separator for alkaline battery and manufacture thereof
JPH076746A (en) Battery separator
JP3709160B2 (en) Method for modifying surface of synthetic resin material and method for producing battery separator
JPS60109171A (en) Separator for battery
JPS58194254A (en) Manufacturing method of battery separator
JPH11238496A (en) Battery separator, its manufacture, and battery
JPH113694A (en) Manufacture of separator material for battery
JP3114078B2 (en) Alkaline battery separator
JPH07312215A (en) Battery separator
JP2003132870A (en) Separator for secondary battery comprising resin composition having polyolefin with hydrophilic functional group as main constituent
JP2001283820A (en) Surface modifying method of synthetic resin and separator for battery
JPS58194255A (en) Manufacturing method of battery separator
JPH11111257A (en) Separator for battery
JPH06187963A (en) Nonwoven fabric separator for alkaline battery and manufacture thereof
KR19980060843A (en) Separator for nickel-metal hydride battery and its manufacturing method
JPH1167180A (en) Separator for battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10