JPS58176977A - Flexible thin film photovoltaic apparatus - Google Patents

Flexible thin film photovoltaic apparatus

Info

Publication number
JPS58176977A
JPS58176977A JP57060109A JP6010982A JPS58176977A JP S58176977 A JPS58176977 A JP S58176977A JP 57060109 A JP57060109 A JP 57060109A JP 6010982 A JP6010982 A JP 6010982A JP S58176977 A JPS58176977 A JP S58176977A
Authority
JP
Japan
Prior art keywords
photovoltaic device
thin film
layer
film photovoltaic
flexible thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57060109A
Other languages
Japanese (ja)
Other versions
JPH0481350B2 (en
Inventor
Kazunaga Tsushimo
津下 和永
Masanobu Izumina
泉名 政信
Yoshihisa Owada
大和田 善久
Yoshihiro Hamakawa
圭弘 浜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57060109A priority Critical patent/JPS58176977A/en
Priority to DE3280455T priority patent/DE3280455T3/en
Priority to DE8282110122T priority patent/DE3280293D1/en
Priority to EP89111929A priority patent/EP0341756B2/en
Priority to EP82110122A priority patent/EP0078541B1/en
Priority to US06/439,627 priority patent/US4612409A/en
Publication of JPS58176977A publication Critical patent/JPS58176977A/en
Priority to US06/835,717 priority patent/US4773942A/en
Priority to US07/202,608 priority patent/US4875943A/en
Priority to US07/652,492 priority patent/US5127964A/en
Publication of JPH0481350B2 publication Critical patent/JPH0481350B2/ja
Priority to US08/192,304 priority patent/US5419781A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a flexible and small size apparatus which generates a desired voltage by connecting in series a plurality of voltage generating regions utilizing a homo or hetero junction photovoltaic element on a flexible substrate providing, on metal foil, an electric insulating layer which is in contact with the metal foil in the resin layer having heat resistance characteristic and in contact with photovoltaic element in inorganic or organic metal compound. CONSTITUTION:Each of a first electrode 17 including an extension part 19 is formed by the selective etching method on a substrate consisting of a metal foil 11 and insulating film 12, a homo or hetero junction layer 16 is formed in continuation to the first - third voltage generating regions 13-15 by the selective etching method in such a manner that it does not exist in the extension parts 19, 20. Thereafter, a second electrode 18 including extension part 20 and connecting part 21 are formed by the selective sputtering method. Thereby, a voltage is generated respectively in the voltage generating regions 13-15, and a voltage added in series is generated across the positive and negative poles, with the connecting part 21 connected to the voltage generating region 13 considered as the positive side and the extension part 20 connected to the electrode 18 of voltage generating region 15 considered as negative side.

Description

【発明の詳細な説明】 本発明は可撓性を有する光起電力装置に関する。[Detailed description of the invention] The present invention relates to a flexible photovoltaic device.

太陽電池や光検出器のような光起電力素子は太陽光線を
直接電気エネルギに変換することができるが、との検装
置の最大の問題として、他の電気エネルギ発生手段と比
較して発電費用が極めて大きいことが言われている。そ
の主な原因は、装置の主体を構成する半導体材料の利用
効率が低いこと、更には斯る材料を製造するに要するエ
ネルギが多いことにある。最近この欠点を解決する可能
性のある技術として、上記半導体材料に非晶質シリコン
を使用することが提案され友。即ち非晶質シリコンはシ
ランヤフロルシランナトのシリコン化合物雰囲気中での
グ四−放電によって安価かつ大量に形成することができ
、その場合の非晶質シリコン(以下GD−a131と略
記する)では、祭止帝の幅中の平均局在状態密度か10
 ex eV  以下と小さく、結晶シリコンと同じ様
にp型、n型の不純物制御が可能となるのである0 GD−a81を用いた典型的な従来の太陽電池は、可視
光を透過するガラス基板上にa明anを形成し、該透明
電極上GCOD−&SiのptIi層、GD−a81の
ノンドープ(不純物無添加)層及びGD−aEliのn
g層を順次形成し゛該n型層上に設けられ九オーミック
コンタクト用電極を設けてなるものである0上記太陽電
池において、ガラス基板及び透明電極を介して光がGD
−a8’iからなるp型層、ノンドープ層及びng層に
入ると、主にノンドープ層において自由状態の電子及び
又は正孔が発生し、これらは上記各鳩の作るpin接合
箋界によシ引かれて移動した後透明電極やオーミックコ
ンタクト用電極に集められ両電極間に電圧が発生するO
トコロで、最近フレキシブルプリント基板や7イルム液
晶表示板等が実用化され、太陽電池としても可撓性のあ
るものが簀望されている〇可撓性、耐熱性に富むボリイ
ξド勢の樹脂薄膜をX板として使用した太陽電池Fi%
開昭54−149489に記載されている。しかるに樹
脂薄膜のみを素板として使用した場合は、デポジション
によって素板がカールし、又デポジション中の変形によ
り素板が均一に加熱されないという欠点があった。この
欠点を解決するために1金属箔上に電気絶縁性層を設け
た可涜性基板上に形成させた光起電力装置Fi%願昭5
6−213119号に記載されている。
Photovoltaic devices such as solar cells and photodetectors can directly convert sunlight into electrical energy, but the biggest problem with these devices is that they are expensive compared to other electrical energy generation methods. is said to be extremely large. The main reasons for this are the low utilization efficiency of semiconductor materials that constitute the main body of the device, and the large amount of energy required to manufacture such materials. Recently, the use of amorphous silicon as the semiconductor material has been proposed as a potential solution to this drawback. That is, amorphous silicon can be formed inexpensively and in large quantities by 4-discharge in a silicon compound atmosphere of silanyafluorsilanate, and in this case, amorphous silicon (hereinafter abbreviated as GD-a131) , the average localized state density in the width of the priest is 10
It is small at ex eV or less, and it is possible to control p-type and n-type impurities in the same way as crystalline silicon.0 Typical conventional solar cells using GD-a81 are fabricated on a glass substrate that transmits visible light. On the transparent electrode, a ptIi layer of GCOD-&Si, a non-doped (no impurity added) layer of GD-a81, and an n of GD-aEli are formed on the transparent electrode.
In the solar cell described above, light passes through the glass substrate and the transparent electrode to the GD layer.
- When entering the p-type layer, non-doped layer, and ng layer made of -a8'i, free-state electrons and/or holes are generated mainly in the non-doped layer, and these are stimulated by the pin junction boundary created by each of the above-mentioned pigeons. After being attracted and moving, O is collected on a transparent electrode or an ohmic contact electrode, and a voltage is generated between the two electrodes.
Recently, flexible printed circuit boards and 7-ilm liquid crystal display boards have been put into practical use, and there is a demand for flexible solar cells. 〇Bollywood type resin with high flexibility and heat resistance Solar cell Fi% using thin film as X plate
It is described in 149489/1989. However, when only a resin thin film is used as a base plate, there are disadvantages in that the base plate curls during deposition and is not heated uniformly due to deformation during deposition. In order to solve this drawback, a photovoltaic device was formed on a sacrificial substrate with an electrically insulating layer on a metal foil.
No. 6-213119.

本発明者等はこれをさらに改良し、可撓性で高い開放電
圧と短絡電流を得るために鋭意研究した結果、本発明に
至ったものである。
The present inventors have conducted intensive research to further improve this and obtain flexibility and high open circuit voltage and short circuit current, resulting in the present invention.

本発明に用いる光起電力素子の基本構成は、jllIl
−の(a) 、 (b)K代表例が示される。(a)F
ip側から光を照射するタイプで、例えばステンレス箔
−eta膜−電極n−1−p−透明電極の構成、(b)
Fi箆側から光を照射するタイプで、例えばステンレス
箔−絶縁膜一電執−p−1−n−透明電極の構成である
。その他、p層と透明!極の関に#い絶縁層をつけた)
、薄い金輌層をつけ九構造でもよい。賛はp、−1−n
接合を基本とするものであればいかなる構成でもよい。
The basic configuration of the photovoltaic device used in the present invention is
- Representative examples of (a) and (b) K are shown. (a)F
A type that irradiates light from the IP side, for example, a stainless steel foil-ETA film-electrode n-1-p-transparent electrode configuration, (b)
It is a type that irradiates light from the Fi side, and has, for example, a stainless steel foil-insulating film-p-1-n-transparent electrode structure. In addition, p layer and transparent! A thick insulation layer was added to the pole barrier)
, a thin gold layer may be applied and a nine-structure structure may be used. Praise is p, -1-n
Any structure may be used as long as it is based on bonding.

シラン若しくはその時導体、又はフッ化シラン若しくは
その誘導体、又はこれらの混合物のグロー放電分解で得
られる約10−’秒以上のキャリヤーコン(以下、1型
a−8iというンを1層として、p型とn型ドープアモ
ルファス半導体で接合したpin接合構造にするわけで
あるが、好ましくはp層又Fin Ntの少くとも一方
、すなわち少くとも光を照射する4n+ K 、光学的
バンドギャップが約1.85eV以上であシかつ20℃
における電気伝24度が約10−”(Ω・浦)−1以上
であシ、かつp−1−n接合した場合の拡散電位Vdが
約1.1vO1tθ以上であるp型又はn型アモルファ
ス半導体を用いるのがよい。
A p-type carrier compound (hereinafter referred to as type 1 a-8i) obtained by glow discharge decomposition of silane or its conductor, or a fluorinated silane or its derivative, or a mixture thereof for more than about 10 seconds (hereinafter referred to as type 1 a-8i) A pin junction structure is formed in which the n-type and n-doped amorphous semiconductors are bonded to each other. Preferably, at least one of the p layer or FinNt, that is, at least the 4n+ K layer that is irradiated with light, and the optical band gap of about 1.85 eV. Must be above 20℃
A p-type or n-type amorphous semiconductor whose electrical conductivity 24 degrees is about 10-'' (Ω・ura)-1 or more, and whose diffusion potential Vd when making a p-1-n junction is about 1.1 vO1tθ or more. It is better to use

p層とn層の両方に用いてもよい。又本発明のアモルフ
ァス半導体を用いないドープ層は、上記1型a−8iを
p型で用いる場合は周期率表厘族の元素でドープし、n
型で用いる場合は周期率表マ族の元素でドープすればよ
い。
It may be used for both the p layer and the n layer. In addition, the doped layer of the present invention that does not use an amorphous semiconductor is doped with an element of the periodic table group when the above-mentioned type 1 a-8i is used as a p-type, and
When used in a mold, it may be doped with an element from Group M of the periodic table.

可撓性のみを必要とする場合は1層に用いる真性アモル
ファスシリコンをボロンやリンでドープしてp−1−n
ホモ接合にしてもよい。
If only flexibility is required, dope the intrinsic amorphous silicon used for one layer with boron or phosphorus to create a p-1-n layer.
It may be homozygous.

本発明のpXはn層に用いられるアモルファス半導体を
具体例で示すと一般式’−8’(’−x)0(り ea
−81(t −y)My 、 a−8i(t−x−y)
C(x)N(y)等で例示されるアモルファスシリコン
カーバイト、アモルファスシリコンナイト2イド、アモ
ルファスシリコンカーボンナイトライド、B1Ox (
x< 0.3)等がある。
The pX of the present invention has the general formula '-8'('-x)0(ri ea
-81(t-y)My, a-8i(t-x-y)
Amorphous silicon carbide, amorphous silicon nitride, amorphous silicon carbon nitride, B1Ox (
x < 0.3), etc.

これらはシリコンの水素又はフッ素化合物と炭素又はチ
ッ素の水累又Fi7ツ素化合物をグロー放電分解して得
られる。その詳細は、本山−人が先に出願した特許出願
、すなわち、a−81(1−x)O(x) Icついて
は特願昭56−012313号、”−8’Cx−y)N
yKついてFi%I[56−022690号、a−8i
(i −X)O(X)N(ア)についてFi%顧昭56
−112572号に夫々記載している。寮は光学的バン
ドギャップが約1.85・マリ上であシかつ20℃にお
する電気伝導度が約10=(Ωam)−’以上であシ、
かつp−1−n接合した場合の拡散電位Vaが約1.1
マ01tli  以上であるpWi又tin型アモルフ
ァス牛導体を満すものであればいかなるものであっても
よい。
These can be obtained by glow discharge decomposition of hydrogen or fluorine compounds of silicon and hydrogen or hydrogen compounds of carbon or nitrogen. The details can be found in the patent application previously filed by Motoyama, namely Japanese Patent Application No. 56-012313 for a-81(1-x)O(x) Ic, "-8'Cx-y)N
About yK Fi%I [No. 56-022690, a-8i
For (i −X)O(X)N(a), Fi% Gusho 56
-112572, respectively. The dormitory must have an optical bandgap of approximately 1.85 mm or more and an electrical conductivity of approximately 10=(Ωam)-' or more at 20°C.
And the diffusion potential Va in the case of p-1-n junction is about 1.1
Any conductor may be used as long as it satisfies the pWi or tin type amorphous conductor, which is equal to or higher than 01tli.

これらのアモルファス半導体は光学的バンドギャップが
大きくその為に、p−1−n接金光起電力索子の窓材料
として用いると短絡電流Jsaの増加Fi当然考えられ
るが、いずれの場合も非常に大きな開放電圧Toeを示
す。本発明の光起電力素子においてlI42図に示すバ
ンドプロファイルの拡散電位■とその素子の開放電圧に
相関のある事を見い出している。本発明の場合vaFi
約1. l volts以上であるが、この関係は光照
射する観のアモルファス半導体の種類に関係なくほぼ同
一の傾向を示している。この拡散電位は光照射する側の
アモルファス半導体の光学的バンドギャップKg、op
tからpt”ドープ層の活性化エネルギーの和を差し引
く事によって得られる。すなわち第2図に示すようにn
側の伝導帯のエネルギーレベルmcn、p@の価電子帯
のエネルギーレベルを1マpとして、電気伝導度の温度
依存性から活性化エネルギーΔljpとΔInが求めら
れる。p型の場合Δ’Hp = 1!f−1vPen型
の場合ΔIn =Icn−Ifでsva =zg、op
t −(ap+Δl1n)であるOn側から光照射する
場合もPtJ様Kn型アモルファス半導体の光学的バン
ドギャップIg、optからpt ”のフェルンレベル
Ifの差を差し引いて求められる。
Since these amorphous semiconductors have a large optical band gap, it is natural that when used as a window material for a p-1-n welded photovoltaic cable, the short-circuit current Jsa will increase, but in either case, the Open circuit voltage Toe is shown. In the photovoltaic device of the present invention, it has been found that there is a correlation between the diffusion potential (2) of the band profile shown in diagram 1I42 and the open circuit voltage of the device. In the case of the present invention, vaFi
Approximately 1. l volts or more, but this relationship shows almost the same tendency regardless of the type of amorphous semiconductor that is irradiated with light. This diffusion potential is determined by the optical bandgap Kg, op of the amorphous semiconductor on the side of light irradiation.
It is obtained by subtracting the sum of the activation energy of the pt" doped layer from t. That is, as shown in Figure 2, n
The activation energies Δljp and ΔIn are determined from the temperature dependence of electrical conductivity, with the energy level of the conduction band on the side mcn and the energy level of the valence band of p@ as 1 map. For p-type, Δ'Hp = 1! For f-1vPen type, ΔIn = Icn-If and sva = zg, op
Even when light is irradiated from the On side at t - (ap+Δl1n), the optical bandgap Ig of the PtJ-like Kn-type amorphous semiconductor is determined by subtracting the difference in Fern level If of pt'' from opt.

本発明の場合Eg、optが約1−85eV以上でかっ
Vdが約1.1volts以上である。このような条件
を$I友すアモルファス半導体を用いたヘテロ接合光起
電力素子けJscとwoeが著しく改善される。
In the present invention, Eg and opt are about 1-85 eV or more, and Vd is about 1.1 volts or more. In a heterojunction photovoltaic device using an amorphous semiconductor that satisfies these conditions, Jsc and woe are significantly improved.

本発明てはさらに室温での電気伝導度が10 =(Ω・
cs)以上としているが、これ以下である七フィルファ
クターFFが少さくなシ変換効率が実用的でなくなるか
らである。
In the present invention, the electrical conductivity at room temperature is 10 = (Ω・
cs) or more, but this is because the conversion efficiency becomes impractical if the seven fill factor FF is less than this.

本発明のへテロ接合光電索子について具体的に説明する
と、次の通抄である。代表的な構造は透明[極/p型ア
モルファス半導体/1型a−si /11型&−81/
′W1.価/絶縁層/金属箔の構造で、透明電極側から
光を照射する。透明電1hFilToや8nO8特に8
nO1が好ましく、P型アモルファス半導体上に直接蒸
着して得られる。又エテ0とp型アモルファス牛導体の
界面に30〜500ムの8nOyをつけると更に好まし
い。光を照射する鉤のp型アモルファス半導体層の厚み
は約30ムから30OA好ましくは50ムから200ム
、[a−81層の厚みは本発明の場合限定されないが約
2500〜100OOAが用いられる。nm a−si
層の厚みは限定されないが約150A〜600ムが用い
られる。又とのn型a−81の代わF)K本発明の!l
型アモルファス半導体を用いてもよい。ζ゛の構造で本
発明に用いるヘテロ接合光起電力素子と捷来のアモルフ
ァスシリコンp−1−nホモ接合の特性を第3図に示す
。この図において(&)が本発明の場合で効率ダ=7.
821、短絡電流Jsc = 13.76111/31
”、開放電圧Voc = 0.903 volts 、
アy=62.9−を示す。>)が従誓めホモ接合の場合
で、効率マ=i、7%、Jgc = 11.02xrA
//cs*、 Voc= 0−801VO1t# 、1
FIPx54.7−である。本発明の効果は短絡電流7
#Cと開放電圧VocjC特に顕著な効果がみられる〇 もう1つの代表的な構造は 透明電極/n型アモ希ファス半導体/ i ’IJ&−
81/p型ali/電極/絶嶽jl/金属箔の構造で、
透明電極側から光を照射する。−光を照射する側のnJ
llアモルファス半導体の厚みは約3OAから300ム
好ましくFisoム〜200ム、iga−81層の厚み
は限定されないが約2500ム〜10000ムが通常用
いられるOp u a−81層の厚み#:i@定されな
いが約150ム〜600Aが用いられる。又このp型a
−81の代わ)K本発明のp型アモルファス半導体を用
いても良い0透明電極の素材及び蒸着法にりいては前同
橡である0 基板について説明す、ると、金属箔IFiア)h−1=
りム、銅、鉄、ニッケル、ステンレス等の金属の箔で厚
みは54m〜2■好ましくF150声鳳〜l−のものが
用いられる。絶縁層2d2層以上の層構造であって樹脂
からなる層2aと無機物又は有機金属化合物から彦る層
2bとを含み、層2aの厚みは1000ム〜10100
J好ましく tilaw 〜2015mでTo夛、層2
13の厚みFf 100A 〜5pm好ましくは500
1〜l趨である。層21ILVCFi耐熱性を有する樹
脂が用いられるが、電気伝導度が約10−’(Ω・1)
−1以下のものが良くとくにポリイミド、ポリアンド、
ポリアミドイミド、ポリヒダントイン、ポリバラパニッ
ク酸、ポリ−ルキシリレン、シリコーン、又は環化ポリ
ブタジェンのホモポリ1−、コポリi−又はブレンド樹
脂が好ましく、これらは通常の方法で金属箔1の表面に
塗布されW換をつくる。例えばこれらの樹脂又#i前駆
体を溶剤で溶解しフェスと為し、金1491上にスプレ
ー、ディッピング、コーティング又は印#JKより塗布
し、その後加熱イオンボンバード或いけ紫外縁% / 
&I−s  r @s電子線などの照射によル乾燥・硬
化させればよい〇層2bti無機物又は有機金属化合物
が用いられるが、電気伝導度が10 ”” (Ω・1ン
−1以下のものが良く、と(K B1Ox 、〒10X
 、 A/、 O,等の金属酸化物、アモルファス又は
結晶性の81(x −X)O(X) 、 81(1−y
)My 、 81(x−X−7ン0(□)N(y)等又
はその水素ハロゲン化物等が好ましく、シランや7ツ化
シランのグロー放を中スパッタ!で得られる7モルフア
スク9 s y(g−81)もよい。特に本発明の太陽
電池を螢光値下で作動させる電池として電子装置に組み
込む場合、ム麗−1100mW%−のような強い光が照
射されると大きな電流が流れる為に保#!に回路が必要
になるが、a−81のように光照射時の電気伝導度の大
きなものを本発明の絶縁膜として用いると、螢光値下で
は電気伝導度が小さいのでリークは少ないが、屋外光の
ように1強い光が当ると電気伝導度が大きくなり、光電
流がリークして保護回路の役割をするので好ましい。
A detailed explanation of the heterojunction photoelectron of the present invention is as follows. Typical structures are transparent [polar/p-type amorphous semiconductor/1 type a-si/11 type &-81/
'W1. It has a structure of metal foil/insulating layer/metal foil, and light is irradiated from the transparent electrode side. Transparent electrode 1hFilTo and 8nO8 especially 8
nO1 is preferred and is obtained by direct vapor deposition onto a P-type amorphous semiconductor. Further, it is more preferable to apply 30 to 500 μm of 8 nOy to the interface between the ET0 and the p-type amorphous conductor. The thickness of the p-type amorphous semiconductor layer of the hook to which light is irradiated is about 30 µm to 30 µm, preferably 50 µm to 200 µm; [the thickness of the a-81 layer is not limited in the present invention, but about 2500 to 100 µm is used. nm a-si
Although the thickness of the layer is not limited, a thickness of about 150 Å to 600 µm is used. Alternative to n-type a-81 with F) K of the present invention! l
A type amorphous semiconductor may also be used. FIG. 3 shows the characteristics of the heterojunction photovoltaic device having the structure ζ゛ used in the present invention and the conventional amorphous silicon p-1-n homojunction. In this figure, (&) is the case of the present invention, and efficiency da=7.
821, short circuit current Jsc = 13.76111/31
”, open circuit voltage Voc = 0.903 volts,
It shows y=62.9-. >) is homozygous, efficiency Ma = i, 7%, Jgc = 11.02xrA
//cs*, Voc= 0-801VO1t#, 1
FIPx54.7-. The effect of the present invention is that the short circuit current 7
Particularly remarkable effects are seen on #C and open circuit voltage VocjC〇 Another typical structure is transparent electrode/n-type amorphous rare semiconductor/i 'IJ&-
81/p-type ali/electrode/extreme jl/metal foil structure,
Light is irradiated from the transparent electrode side. - nJ on the side irradiated with light
The thickness of the amorphous semiconductor is about 3OA to 300μ, preferably Fisom to 200μ, and the thickness of the iga-81 layer is not limited, but is usually about 2,500μ to 10,000μ. Although not specified, approximately 150 μm to 600 μm is used. Also, this p type a
(instead of -81)K The p-type amorphous semiconductor of the present invention may be used.The material and vapor deposition method for the transparent electrode are the same as before.The substrate is explained below: Metal foil IFiA)h −1=
A foil made of metal such as copper, iron, nickel, or stainless steel, with a thickness of 54 m to 2 mm, preferably F150 to 1-10 mm, is used. The insulating layer 2d has a layered structure of two or more layers, and includes a layer 2a made of resin and a layer 2b made of an inorganic substance or an organic metal compound, and the thickness of the layer 2a is 1000 μm to 10100 μm.
J preferably tilaw ~ 2015m, layer 2
13 thickness Ff 100A ~ 5pm preferably 500
1 to l trend. Layer 21ILVCFi A heat-resistant resin is used, but the electrical conductivity is about 10-' (Ω・1)
-1 or less is better, especially polyimide, polyand,
Preference is given to homopoly-1-, copoly-1- or blend resins of polyamideimide, polyhydantoin, polyvaraponic acid, poly-lxylylene, silicone or cyclized polybutadiene, which are applied to the surface of the metal foil 1 in a conventional manner and create an exchange. For example, these resins or #i precursors are dissolved in a solvent to form a face, and then applied by spraying, dipping, coating, or marking #JK onto gold 1491, and then heated with ion bombardment to reduce the ultraviolet %/
&I-s r@s It may be dried and cured by irradiation with electron beam etc. Layer 2bti Inorganic or organic metal compound is used, but if the electrical conductivity is 10"" (Ω・1-1 or less) Things are good (K B1Ox, 〒10X
, A/, O, etc., amorphous or crystalline 81(x-X)O(X), 81(1-y
)My, 81(x-X-7n0(□)N(y), etc. or hydrogen halides thereof, etc. are preferable, and the 7-morph ask9s y obtained by medium sputtering with glow emission of silane or silane heptadide is preferable. (g-81) is also good.In particular, when the solar cell of the present invention is incorporated into an electronic device as a battery that operates under fluorescent light, a large current flows when it is irradiated with strong light such as 1100 mW%. Therefore, a circuit is required for maintenance, but if a material such as A-81, which has high electrical conductivity when irradiated with light, is used as the insulating film of the present invention, the electrical conductivity is small under the fluorescent value. Although there is little leakage, when exposed to strong light such as outdoor light, the electrical conductivity increases and photocurrent leaks, which is preferable because it acts as a protection circuit.

層2bは熱CVD 、酸化、電子ビーム蒸着、スノ(ツ
タ、グロー放電分解等で得ることができる0又有機金属
化合物の場合は、硅素化合物、有機チタネーF化合物、
有機スズ化合物、有機ジルコニウム化合物が有効である
が、これらの化合物及びこれらを加水分解して得られる
プレポリマーは、単独で又Fi混合物として必!!に応
じて溶剤に溶解され、層2aを有する金属箔上にスプレ
ー、ディッピング、コーティング等により塗布された彼
、乾燥・硬化され被膜を形成する。又必要に応じて層2
1と層2bとの間に別種の素材からなる中間層を設ける
こともできる。
The layer 2b is made of an organic metal compound that can be obtained by thermal CVD, oxidation, electron beam evaporation, snow (ivy, glow discharge decomposition, etc.), such as a silicon compound, an organic titanium F compound,
Organic tin compounds and organic zirconium compounds are effective, but these compounds and the prepolymers obtained by hydrolyzing them are indispensable alone or as a Fi mixture! ! It is dissolved in a solvent and applied by spraying, dipping, coating, etc. onto the metal foil having the layer 2a, and is dried and hardened to form a film. Also, if necessary, layer 2
An intermediate layer made of a different type of material can also be provided between layer 1 and layer 2b.

従来絶縁層2としては、樹脂・無機物或いは有機金属化
合物めj柚のみをlNm塗り又は多層塗りして用いてい
たが、轡脂のみの動脈層の場合は、その上に形成された
薄膜光起電力素子の光起電力特性が着しく悪い。これは
電子の形成中に樹脂層からの脱ガスがあシ、これが素子
物性に悪影響を及はすからであシ、又形成された素子の
内部応力により絶縁層と素子との界面で、はく離が生ビ
たり、素子の内部にクラックが生じるからである。さら
に樹脂層と素子との熱膨張係数の相違によシ光起電力特
性の大きな経時変化が避けられなかった。
Conventionally, as the insulating layer 2, resin, inorganic substances, or organic metal compounds were used by applying 1Nm coating or multi-layer coating. The photovoltaic characteristics of the power device are seriously poor. This is because degassing from the resin layer occurs during the formation of electrons, which adversely affects the physical properties of the device.Also, due to the internal stress of the formed device, delamination occurs at the interface between the insulating layer and the device. This is because the material becomes wet and cracks occur inside the device. Furthermore, due to the difference in thermal expansion coefficient between the resin layer and the element, large changes in photovoltaic properties over time were unavoidable.

一方、無機物や有機金属化合物のみ必絶縁層の場合は、
可撓性を維持するためVC#i厚みを1声程度以下に抑
える必要が1、この程度の厚みでは、金属箔上に完全な
絶縁層を形成させることは困難である。(形成できたと
して本絶縁層の表面は金属箔の表面状態を映して一般に
表面粗度が大で、薄膜光起電力素子を形成させるのに適
した平滑度になっていなかった。本発明によれば絶縁層
に関するこれらの欠点が大幅に改善され、層2aKより
金属箔上に完全な絶縁層が形成でき同時に表面粗度が金
属箔のそれの数分の1に数少さに、又、層2bがあるた
め、薄膜光起電力素子に対する樹脂の影響が大いに緩和
され、素子の性能及び信頼性が飛細的に増大するもので
ある。
On the other hand, if only inorganic materials or organometallic compounds are required as an insulating layer,
In order to maintain flexibility, it is necessary to suppress the thickness of VC#i to about one tone or less1, and with this thickness, it is difficult to form a complete insulating layer on the metal foil. (Even if it could be formed, the surface of the insulating layer generally had a high surface roughness, mirroring the surface condition of the metal foil, and did not have a smoothness suitable for forming a thin film photovoltaic element.) According to Layer 2aK, these drawbacks regarding the insulating layer are greatly improved, and a complete insulating layer can be formed on the metal foil, and at the same time, the surface roughness is reduced to a fraction of that of the metal foil. Due to the presence of layer 2b, the influence of the resin on the thin film photovoltaic device is greatly alleviated, and the performance and reliability of the device are greatly increased.

絶縁層2の形成の一例を次に示す0金属箔としては厚み
0.1mの−u@304シートを用いた。層2aの衛脂
としては、ボリア建ド酸のジメチルア−k)アミド溶液
(固形&#l1iL15チ)を用い、クリアランス35
0μmのバーコーターを使用して上記金属分で後硬化さ
せポリイミドからなる被膜を形成させた。これを真空蒸
着機にセットし、金属箔温度を約300℃とし、真空溶
融シリカを蒸発源として電子ビーム蒸着を行ってB1O
x (x:2)の層21)を形成させた0層2aの厚み
は約20μm2層2bの厚みは約3000ムであった。
An example of the formation of the insulating layer 2 will be shown below. As the metal foil, a -u@304 sheet with a thickness of 0.1 m was used. As the sanitizing agent for layer 2a, a dimethylalk)amide solution of boria-containing acid (solid &#l1iL15) was used, and the clearance was 35%.
A 0 μm bar coater was used to post-cure with the above metal component to form a polyimide film. This was set in a vacuum evaporation machine, the metal foil temperature was set to about 300°C, and electron beam evaporation was performed using vacuum fused silica as an evaporation source.
The thickness of the 0 layer 2a in which the x (x:2) layer 21) was formed was about 20 μm, and the thickness of the 2 layer 2b was about 3000 μm.

得られた基板は充分に可撓性を有しており、実用的な範
囲内で変形させても絶縁層2ははく離、クラック等の非
可逆的な変化を生じなかった。この基板上に下部電極と
し“   0 て5us304をスパッタ法によシ約4000ム堆積さ
せ、さらにグロー放電分解法によJ) p 、 1−a
−81/n−a−810光起電力素子を堆積させ、さら
に電子ビーム蒸着法により工TOの透明を極を約100
0ム堆積させて可撓性薄膜光起電力装置を作成した。こ
の装置のム舅1 (100aW/cI?)下での性能は
Js e = 14.511−” 。
The obtained substrate had sufficient flexibility, and even when deformed within a practical range, the insulating layer 2 did not undergo irreversible changes such as peeling or cracking. Approximately 4000 μm of 5us304 was deposited on this substrate as a lower electrode by sputtering, and further by glow discharge decomposition method.
-81/n-a-810 photovoltaic elements were deposited, and the transparent TO was further made about 100% by electron beam evaporation.
A flexible thin film photovoltaic device was fabricated by depositing 0 μm. The performance of this device under 100aW/cI? is Js e = 14.511-''.

Voa=0.897.F?=609G 、 $=7.7
41Gであった。
Voa=0.897. F? =609G, $=7.7
It was 41G.

第4図は本発明実施例としての光起電力装置1を示し、
11は金属箔、12け絶縁族で13.14.15Fi該
絶縁基板上に膜状に形成された第11第2、@3の発電
区域である。
FIG. 4 shows a photovoltaic device 1 as an embodiment of the present invention,
Reference numeral 11 denotes power generation areas 11, 2, and 3 formed of metal foil and 12 insulating group 13.14.15Fi in the form of a film on the insulating substrate.

皺発電区域の各々は本発明のホモ接合層けへテロ接合層
16と該層を挾んで対向する第1電極17及び第2電極
18から構成されている。ホモ接合又はへテロ接合層1
6は図示していないが例えば第1図0)の構造と同様に
基板側から順次堆積されたp型場、ノンドープ層(1層
)及びn型層のホモ接合又はへテロ接合層からなり、斯
るホモ接合又はヘテ四接合層16Fi第1〜第3の発電
区域に連続して延びている〇 第1電極17はn型層をオーミック接触する金属又は散
化錫、酸化インジウム、工To(In、03+x8n0
2 。
Each of the wrinkled power generation areas is composed of a homojunction layer or a heterojunction layer 16 of the present invention, and a first electrode 17 and a second electrode 18 facing each other with the layer sandwiched therebetween. Homojunction or heterojunction layer 1
Although not shown, 6 consists of a homojunction or heterojunction layer of a p-type layer, a non-doped layer (one layer), and an n-type layer, which are deposited sequentially from the substrate side, similar to the structure shown in FIG. 1 (0), for example. Such a homojunction or heterojunction layer 16 Fi continuously extends to the first to third power generation areas. The first electrode 17 is made of metal, tin dichloride, indium oxide, To( In, 03+x8n0
2.

xlO−1)などで構成することができるが、Iテロの
上に50〜500ムの8no、をつけたものが%に好ま
しい。第2電極18は透明な酸化錫工”!0$ pエテ
0又#1−Oto上に1TOをつけ九電極などで構成さ
れる0i111〜第3発電区域13〜ISの夫々の第1
電極17及び第2111&18t;i基1IjL12上
において夫々の発電区域の外へ延びる延長部19及び加
を有し、第1発電区域13の第2を極18の延長部加と
第2発電区域14の第1寛極17の延長s19とが、又
第2発電区域14の第2を極18の延長部加と第3発電
区域15の第1電&17の延長部19とが夫々帛に1畳
して電気的に接続されている。又第1発電区域13の第
1電他17の延長s19には第2を極18と同材料から
なる接続部21が重畳被着されている。なお21はなく
てもよい。
xlO-1), etc., but it is preferable to add 8no of 50 to 500m above I tel. The second electrode 18 is made of transparent tin oxide.
Electrodes 17 and 2111 &18t; The extension s19 of the first pole 17, the extension part s19 of the second pole 18 of the second power generation area 14, and the extension part 19 of the first pole &17 of the third power generation area 15 are each 1 tatami in length. electrically connected. Further, a connecting portion 21 made of the same material as the second pole 18 is superimposed on the extension s19 of the first pole 17 of the first power generation area 13. Note that 21 may be omitted.

上記装置の製造方法を簡単にM51.明すると、その第
1工程で基板(11+12)上KL長部19を含んだ第
1t極17の各々が選択エツチング手法又は選択スパッ
タ又は蒸着付着手法により形成され、第2工程で第1〜
第3発電区域に連続してホモ又はへテロ接合層16が形
成される。
The manufacturing method of the above device will be briefly described with reference to M51. Specifically, in the first step, each of the first t-poles 17 including the KL long portions 19 on the substrate (11+12) is formed by selective etching, selective sputtering, or vapor deposition, and in the second step, the first to
A homo- or heterojunction layer 16 is formed continuously in the third power generation area.

このとき、該層は上記延長s19 、20に存在しては
ならないので、基板7上全面に上記ホモ又はへテロ接合
層を形成した後、選択エツチング手法によシネ要部を除
去するか、あるいは不要部を榎うマスクを用いることK
より所望部のみに上記ホモ又はへテロ接合層が形成され
る。続く最終工程において延長部20を含む第2電極1
8及び接続部21が選択スパッタ又は志木手法などによ
り形成される。
At this time, the layer must not exist in the extensions s19 and 20, so after forming the homo- or heterojunction layer on the entire surface of the substrate 7, the essential portions of the film are removed by selective etching, or Use a mask that covers unnecessary parts
As a result, the homo- or hetero-junction layer is formed only in desired areas. In the subsequent final step, the second electrode 1 including the extension part 20
8 and the connecting portion 21 are formed by selective sputtering or the Shiki method.

本実施例装置において、第2電極18を介して光がホモ
又はへテロ接合層16に入ると、第1〜第゛3発電区域
13〜15の夫−一おいて第1図の場合と同様に起電圧
が生じ、各区域の第11第2電極17.18はその延長
部において交互に接続されているので各区域の起電圧は
直列的に相加され、第1発電区域13に連なる接続部2
1を上極、第3発電区域15の第2を極18に連なる延
長部加を一極として両極の関に上記の如く相加された電
圧が発生する0又上記装置において、各発電区域の隣接
間隔が小さいと、l1iIシ合う区域の第1電極17ど
うし、あるいは第211極18どうしの間で直接電流が
流れる現象、hち麹れ電流の発生が認められるがホモ又
はへテロ接合層16の光照射時の抵抗値が数〜数+MO
であることを考慮すると、上記瞬接間隔を1層鳳以上に
設定することによシ、上記漏れ電流の影響は実質的に問
題とならない。必要によジホモ又はへテロ接合光起電力
素子層16を各発電区域に分離して形成され、裏面電極
と隣接する受光側電極とを直列に接続してもよい0又実
用に供する場合に#′i第2電極側から密着包囲する透
明な高分子絶縁膜又は、810g 、 a−810、a
−81N 、 a−81ON等の透明な絶縁膜を設けて
保護するのがよい。
In the device of this embodiment, when light enters the homo- or hetero-junction layer 16 via the second electrode 18, the first to third power generation areas 13 to 15 are similar to the case of FIG. Since the eleventh and second electrodes 17 and 18 of each zone are connected alternately at their extensions, the electromotive force of each zone is added in series, and the connection connected to the first power generation zone 13 is Part 2
1 is the upper pole, and the second of the third power generation section 15 is the extension part connected to the pole 18, and the voltage added as described above is generated between the two poles. If the adjacent spacing is small, a phenomenon in which current flows directly between the first electrodes 17 or between the 211th electrodes 18 in the areas where they meet, and the generation of a koji current is observed, but the homo or heterojunction layer 16 The resistance value when irradiated with light is several to several + MO
Considering this, by setting the instantaneous connection interval to one layer or more, the influence of the leakage current does not substantially pose a problem. If necessary, the dihomo- or heterojunction photovoltaic element layer 16 may be formed separately into each power generation area, and the back electrode and the adjacent light-receiving side electrode may be connected in series. 'i Transparent polymer insulating film tightly surrounding from the second electrode side or 810g, a-810, a
It is preferable to provide a transparent insulating film such as -81N or a-81ON for protection.

以上の説明よシ明らかな如く、本発明の構造によれば、
ホ=−,XFiへテロ接合光起電力素子を用い、−一基
板上にて複数の発電区域を直列接続し九ものであって、
可撓性で小型にしてかつ任意の起電圧を発、生する装置
が得られ、従来のガラス基板と同じ方法で作る事ができ
るのは金属箔を絶縁した基板を用いたが故に実現された
ものであり、その製造に際しても第1図に示す従来の製
造工程とはとんど変るところなく簡単な膜形成1根のみ
で製造することができ、讐産的にも極めて後れたもので
ある。
As is clear from the above explanation, according to the structure of the present invention,
Using a XFi heterojunction photovoltaic device, a plurality of power generation areas are connected in series on one substrate,
A device that is flexible, compact, and capable of generating any electromotive force was obtained, and the fact that it could be made using the same method as conventional glass substrates was made possible by using a substrate insulated with metal foil. The manufacturing process is almost the same as the conventional manufacturing process shown in Figure 1, and can be manufactured with only one step of simple film formation, and is extremely backward in terms of manufacturing. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ti、P層側から光を照射するタイプの光
起電力素子を示す構造図であって、図中1は金属箔、2
#i絶縁層、2a#i樹脂からなる層、2b#i無機物
又は有機金属化合物からなる層、3Fi下部電極、4#
in型アモルファス半導体、5Fii型a−81,5は
p型アモルファス牛導体(例えばp型層−81C:H)
、7は透明電極である。同図(b)Fin層側から光を
照射するタイプを示す構造図で、7け透明電極、4If
in型アモルファス半導体、5/fii型a−81,6
はp型アモルファス半導体、3Fi下部電極又は絶縁膜
、l#i金鵬箔である。第2図は本発明に係るへテロp
−1−n1I合光起電力素子のエネルギーバンドプロフ
ァイルである。第3図は本発明に用い九へテロ接合光起
電力素子(&)と従来のa−Eii p−1−nホモ接
合光起電力素子(ロ)のムM −1(100mW/as
s” )の電流電圧特性を示す図である。第4図(4)
は本発明実施例装置を示す側面図、−俤)及び((3)
は夫々間(4)KおけるB−B及びC−C断面図である
。 特許出朧人 鐘淵化学工業株式会社 代理人弁理士内田敏彦 ゝ−丁−′ 第2図 vn 第3図 出力電圧(Volt) 第4図 (A) (B) 17   17  17
FIG. 1(a) is a structural diagram showing a photovoltaic element of the type that irradiates light from the P layer side, in which 1 is a metal foil, 2
#i insulating layer, 2a#i layer made of resin, 2b#i layer made of inorganic or organometallic compound, 3Fi lower electrode, 4#
In-type amorphous semiconductor, 5Fii type a-81,5 is p-type amorphous conductor (e.g. p-type layer-81C:H)
, 7 are transparent electrodes. Figure (b) is a structural diagram showing a type that irradiates light from the Fin layer side, with 7 transparent electrodes, 4If
In-type amorphous semiconductor, 5/fii type a-81,6
are p-type amorphous semiconductor, 3Fi lower electrode or insulating film, and l#i gold foil. Figure 2 shows the heterop according to the present invention.
It is an energy band profile of a -1-n1I combined photovoltaic element. Fig. 3 shows the difference between the 9 heterojunction photovoltaic device (&) used in the present invention and the conventional a-Eii p-1-n homojunction photovoltaic device (b).
Fig. 4 (4) is a diagram showing the current-voltage characteristics of
are side views showing the device according to the embodiment of the present invention;
These are BB and CC sectional views at the interval (4)K, respectively. Patent originator: Toshihiko Uchida, Patent Attorney, Kanebuchi Chemical Industry Co., Ltd. Fig. 2 vn Fig. 3 Output voltage (Volt) Fig. 4 (A) (B) 17 17 17

Claims (1)

【特許請求の範囲】 l 金属箔上に電気絶縁性層を設けた可撓性基板上に、
主としてアモルファス半導体よりなる光起電力素子を形
成させ友薄膜光起電力装置において、骸電気絶縁性層が
2層以上の層構造で纏って金属箔に接する部分が耐熱性
を有する樹脂からなる層であ夛、光起電力素子に接する
個が無機物又は有機金属化合物か、らなる層であること
を%黴とする可撓性薄膜光起電力装置02 前記光起電
力素子がp−1−n接合素子であることを特徴とする特
許請求の範囲第1項記載の可撓性薄膜光起電力装置0 3 前記p−1−n接合素子が、該素子のp又社nfi
の少くとも光照射する側の半導体の光学的バンドギャッ
プ]!g、optが1.85・7以上であ)、かつ20
℃における電気伝導度が約104(Ω1)−1以上であ
り、かつp−1−n接合の拡散電位が約1.1マ0Xt
−以上であって、1層が真性アモルファスシリコンであ
るホモ又はへテロ接合光起電力素子であることを特徴と
する特許請求の範囲第2項記載の可撓性薄膜光起電力装
置。 4 前記基板の電気絶縁性層の各階が、約10”(Ω・
ear)−”以下の電気伝導度を有する材料からなるこ
と、を特徴とする%iFF趙求の、範囲一1項乃至第3
項記載の可読性薄膜光起電力装fl。 5 前配電気絶縁性層に用いる樹脂、がポリイミド。 ポリアンド、ボリアξトイミド、ポリヒダントイン、ポ
リバラパニック酸、ポリp−キシリレン。 シリコーン又は環化ポリブタジェンの少なくともm−を
含むことを特徴とする特許請求の範囲第4項に記載、の
可撓性薄膜光起電力装置。 6 前配電気絶縁性屑に用いる無機質が、′r1億。 81Qx 、 Autos又はアモルファス若しく蝶結
品性の81(i−2)O(予)e81(墓?)町ア) 
、 81(x−イ)待又はa−社から選ばれることを特
徴とする特許請求の範囲第4項及び第5項に記載の可撓
性薄換光起電力装置〇 7 前配電気絶縁性層の厚みが約1oooムから100
μ鳳である事を特徴とする特許請求の範囲第4乃至第6
墳に記載の可撓性薄膜光起電力装置。 8 前記可撓性基板上に1個以上の発電区域が形成され
、各区域は前記光起電力素子の層と、光照射で発生した
電子及び/又は正孔を集める集電手段とを含み、上記各
区域の集電手段は各区域における光起電力が直列関係に
なるように互いに電気的に接続されてなることを特徴と
する特許請求の範囲第1項乃至第7項に記載の可撓性薄
膜光起電力装置0 9 前記光起電力素子の層が前記発電区域の各々に共通
に連っている事を特徴とする特許請求の範囲第8項に記
載の可撓性薄膜光起電力装置。 lO前記光起電力素子の層が前記各発電区域上に分離し
て形成され裏面電極と隣接する受光側電極が直列に接続
される事を特徴とする特許請求の範囲第8項に記載の可
撓性薄膜光起電力装置。 11  前記各発電区域の集電手段相互間の電気的接続
は上記基板上にてなされている事を特徴とする特許請求
の範囲第8項乃至第1O項に記載の可撓性薄膜光起電力
装置。 12  前記集電手段の要素である第1電極、ホモ又は
へテロ接合光起電力素子の集電手段の他の要素である第
2電極の形成後に該第211檜儒から密着包囲する高分
子絶に膜を設けである事を特徴とする特許請求の範囲第
8項乃至第11項に記載の可撓性薄膜光起電力装置。 13  前記光照射によって発生した電子及び/又は正
孔の集電手段は、少くとも光照射側が透明の電極である
事を特徴とする特許請求の範囲第8項乃至第12項に記
載の可撓性薄膜光起電力装置O 14前記透明電極が、工TO若しく Fi8nO,、又
は工TO及び鉄工TOJホモ又はへテロ接合光起電力素
子の層との界面に約50〜500ムの8n08をはさん
だものであることを特徴とする特許請求の範囲第13項
に記載の可撓性薄膜光起電力装置。 15  前記光起電力装置において、電気絶縁性層の上
に設ける電極が、ムl、ステンレス、モリブデン。 pt、ムU、ムg、l1liの少なくと4一種以上から
表ることを特徴とする特許請求の範囲第8項乃至第14
項に記載の可撓性薄膜光起電力装置。 16  前配可柳性薄膜光起電力装置が、主として室内
で使用される携帯可能な小型電子装置の電源であること
を特徴とする特許−求の範囲第1乃至第15項に記載の
可撓性薄膜光起電力装置。
[Claims] l On a flexible substrate having an electrically insulating layer on a metal foil,
In a thin-film photovoltaic device in which a photovoltaic element mainly made of an amorphous semiconductor is formed, the electrically insulating layer is wrapped in a layered structure of two or more layers, and the part in contact with the metal foil is a layer made of a heat-resistant resin. A flexible thin film photovoltaic device 02 in which the layer in contact with the photovoltaic element is made of an inorganic substance or an organometallic compound.The photovoltaic element is a p-1-n junction. The flexible thin film photovoltaic device according to claim 1, wherein the p-1-n junction element is a flexible thin film photovoltaic device according to claim 1.
At least the optical bandgap of the semiconductor on the side that is irradiated with light]! g, opt is 1.85.7 or higher), and 20
The electrical conductivity at °C is about 104 (Ω1)-1 or more, and the diffusion potential of the p-1-n junction is about 1.1 m
- The flexible thin film photovoltaic device according to claim 2, characterized in that it is a homo- or heterojunction photovoltaic device in which one layer is made of intrinsic amorphous silicon. 4 Each floor of the electrically insulating layer of the substrate has a thickness of about 10" (Ω・
range 1 to 3 of %iFF Zhao Qi characterized by being made of a material having an electrical conductivity of
The readable thin film photovoltaic device described in Section 1. 5 The resin used for the front electrical insulating layer is polyimide. polyand, boria ξ toimide, polyhydantoin, polybalaponic acid, polyp-xylylene. 5. A flexible thin film photovoltaic device according to claim 4, characterized in that it comprises at least m- of silicone or cyclized polybutadiene. 6. The amount of inorganic material used in the electrical insulating waste for the front panel is 100 million yen. 81Qx, Autos or amorphous or spliced 81(i-2)O(pre)e81(grave?)choa)
, 81(x-i) or A-Company 〇7 Front electrical insulation Layer thickness is about 100mm to 100mm
Claims 4 to 6 are characterized in that they are μ-ho.
A flexible thin film photovoltaic device described on the tomb. 8. One or more power generation areas are formed on the flexible substrate, each area including a layer of the photovoltaic element and a current collection means for collecting electrons and/or holes generated by light irradiation, The flexible device according to any one of claims 1 to 7, wherein the current collecting means in each area are electrically connected to each other so that the photovoltaic force in each area is in a series relationship. Flexible thin film photovoltaic device 09 The flexible thin film photovoltaic device according to claim 8, characterized in that the layers of the photovoltaic elements are commonly connected to each of the power generation areas. Device. 10. The photovoltaic device according to claim 8, wherein the layer of the photovoltaic element is formed separately on each of the power generation areas, and the back electrode and the adjacent light-receiving side electrode are connected in series. Flexible thin film photovoltaic device. 11. The flexible thin film photovoltaic device according to claims 8 to 10, characterized in that the electrical connection between the current collecting means in each of the power generation areas is made on the substrate. Device. 12 After forming the first electrode, which is an element of the current collecting means, and the second electrode, which is another element of the current collecting means of the homo- or heterojunction photovoltaic element, A flexible thin film photovoltaic device according to claims 8 to 11, characterized in that a film is provided on the flexible thin film photovoltaic device. 13. The flexible device according to claims 8 to 12, characterized in that the current collecting means for electrons and/or holes generated by the light irradiation is an electrode that is transparent at least on the light irradiation side. 14 The transparent electrode has about 50 to 500 μm of 8n08 at the interface with the layer of TETO or Fi8nO, or TETO and TETOJ homo- or heterojunction photovoltaic device. 14. The flexible thin-film photovoltaic device according to claim 13, wherein the flexible thin-film photovoltaic device is made of a sandwich. 15. In the photovoltaic device, the electrode provided on the electrically insulating layer is made of aluminum, stainless steel, or molybdenum. Claims 8 to 14 are characterized in that they are represented by at least four types of pt, MuU, Mug, and l1li.
The flexible thin film photovoltaic device described in Section 1. 16. The flexible thin film photovoltaic device according to claims 1 to 15 of the patent-claimed scope, characterized in that the front-loadable thin film photovoltaic device is a power source for a portable small electronic device mainly used indoors. thin film photovoltaic device.
JP57060109A 1981-11-04 1982-04-09 Flexible thin film photovoltaic apparatus Granted JPS58176977A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP57060109A JPS58176977A (en) 1982-04-09 1982-04-09 Flexible thin film photovoltaic apparatus
DE3280455T DE3280455T3 (en) 1981-11-04 1982-11-03 Flexible photovoltaic device.
DE8282110122T DE3280293D1 (en) 1981-11-04 1982-11-03 BENDING PHOTOVOLTAIC INTERIOR.
EP89111929A EP0341756B2 (en) 1981-11-04 1982-11-03 Flexible photovoltaic device
EP82110122A EP0078541B1 (en) 1981-11-04 1982-11-03 Flexible photovoltaic device
US06/439,627 US4612409A (en) 1981-11-04 1982-11-04 Flexible photovoltaic device
US06/835,717 US4773942A (en) 1981-11-04 1986-03-03 Flexible photovoltaic device
US07/202,608 US4875943A (en) 1981-11-04 1988-06-06 Flexible photovoltaic device
US07/652,492 US5127964A (en) 1981-11-04 1991-02-08 Flexible photovoltaic device
US08/192,304 US5419781A (en) 1981-11-04 1994-02-04 Flexible photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060109A JPS58176977A (en) 1982-04-09 1982-04-09 Flexible thin film photovoltaic apparatus

Publications (2)

Publication Number Publication Date
JPS58176977A true JPS58176977A (en) 1983-10-17
JPH0481350B2 JPH0481350B2 (en) 1992-12-22

Family

ID=13132609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060109A Granted JPS58176977A (en) 1981-11-04 1982-04-09 Flexible thin film photovoltaic apparatus

Country Status (1)

Country Link
JP (1) JPS58176977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135748U (en) * 1988-03-10 1989-09-18
WO1991017572A1 (en) * 1990-05-07 1991-11-14 Canon Kabushiki Kaisha Solar cell
JP2805394B2 (en) * 1990-05-07 1998-09-30 キヤノン株式会社 Solar cell
JP2001185747A (en) * 1999-12-24 2001-07-06 Nisshin Steel Co Ltd Insulation board superior in heat resistance for solar cells and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135748U (en) * 1988-03-10 1989-09-18
WO1991017572A1 (en) * 1990-05-07 1991-11-14 Canon Kabushiki Kaisha Solar cell
JP2805394B2 (en) * 1990-05-07 1998-09-30 キヤノン株式会社 Solar cell
JP2001185747A (en) * 1999-12-24 2001-07-06 Nisshin Steel Co Ltd Insulation board superior in heat resistance for solar cells and its manufacturing method

Also Published As

Publication number Publication date
JPH0481350B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
US4773942A (en) Flexible photovoltaic device
JPH0563953B2 (en)
US4226643A (en) Method of enhancing the electronic properties of an undoped and/or N-type hydrogenated amorphous silicon film
JPS58176977A (en) Flexible thin film photovoltaic apparatus
JPS61116883A (en) Transparent electrode with metal wiring
JPS5892281A (en) Thin film solar cell
JPH0122991B2 (en)
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
JP2550888B2 (en) Solar cell
JPH04118975A (en) Photovoltaic device and manufacture thereof
JPS6010788A (en) Substrate for solar cell
JPS58115872A (en) Flexible photoelectromotive force generating device
EP0341756B2 (en) Flexible photovoltaic device
JPS59144178A (en) Photoelectric converter
JP2975751B2 (en) Photovoltaic device
JPH0137860B2 (en)
JPS5975679A (en) Photoelectromotive force generating device
JPH06188443A (en) Flexible photovoltaic device
JP4220014B2 (en) Method for forming thin film solar cell
JPH0463551B2 (en)
JPS6317343B2 (en)
JPS5997514A (en) Manufacture of amorphous silicon film
JPH077843B2 (en) Amorphous multi-element semiconductor device
JPH0597413A (en) Amorphous multicomponent semiconductor and device using the same
KR880002130B1 (en) Ito/n-si solar cell and its manufacturing method using electric heater