JPS59144178A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPS59144178A
JPS59144178A JP58018620A JP1862083A JPS59144178A JP S59144178 A JPS59144178 A JP S59144178A JP 58018620 A JP58018620 A JP 58018620A JP 1862083 A JP1862083 A JP 1862083A JP S59144178 A JPS59144178 A JP S59144178A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor
present
reliability
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58018620A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58018620A priority Critical patent/JPS59144178A/en
Publication of JPS59144178A publication Critical patent/JPS59144178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the reliability of a photoelectric converter which is formed of a non-single crystal semiconductor having a PIN junction by forming an electrode closely contacted with the semiconductor as a light transmission conductive film and forming a back surface protective article having a reflective surface through a transparent insulator on the electrode. CONSTITUTION:An oxidized indium including oxidized tin and an oxidized tin layer are formed on a light transmission substrate 1 to form a conductive transparent electrode 2, and a non-single crystal semiconductor 3 having a PIN junction is formed thereon. An oxidized indium layer including oxidized tin is formed in close contact with an N tpe layer of the semiconductor 3 to form a conductive transparent electrode 4. After a filler 7 having light transmission is formed thereon, an aluminum foil 11 and back surface protective article 12 made of tedra are formed. Accordingly, the aluminum is not diffused in the semiconductor even under high temperature test, thereby improving the reliability.

Description

【発明の詳細な説明】 本発明は、非単結晶半導体を用いた光電変換装置であっ
て、特に高効率高信頼性を求めた半導体装置およびその
作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric conversion device using a non-single-crystal semiconductor, and particularly to a semiconductor device that requires high efficiency and high reliability, and a method for manufacturing the same.

この発明は、透光性の第1の絶縁基板と、この基板上の
第1の透光性導電膜踊下単にCTFIという)を有する
第1の電極と、この電極上に光照射により光起電力を発
生させる少なくとも1つの。
The present invention includes a first transparent insulating substrate, a first electrode having a first transparent conductive film (hereinafter simply referred to as CTFI) on the substrate, and a photovoltaic film formed on the electrode by light irradiation. At least one that generates electrical power.

PNまたはPIN接合を有する非単結晶半導体と、該半
導体上第2の透光性導電膜(以下単にCTF2という)
よりなる第2の電極により設けられた光電変換素子(以
下単にPvCまたは素子という)を設けてこれをパネル
化して光電変換装置とした構造を有する。本発明は光電
変換素子の第2の電極(裏面電極ともいう)をCTF2
とすることにより、太陽光等の照射光のうち600n 
m以上の長波長光を第2の電極より後方に放射・せしめ
る電極構造を有する。
A non-single crystal semiconductor having a PN or PIN junction, and a second transparent conductive film on the semiconductor (hereinafter simply referred to as CTF2)
It has a structure in which a photoelectric conversion element (hereinafter simply referred to as PvC or element) provided by a second electrode made of the following is provided, and this is formed into a panel to form a photoelectric conversion device. In the present invention, the second electrode (also referred to as the back electrode) of the photoelectric conversion element is CTF2.
By doing so, 600n of irradiation light such as sunlight
It has an electrode structure that allows long-wavelength light of m or more to be emitted backward from the second electrode.

即ち本発明は、非単結晶導体に密接する第1および第2
の電極がともに金属ではなり、酸化スズ酸化インジュー
ム、酸化インジューム・スズ等の酸化物よりなるCTF
とし、従来より知られた電極を構成する金属一般的には
アルミニュームカく半導体中にマイブレイト(界雷。拡
散)をして150°C以上における高温放置テストにお
ける信頼性の低下をもたらすことを防ぐことを目的とし
・でいる。
That is, the present invention provides first and second
Both electrodes are made of metal and are made of oxides such as indium tin oxide, indium tin oxide, etc.
It has been known that metals constituting electrodes, generally aluminum, are sticky and can diffuse into semiconductors, resulting in a decrease in reliability in high-temperature storage tests at temperatures above 150°C. The purpose is to prevent.

本発明はさらに第1、第2の電極をともにCTFとする
ことにより、複合集積化構造を施すに際しレーザスクラ
イブ法(単にLSという)を採用することかで−き、高
生産性および複合化部における必要面積の減少即ち実効
変換効率の向上をもたらすことができるという他の特徴
を有する。
Furthermore, by using CTF as both the first and second electrodes, it is possible to employ a laser scribing method (simply referred to as LS) when forming a composite integrated structure, thereby achieving high productivity and a composite part. Another feature is that it can reduce the area required for the conversion, ie, improve the effective conversion efficiency.

本発明は第2の電極より外部に放射された長波長光をさ
らに透光性充填物を介して設けられた裏面保護膜の内部
に設けられた反射性表面一般的にはアルミニューム箔に
より反射せしめ、再び第2の電極をへて半導体中に注入
せしめ、さらに光起電力の発止を促すことにより、長波
長光を利用して効率の向上を図っている。
In the present invention, the long-wavelength light emitted to the outside from the second electrode is further reflected by a reflective surface, generally made of aluminum foil, provided inside a back protective film provided through a transparent filling. The long-wavelength light is then used to improve efficiency by injecting it into the semiconductor through the second electrode and further promoting the generation of photovoltaic force.

さらに本発明は、この裏面保護物をフッ素系樹脂例えば
PVF(1弗化ビニール)(商品名をテトラ−ともいう
)を用い、加えてこのPvFを1年取の効果をも併有し
ている。
Furthermore, the present invention uses a fluorine-based resin such as PVF (monovinyl fluoride) (also known as Tetra) as the back protection material, and in addition, this PvF also has the effect of being aged for one year. .

即ち、本発明の光電変換装置は低価格であるとともに耐
高温信頼性および耐湿度信頼性をも有せしめることがで
きる。加えて電極に金属材料を用いないため、複合簗積
イレの際、高温処理工程のLSにおいてスクライブと同
時に異常拡散をしてしまうことがなく、複合集積化にお
いても高信頼性を有することができる。さらに従来より
知られた蒸着マスクまたはスクリーン印刷法でのマスク
をまったく必要としないマスクレス工程法である。LS
をもちいることによりパネル全体に対する複合化に伴う
各素子間の連結部の割合を全体の10%以下一般には5
〜7%にすることができた。パネルレベルでの高効率化
を図ることができるという他の特徴を有することができ
る。
That is, the photoelectric conversion device of the present invention is inexpensive and can also have high temperature resistance reliability and humidity resistance reliability. In addition, since metal materials are not used for the electrodes, there will be no abnormal diffusion at the same time as scribing in the LS of the high-temperature treatment process during composite gauze stacking, and high reliability can be achieved even in composite integration. . Furthermore, it is a maskless process method that does not require any conventional vapor deposition mask or screen printing mask. L.S.
By using this method, the proportion of connection parts between each element due to compounding in the entire panel can be reduced to 10% or less, generally 5.
We were able to reduce it to ~7%. Another feature is that high efficiency can be achieved at the panel level.

従来光電変換装置は第1図にその縦断面図が示されてい
る如く、透光性基板例えばガラス(1)上に透光性導電
膜(2)として約0.’5aの厚さにITO,SnOよ
等を形成せしめ、さらにプラズマ気相法によりPIN接
合、PINPIN・・・PIN接合を形成して非単結晶
半導体(3)を約0.5)t=の厚さに積層する。次に
裏面電極をアルミニュームの金属を真空蒸着法により0
.3〜坏の厚さに形成した。さらにエポキシ樹脂(5)
をコーティングし作製した。
As shown in the vertical cross-sectional view of FIG. 1, a conventional photoelectric conversion device has a translucent conductive film (2) formed on a translucent substrate, such as glass (1), with a translucent conductive film (2) of approximately 0.000 nm. ITO, SnO, etc. are formed to a thickness of '5a, and a PIN junction, PINPIN... Laminate to thickness. Next, the back electrode is made of aluminum using a vacuum evaporation method.
.. It was formed to a thickness of 3 to 10 cm. Furthermore, epoxy resin (5)
was coated and produced.

照射光(10)は太陽光等が用いられる。しかしかかる
従来の構造においては、信頼性の点において十分でない
。その原因を詳しく調べた結果、裏面電極(4)を構成
する金属が半導体(3)と合金を作らず、100’C以
上代表的には150’C:の高温放置テストにおいて半
導体中に異常拡散してしまい、約12〜50時間で0.
シもの深さに混入し、特性例えば変換効率を6%より1
%以下にまで劣化させ、ふたつの電極間が実質的にショ
ートしてしまうことが判明した。
Sunlight or the like is used as the irradiation light (10). However, such a conventional structure is not sufficient in terms of reliability. A detailed investigation into the cause revealed that the metal constituting the back electrode (4) did not form an alloy with the semiconductor (3), and abnormally diffused into the semiconductor during a high temperature storage test of 100'C or higher, typically 150'C. 0.0 in about 12 to 50 hours.
If the conversion efficiency is 6% to 1%,
% or less, resulting in a substantial short circuit between the two electrodes.

このためアモルファスまたはセミアモルファスシリコン
等を主成分として用いる非単結晶半導体においては、こ
の半導体と密接する材料は金属ではなく、金属酸化物ま
たは金属窒化物等の化合物の導体であることが最も重要
であることが判明した。
For this reason, in non-single-crystal semiconductors that use amorphous or semi-amorphous silicon as the main component, it is most important that the material in close contact with the semiconductor is not a metal but a conductor of a compound such as a metal oxide or metal nitride. It turns out that there is something.

本発明はかかる実験事実に基づきなされたものであって
、半導体(3)が一つのPIN接合を有する場合、その
P型半導体には酸化スズを主成分とするCTFを密接し
て電極を構成せしめ、またN型半導体には酸化インジュ
ームまたはITO(酸化スズを10重量%以下含有させ
た酸化インシュ〜ム)を密接せしめ、金属を用いない構
造とせしめたことを、第一の特徴としている。
The present invention has been made based on such experimental facts, and when the semiconductor (3) has one PIN junction, CTF whose main component is tin oxide is closely attached to the P-type semiconductor to form an electrode. The first feature is that indium oxide or ITO (insium oxide containing 10% by weight or less of tin oxide) is closely attached to the N-type semiconductor, resulting in a structure that does not use metal.

第2図は本発明の光電変換装置の縦断面図を示す。FIG. 2 shows a longitudinal cross-sectional view of the photoelectric conversion device of the present invention.

この光電変換装置は同一透光性基板上に複数の素子を複
合集積化するとともに、パネル構造に枠組みして設けた
ものである。
This photoelectric conversion device is a device in which a plurality of elements are integrated on the same light-transmitting substrate and framed in a panel structure.

図面において透光性基板(1)上にITOを1500〜
250.OAの厚さに設け、さらに酸化スズを200〜
5oo2の厚さに設けたCTFI(2)が設けられてい
る。
In the drawing, ITO is placed on the transparent substrate (1) at 1500 ~
250. Provided to the thickness of OA, and further coated with tin oxide of 200~
A CTFI (2) with a thickness of 5oo2 is provided.

さらにPIN接合を有する非単結晶半導体(3)をP型
sac、−、(0< x < 1例えばx =o、s 
>  <xoo71>−I型St (約0.5.xL’
 N型微結晶Si(粒1蚤100〜200λ)の構造に
プラズマ気相法にて作製した。さらにこのN型半導体に
密接したITOを1000〜3000Å例えば2000
 人の厚さにCTF2(4)としてbけた。
Furthermore, the non-single crystal semiconductor (3) having a PIN junction is converted into a P-type sac, -, (0< x < 1 e.g. x = o, s
><xoo71>-I type St (approx. 0.5.xL'
A structure of N-type microcrystalline Si (grains of 100 to 200 λ) was fabricated by a plasma vapor phase method. Furthermore, the ITO layer in close contact with this N-type semiconductor is
CTF 2 (4) was compared to human thickness.

この複合化は基板(1)上の全面にCTFIを形成した
後、LSにより約29gの巾にこのCTFIをスクライ
ブして複数の領域に分離(17) して、さらに(4)
を全面に形成した後、LSにより複数の領域に分離(1
9) したものである。かくすると第1の素子(20)
、第2の素子(21)、第3の素子(22)等に分割さ
れる。そして例えばその連結部は外部連結電極(16)
に連結した第1の外部引出し電極用バット(15)が第
1の素子の第2の電極と連結しこの第1の素子の第1の
電極が(18)にて第2の素子の第2の電極と連結して
直列接続をして設けられた。さらに第一3の素子(22
)の第1の電極は他の外部引出し電極用パ・ノド(15
’)と連結し、外フタ・ 部接続電極(16’) ト升ッている。
This composite is formed by forming CTFI on the entire surface of the substrate (1), then scribing this CTFI into a width of approximately 29 g using LS to separate it into multiple regions (17), and then (4)
After forming on the entire surface, it is separated into multiple regions (1
9) It was done. Thus, the first element (20)
, a second element (21), a third element (22), etc. For example, the connection part is an external connection electrode (16).
A first external lead-out electrode butt (15) connected to the second electrode of the first element is connected to the second electrode of the second element at (18). The electrodes were connected in series. Furthermore, the first third element (22
) is the first electrode of the other external lead electrode (15
), and the outer lid and part connecting electrode (16') are attached.

かくして同一基板(1)上に複数の素子が複合化されて
いる。さらにこの素子はPVB(商品名をシーフレック
スともいわれている)の透光性を有する加熱熔融充填材
(7)  (0,2〜lmm一般には0.5mmの厚さ
)により充填されている。
In this way, a plurality of elements are combined on the same substrate (1). Furthermore, this element is filled with a translucent heated melt filler (7) of PVB (also known as Seaflex) (thickness of 0.2 to 1 mm, generally 0.5 mm).

さらにこの上面には、裏面保護物(8)がテトラ−(1
2)  (30〜50友)とアルミ箔(11)  (約
304の厚さ)により設けられている。このアルミ箔は
耐湿性の向上とともに照射光(10)の素子(20)(
21)  (22)にて吸収しきれずに透過された長波
2ノ 長兄(>600nm )  (10)を反射せしめ再び
素子にもどして光電変換をさせることができる。
Further, on this upper surface, a back protection material (8) is placed on the tetra-(1
2) Provided by aluminum foil (11) (30-50 mm thick) (about 30 mm thick). This aluminum foil has improved moisture resistance and the element (20) of the irradiation light (10) (
21) It is possible to reflect the second long wavelength (>600 nm) (10) that was not completely absorbed and was transmitted in (22) and return it to the element for photoelectric conversion.

さらに第2図において、パネルは外側をアルミ子との間
はブチルゴム(14)  (14’)により充填さり れ、パネル構成がなされている。
Furthermore, in FIG. 2, the outer side of the panel is filled with butyl rubber (14) (14') between the aluminum element and the panel structure.

以上の構造とすることにより工業的に多量生産が可能で
あり、さら−に安価な太陽電池パネルを供給することが
できる。
With the above structure, it is possible to industrially mass-produce the solar cell panel, and furthermore, it is possible to supply inexpensive solar cell panels.

さらに150’Cでの高温信頼性テスト1000時間に
おいても、特性に5%以下の変化しかみられなかった。
Furthermore, even in a 1000 hour high temperature reliability test at 150'C, only a 5% or less change in characteristics was observed.

またサンプル数50のうち不良は0であった。Further, out of 50 samples, there were 0 defects.

さら゛に60’C’ 90%の高温高湿テストにおいて
も、サンプル数30のうち10%以下の特性劣化をする
ものは0%であった。
Furthermore, in a high temperature and high humidity test at 60'C' and 90%, 0% of the 30 samples showed characteristic deterioration of 10% or less.

第2図より明らかなごとく、本発明は裏面電極として金
属を用い、そこでの反射光を利用して高効率化を図るの
ではなく、裏面電極から離間して透過光を反射せしめる
ことにより、裏面金属電極、  が有していたマイグレ
イジョンによる信頼性低下を除き、かつ反射光をも同時
に利用するという高効率化、高信頼性化を促すものであ
る。
As is clear from FIG. 2, the present invention uses a metal as the back electrode and utilizes the reflected light from the metal to improve efficiency. This eliminates the reliability degradation caused by migration of metal electrodes, and simultaneously utilizes reflected light, which promotes higher efficiency and reliability.

加えて図面より明らかなごとく、反射板は各素子に設け
られているのではなく、共通してひとつ(11)がアル
ミニューム消により設けられている点は単に素子より反
射板が離間しているに加えて多量生産を促すことができ
る。
In addition, as is clear from the drawing, the reflector plate is not provided for each element, but one (11) is provided in common by aluminum eraser, simply because the reflector plate is spaced apart from the element. In addition, it can encourage mass production.

第3図は本発明の光電変換装置の製造に関する工程を示
したものである。
FIG. 3 shows the steps involved in manufacturing the photoelectric conversion device of the present invention.

即ち第3図(A)はガラス基板(1)上にCTFI(2
)を電子ヒーム蒸着法、スプレー法またはCVD法によ
り0.15〜0.25/uの厚さに形成した。このCT
FはITO(0,15〜0.25/lA) +SnO,
(200〜500 A )とした。またハロゲン元素を
添加したSnO,であってもよい。
That is, FIG. 3(A) shows a CTFI (2) on a glass substrate (1).
) was formed to a thickness of 0.15 to 0.25/u by electron beam evaporation, spraying, or CVD. This CT
F is ITO (0.15-0.25/lA) +SnO,
(200-500 A). Alternatively, SnO to which a halogen element is added may be used.

さらにこの上にPINまたはPN接合を少なくとも一つ
有する非単結晶半導体をPCVD (プラズマ気相法)
により積層する。一般゛にはP型半導体をシランとメタ
ンとの反応による5ixC1−2(0< x < 1 
 x −〇、8)として約1oo7Iの厚さに形成する
。■型半導体としては水素または弗素が添加された珪素
をシランまたはSiFえのPCVDにより約0.5/1
4の厚さに形成させた。この時この珪素中の酸素を5 
X 10c:以下好ましくば5’10cm’以下とした
。さらにN型半導体を水素にて10〜20倍に希釈され
たシランをI’CVD法によりフォスヒンを混入させ作
製した。すると微結晶化するため、その光吸収特性を少
なくするにとができるに加え、電気伝導度もF > 1
0’ (ncm’)’を得ることができる。このN型珪
素は100〜.200 人の厚さを有し、光がこの領域
で吸収されないように多結晶化することはきわめて重要
である。
Furthermore, a non-single crystal semiconductor having at least one PIN or PN junction is deposited on top of this by PCVD (plasma vapor deposition method).
Laminate by layering. In general, a P-type semiconductor is prepared by reacting silane and methane to form 5ixC1-2 (0< x < 1
x −〇, 8), and is formed to a thickness of about 1oo7I. As a type semiconductor, silicon doped with hydrogen or fluorine is processed by PCVD using silane or SiF to approximately 0.5/1.
It was formed to a thickness of 4. At this time, the oxygen in this silicon is 5
X 10c: preferably 5'10 cm' or less. Further, a silane obtained by diluting an N-type semiconductor 10 to 20 times with hydrogen was mixed with phosphin by the I'CVD method. As a result, it becomes microcrystalline, which not only reduces its light absorption properties but also increases its electrical conductivity to F > 1.
0'(ncm')' can be obtained. This N-type silicon has 100~. It is extremely important to have a thickness of 200 nm and to polycrystallize it so that no light is absorbed in this area.

次にITOを電子ビーム蒸着法またはCVD法により0
.1〜0.ン一般には0.′274の厚さに形成した。
Next, ITO is removed by electron beam evaporation or CVD.
.. 1~0. In general, 0. It was formed to a thickness of '274.

開放電圧を大きくするため、本発明においてはP型半導
体は酸化スズと密接せしめ、またN型半導体は酸化イン
ジュームまたはI’TOと密接せしめた。
In order to increase the open circuit voltage, in the present invention, the P-type semiconductor is brought into close contact with tin oxide, and the N-type semiconductor is brought into close contact with indium oxide or I'TO.

得られなかった。I couldn't get it.

かくして第3図(Δ)を得た。Thus, Figure 3 (Δ) was obtained.

次に第3図(B)に示すごとくにした。PIJち図面に
おいて素子(6)上に加熱溶融性透光性充填祠を配置さ
せた。この充填材としてPVB  (ポリビニールブチ
ラール)を用いた。つまりこのPVBは室温にて表面に
粉末状の重曹が散布されているため、まず水洗しこの重
曹(重炭酸ナトリューム)を除去し、さらに十分に乾燥
させた。これは20〜25°Cにて行った。次にこのP
VBF+tiを素子(6)状に配設した。さらにその上
面にアルミニューム箔が内側にはられたテトラ−(12
)よりなる裏面保護物を配置させた。
Next, the procedure was as shown in FIG. 3(B). In the PIJ drawing, a heat-melting translucent filling hole was placed on the element (6). PVB (polyvinyl butyral) was used as this filler. That is, since powdered baking soda was sprinkled on the surface of this PVB at room temperature, it was first washed with water to remove this baking soda (sodium bicarbonate), and then thoroughly dried. This was done at 20-25°C. Next, this P
VBF+ti was arranged in the form of an element (6). Furthermore, a tetra (12
) was placed to protect the back surface.

かくして第3図(B)を得た。Thus, Figure 3(B) was obtained.

さらにこの後これらをオートクレーブ炉内に設置し、此
のクレープ炉内を真空引きした。するとこの素子とPV
B間、PVBと裏面保護物との間の空気を除去すること
ができた、即ち脱気できた。
Furthermore, these were placed in an autoclave furnace, and the inside of this crepe furnace was evacuated. Then this element and PV
The air between the PVB and the back protector could be removed, that is, the air could be degassed.

この後このクレープ炉内で100〜17σC一般には1
20〜150°Cに加熱し、さらに7〜13気圧/C臀
例えは10気圧/co?の圧力を加えて、この加熱され
た空気をクレープ炉内に充填することで成就した。
After this, in this crepe oven, the temperature is 100~17σC, generally 1
Heat to 20-150°C and further increase the temperature to 7-13 atm/co.For example, 10 atm/co? This was achieved by filling the crepe oven with the heated air under a pressure of .

かくしてPVBは溶融し、全体は一体化して第3図(C
)を得た。
In this way, the PVB is melted and the whole is integrated as shown in Figure 3 (C
) was obtained.

図面において明らかなごとく、素子(6)は照射光側は
ガラス(無機材料)よりなる透光性基板を有し、裏面ば
金属箔とフッ素樹脂にてカバーされ保護されている。
As is clear from the drawing, the element (6) has a transparent substrate made of glass (inorganic material) on the irradiation light side, and is covered and protected with metal foil and fluororesin on the back side.

かかる構造とすることにより、内部に水分等が侵入する
ことがなく、さらに半導体(3)と金属との反応がまっ
たくない理想的な構造を有せしめることができた。
By adopting such a structure, it was possible to have an ideal structure in which moisture and the like do not enter into the interior, and furthermore, there is no reaction between the semiconductor (3) and the metal.

以下に本発明の実施例を加えてさらにその内容を補完す
る。
Examples of the present invention are added below to further supplement the content.

実施例1 第2図は本発明の実施例の紺断面図である。Example 1 FIG. 2 is a dark blue sectional view of an embodiment of the present invention.

図面において、カラス基板は20cm% 60cmをを
している。ひとつの素子は15mm K 20cmを有
しており40段の直列接続構造を有する。
In the drawing, the glass substrate has a width of 20cm% and a width of 60cm. One element has 15 mm K 20 cm and has a 40-stage series connection structure.

変換効率の比較は以下のごとくである。The comparison of conversion efficiency is as follows.

従来例 本発明1 本発明2 本発明3開放電圧(V)
   0.82 0.91  3.2   ”  33
短絡電流(mへ/C謔)13.1 15.2  336
   364曲線因子(%)’  58  65   
 54   ’   53効率(%)6.3 9.0 
  4.84   5.31HTS  (時間)   
3  > 1000   > 1000   > 10
0011U11  (時間)〜200〜200  〜2
00   >1000上記表において従来例は第1図の
構造を有し、且つ面積が3mmx3cm  (1cm’
 )とした場合の構造である。本発明1は第3図(A)
の構造を有し、裏面電極はCTF2としITOにより設
けられた場合でる。あり、面積は3mmx3cm  (
1cn+” )とした場合の特性である。本発明2は第
2図の構造であって、20cm ×60cmの基板に4
0段直列接続させて設け、充填材(7)裏面保護物(8
)が設けられていない場合の特性である。さらに効率は
AM 1  (100mW / cm)での変換効率を
示す。またHTSは150’C大気中での高温放置テス
トにおいて初期値に対し効率が10%以上の変化が発生
するまでの時間をしめす。またIILIMば65°cR
1190%の雰囲気での湿度テストにおいて10%以上
の変化の効率を示すまでの時間を示す。
Conventional example Present invention 1 Present invention 2 Present invention 3 Open circuit voltage (V)
0.82 0.91 3.2 ” 33
Short circuit current (to m/C) 13.1 15.2 336
364 fill factor (%)' 58 65
54' 53 Efficiency (%) 6.3 9.0
4.84 5.31HTS (hours)
3 > 1000 > 1000 > 10
0011U11 (hour) ~200~200 ~2
00 >1000 In the table above, the conventional example has the structure shown in Figure 1 and has an area of 3 mm x 3 cm (1 cm'
). The present invention 1 is shown in FIG. 3 (A).
The back electrode is CTF2 and is made of ITO. Yes, the area is 3mm x 3cm (
1cn+”).The second invention has the structure shown in FIG.
0 stages are connected in series, and the filler (7) and back protection material (8) are connected in series.
) is not provided. Furthermore, the efficiency indicates the conversion efficiency at AM 1 (100 mW/cm). Furthermore, HTS indicates the time until the efficiency changes by 10% or more from the initial value in a high temperature storage test at 150'C in the atmosphere. Also, if IILIM is 65°cR
It shows the time required to show an efficiency change of 10% or more in a humidity test in an atmosphere of 1190%.

以上の結果より明らかなごとく、裏面をCTF2とする
ことにより従来例の6.3%より9%にまで効率を向上
させることができた。ちなみにこのCTF2を105O
Aの厚さとし、さらにその上にアルミニュームを電極と
して形成させる場合は、さらに1%の効率の向上ができ
た。
As is clear from the above results, by using CTF2 on the back side, the efficiency could be improved from 6.3% in the conventional example to 9%. By the way, this CTF2 is 105O
When the thickness was set to A and aluminum was further formed as an electrode on top of that, the efficiency was further improved by 1%.

かくのごとく、不発明の第1および第2の電極をCTF
とすることにより、効率を向上させることができるに加
えてHTSにおいて従来例が3時間しか特性を有せなか
ったのに対して1000時間以上も安定な特性を有する
ことができた。
Thus, the uninvented first and second electrodes are CTFed.
By doing so, in addition to being able to improve efficiency, it was also possible to have stable characteristics for over 1000 hours in HTS, whereas the conventional example had characteristics for only 3 hours.

さらに本発明を第2図に示すごとく複合集積化すると実
効変換効率において4.84%を得ることかでき電圧も
32Vを得ることができた。l1TSにおいても、10
00時間以上を有するがしかしIIUMがやはり約20
0時間とまだ十分ではな゛いことが判明した。
Furthermore, when the present invention was integrated in a composite manner as shown in FIG. 2, an effective conversion efficiency of 4.84% and a voltage of 32V could be obtained. Also in l1TS, 10
00 hours or more, but IIUM is still about 20
It turned out that 0 hours was still not enough.

このため裏面保護物を第2図の< 7 >  (11)
  <12>l     」 として設けると、本発明3に示す如く、実効変換動がで
きた。
For this reason, the back protector is shown in <7> (11) in Figure 2.
<12>l'', an effective conversion operation was achieved as shown in the third aspect of the present invention.

即ち本発明はこれら゛裏面電極での信頼性低下を起こす
反応を防ぎ、かつ裏面電極での反射をアルミニ子−ム箔
により行うことにより、高信頼性高効率の双方を初めて
有せしめることができた。
In other words, the present invention can provide both high reliability and high efficiency for the first time by preventing these reactions that cause reliability deterioration at the back electrode and by using aluminum foil to reflect at the back electrode. Ta.

また本発明の実施例において、従来例が変換効率6.3
%を有していたが、これは他の手段例えばガラス−CT
F界面をテスクチア−化して入射光側の先の反射を少な
くする等により、8〜10%と向上させることができる
場合、同様に実施例1における本発明1.2,3.にお
いても特性の向上を図ることができることはいうまでも
ない。
In addition, in the embodiment of the present invention, the conventional example has a conversion efficiency of 6.3.
%, but this is different from other methods such as glass-CT
If the improvement can be improved to 8 to 10% by making the F interface Tesquetia to reduce the reflection on the incident light side, the present invention 1.2, 3. in Example 1 can be improved as well. It goes without saying that the characteristics can also be improved.

本発明において反射用金属箔のアルミ箔の上面にν以下
の厚さで透光性有機樹脂を予めコートしておき、このア
ルミ箔と外部引出し電極、裏面電極とが万が一導通状態
となることをふせくことは有効である。
In the present invention, the upper surface of the aluminum foil of the reflective metal foil is coated in advance with a translucent organic resin to a thickness of ν or less, to prevent electrical conduction between the aluminum foil, the external lead electrode, and the back electrode. Being depressed is effective.

また本発明においてはひとつのI)IN接合を有する場
合を主として示した。しかしこれにPINPJN・・・
PIN接合と少なくとも一つのPNまたはPIN接合を
させればよく、かかる面から考えると、本発明は光電変
換装置パネルとしてさらに商品化を促進するきわめて重
要な特徴を有していることが判明した。
Further, in the present invention, the case where one I)IN junction is mainly shown. However, this is PINPJN...
It is only necessary to make a PIN junction and at least one PN or PIN junction, and from this point of view, it has been found that the present invention has an extremely important feature that will further promote commercialization as a photoelectric conversion device panel.

加えて例えば40cmX120cmのNEDO規格のパ
ネルを20cmyC60cmを4枚、また20cm X
 40cmを6枚、20cmK20cmを12枚、40
cm K 40cmを3枚と複合化してアルミサツシ等
を枠組みすることが可能である。
In addition, for example, 4 NEDO standard panels of 40cm x 120cm, 4 pieces of 20cm x 60cm, and 20cm x 120cm
6 pieces of 40cm, 12 pieces of 20cmK20cm, 40
It is possible to frame aluminum sash etc. by combining three sheets of cm K 40cm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電変換装置の縦断面図を示す。 第2図は本発明の複合集積化した光電変換装置の縦断面
図を示す。 第3図は本発明の製造工程を示す。 特許出願人
FIG. 1 shows a longitudinal cross-sectional view of a conventional photoelectric conversion device. FIG. 2 shows a longitudinal cross-sectional view of the composite integrated photoelectric conversion device of the present invention. FIG. 3 shows the manufacturing process of the present invention. patent applicant

Claims (1)

【特許請求の範囲】 ■、透光性の第1の絶縁基板と、該基板上の透光性導電
膜を有する第1の電極と、該電極上の光照射により光起
電力を発生する少なくともひとつのPNまたはPIN接
合を有する非単結晶半導体と、該半導体上の透光性導電
膜よりなる第2の電極と、該電極より離間して設けられ
た前記電極側に反射性表面ををする裏面保護物と、該保
護物と前記第2の電極間に充壕された透光性絶縁充填物
よりなることを特徴とする光電変換装置。 2、特許請求の範囲第1項において、反射性表面を有す
る裏面保護物はアルミニューム基とフッ素系保護物より
なることを特徴とする光電変換装置。
[Scope of Claims] (2) A first translucent insulating substrate, a first electrode having a translucent conductive film on the substrate, and at least one that generates a photovoltaic force by light irradiation on the electrode A non-single crystal semiconductor having one PN or PIN junction, a second electrode made of a transparent conductive film on the semiconductor, and a reflective surface provided on the side of the electrode that is spaced apart from the electrode. A photoelectric conversion device comprising: a back surface protector; and a transparent insulating filling filled between the protector and the second electrode. 2. The photoelectric conversion device according to claim 1, wherein the back surface protective material having a reflective surface is made of an aluminum group and a fluorine-based protective material.
JP58018620A 1983-02-07 1983-02-07 Photoelectric converter Pending JPS59144178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018620A JPS59144178A (en) 1983-02-07 1983-02-07 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018620A JPS59144178A (en) 1983-02-07 1983-02-07 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPS59144178A true JPS59144178A (en) 1984-08-18

Family

ID=11976663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018620A Pending JPS59144178A (en) 1983-02-07 1983-02-07 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPS59144178A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627170A (en) * 1985-06-04 1987-01-14 シーメンス ソーラー インダストリーズ,エル.ピー. Transparent photovoltaic module
JPH0160556U (en) * 1987-10-14 1989-04-17
JPH02106077A (en) * 1988-10-14 1990-04-18 Fuji Electric Corp Res & Dev Ltd Photoelectric conversion device
WO2009091068A1 (en) * 2008-01-15 2009-07-23 Affinity Co., Ltd. Solar cell module and method for manufacturing the same
JP2014135377A (en) * 2013-01-10 2014-07-24 Kyocera Corp Photoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110492A (en) * 1977-03-05 1978-09-27 Licentia Gmbh Solar battery for earth range
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS56134781A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Photoelectric converter
JPS57162374A (en) * 1981-03-30 1982-10-06 Matsushita Electric Ind Co Ltd Solar battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110492A (en) * 1977-03-05 1978-09-27 Licentia Gmbh Solar battery for earth range
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS56134781A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Photoelectric converter
JPS57162374A (en) * 1981-03-30 1982-10-06 Matsushita Electric Ind Co Ltd Solar battery module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627170A (en) * 1985-06-04 1987-01-14 シーメンス ソーラー インダストリーズ,エル.ピー. Transparent photovoltaic module
JPH0160556U (en) * 1987-10-14 1989-04-17
JPH02106077A (en) * 1988-10-14 1990-04-18 Fuji Electric Corp Res & Dev Ltd Photoelectric conversion device
WO2009091068A1 (en) * 2008-01-15 2009-07-23 Affinity Co., Ltd. Solar cell module and method for manufacturing the same
JP2011254116A (en) * 2008-01-15 2011-12-15 Affinity Co Ltd Solar cell module
JP4869408B2 (en) * 2008-01-15 2012-02-08 アフィニティー株式会社 Solar cell module and manufacturing method thereof
JP2014135377A (en) * 2013-01-10 2014-07-24 Kyocera Corp Photoelectric conversion module

Similar Documents

Publication Publication Date Title
US6204443B1 (en) Solar cell module having a specific front side covering material and a process for the production of said solar cell module
RU2413333C2 (en) Front contact based on indium-zinc oxide for photoelectric device and method of making said contact
US4773942A (en) Flexible photovoltaic device
US6288324B1 (en) Solar cell module and method for manufacturing same
US6323416B1 (en) Solar cell module
EP1949450B1 (en) Solar cell of high efficiency
US6784361B2 (en) Amorphous silicon photovoltaic devices
JP3288876B2 (en) Solar cell module and method of manufacturing the same
WO2006057160A1 (en) Thin film photoelectric converter
JP2008270743A5 (en)
JPH0656883B2 (en) Semiconductor device
JPS6262073B2 (en)
JP5001722B2 (en) Method for manufacturing thin film solar cell
JP2008305945A (en) Substrate for thin film solar cell and manufacturing method of the same, and manufacturing method of thin film solar cell
KR102674774B1 (en) High photoelectric conversion efficiency solar cell and manufacturing method of high photoelectric conversion efficiency solar cell
JPH09116182A (en) Solar battery module and manufacture of solar battery module
JPS59144178A (en) Photoelectric converter
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH0964391A (en) Solar cell module
JP4280490B2 (en) Integrated thin film photoelectric conversion device and manufacturing method thereof
JPS59144179A (en) Manufacture of photoelectric converter
JP2000252505A (en) Solar cell module
JP2004186443A (en) Solar cell with translucent thin film and module thereof
JP4173692B2 (en) Solar cell element and manufacturing method thereof
JPS59144181A (en) Manufacture of photoelectric converter