JPS58133343A - Semi-hard magnetic alloy - Google Patents

Semi-hard magnetic alloy

Info

Publication number
JPS58133343A
JPS58133343A JP57014648A JP1464882A JPS58133343A JP S58133343 A JPS58133343 A JP S58133343A JP 57014648 A JP57014648 A JP 57014648A JP 1464882 A JP1464882 A JP 1464882A JP S58133343 A JPS58133343 A JP S58133343A
Authority
JP
Japan
Prior art keywords
semi
alloy
hard magnetic
magnetic alloy
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57014648A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kumasaka
熊坂 一裕
Kenichi Ono
小野 堅一
Shozo Kubota
窪田 昭三
Koichi Hoshino
耕一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57014648A priority Critical patent/JPS58133343A/en
Publication of JPS58133343A publication Critical patent/JPS58133343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a semi-hard magnetic alloy increased in residual magnetic flux density by a small amount of Co and improved in hot and cold processability, by incorporating a specific amount of Co, W and Ni, Mn or V into Fe. CONSTITUTION:A semi-hard magnetic alloy consists of 5-40wt% Co, 5-18wt% W, 0.1-5% either one of Ni, Mn and V and substantially the remainder Fe. In this alloy composition, W is precipitated as an intermetallic compound bonded to Fe and Co by ageing and effective to increase coersive force and a squareness ratio. In addition, Ni, Mn and V drop and alpha-gamma transformation point of the alloy and enlarge a gamma-phase region good in processability while suppressing the roughening of the precipitated phase of the intermetallic compound and, therefore, is effective in preventing hot processing crack. This semi-hard magnetic alloy is suitable for a self-holding relay and the iron core material for a switch.

Description

【発明の詳細な説明】 本発明は、自己保持形リレーおよびスイッチ用鉄心材と
して好適な残留磁束密度が高くかつ冷間。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a high residual magnetic flux density and is suitable for use as a core material for self-holding relays and switches.

熱間加工性の喪好な半硬質磁性合金に関するものである
This invention relates to a semi-hard magnetic alloy with poor hot workability.

電子交換機や通信用宅内機器々どの自己保持形リレーお
よびスイッチ用鉄心材としての半硬質磁性合金は、リレ
ーおよびスイッチの設計条件によって種々の特性が要求
される。特に、これらの半硬質磁性合金は、加工性が良
好で数Oeからほぼ1000sの保磁力(HC)を有す
るとともに、リレーおよびスイッチの小形化のためには
残留磁束密度(Br)の高いことが極めて重要となる。
Semi-hard magnetic alloys used as core materials for self-holding relays and switches such as electronic exchanges and communication home equipment are required to have various properties depending on the design conditions of the relays and switches. In particular, these semi-hard magnetic alloys have good workability and have a coercive force (HC) of several Oe to approximately 1000 s, and also have a high residual magnetic flux density (Br) for downsizing relays and switches. becomes extremely important.

このような自己保持形リレーおよびスイッチ用半硬質磁
性合金としては、従来からパイカロイ。
Picaloy has traditionally been used as a semi-hard magnetic alloy for such self-holding relays and switches.

リメンダなどのp’e−Co系合金、ニブコロイなどの
高Co系合金、 Fe−Mn系合金、あるいはFe−N
i系合金などがある。しかしながら、これら従来の半硬
質磁性合金は、Hcがほぼ200e 〜800e 、 
BrA?’!ぼ18〜12KGであるが、Fe−励系合
金のごと<c。
p'e-Co alloy such as Remenda, high Co alloy such as Nibu Colloy, Fe-Mn alloy, or Fe-N
There are i-based alloys. However, these conventional semi-hard magnetic alloys have Hc of approximately 200e to 800e,
BrA? '! It is about 18-12KG, but it is less than that of Fe-excited alloys.

を含まぬ半硬質磁性合金で得られるBrは17K()以
下であり、17KG以上の高いBrを得るためには、リ
メンダ(49*Co −4816Fe −3%v)oご
とく合金に高価なcoを多量に含ませなければならない
欠点が6つ九。
The Br obtained from a semi-hard magnetic alloy that does not contain is 17K () or less, and in order to obtain a high Br of 17KG or more, expensive co is added to the alloy such as Remenda (49*Co -4816Fe -3%v)o. There are 6 and 9 drawbacks that must be included in large quantities.

近年、自己保持形リレーおよびスイッチの小形化、経済
化はますます重要になってきてお沙、このためには従来
以上に高いBrを持ち、かつ高価なCO量の少ない半硬
質磁性合金の゛開発が待たれており、更にリレーおよび
スイッチの広範囲な設計に対処するためには、高いBr
を持ち、かつ数Oeから百数十Oeという従来以上に広
範囲なHcを持つ半硬質磁性合金の開発が待たれていた
In recent years, miniaturization and economicalization of self-holding relays and switches have become increasingly important, and for this purpose, semi-hard magnetic alloys with higher Br and lower CO content are needed. High Br is awaited and further developed to address a wide range of relay and switch designs.
It has been awaited to develop a semi-hard magnetic alloy which has Hc in a wider range than before, from several Oe to over 100 Oe.

このような半硬質磁性合金の製造方法として、本出願人
は、先に、重量比でCaO量が5〜40チ。
As a method for manufacturing such a semi-hard magnetic alloy, the present applicant first proposed a method in which the amount of CaO is 5 to 40 inches by weight.

Wの量が8〜18%で、残F)Feからなる3元合金を
、1100℃以上の温度から焼入れた後、加工率60%
以上の冷間加工を施して、500〜900℃の温度で焼
戻しを行なうことにより、Brが16K()以上、Hc
が30〜1200・の特性を有する半硬質磁性合金を得
る方法を提案した(特願昭53−11316)。
After quenching a ternary alloy consisting of 8 to 18% W and the remainder Fe at a temperature of 1100°C or higher, the processing rate is 60%.
By performing the above cold working and tempering at a temperature of 500 to 900°C, Br is 16K () or more, Hc
proposed a method for obtaining a semi-hard magnetic alloy having a characteristic of 30 to 1200 (Japanese Patent Application No. 11316/1983).

しかしながら、上記方法によシ得られる半硬質磁性合金
を詳細に検討した結果、量産時の熱間加工工程で金属間
化合物の析出相が粗大化するために、熱間加工割れを起
こし易いということが明らかになった。この場合、加工
割れを起こさずに熱間加工を可能とすることは、量産性
を向上させて半硬質磁性合金の経済化を図るために極め
て重畳である。
However, as a result of a detailed study of the semi-hard magnetic alloy obtained by the above method, it was found that the precipitated phase of the intermetallic compound becomes coarse during the hot working process during mass production, making it susceptible to hot working cracking. has become clear. In this case, enabling hot working without causing processing cracks is extremely important in order to improve mass productivity and make semi-hard magnetic alloys economical.

そこで、本発明の目的は、自己保持形リレーおよびスイ
ッチの小形化、高性能化、経済化を可能とする、残留磁
束密度Brが高くかつCo量が少なく、しかも冷間加工
性および熱間加工性の良好な半硬このような目的を達成
するために、本発明による半硬質磁性合金は、重量比で
coを5〜40%、Wを5〜18チ、阻、Mn、Vのい
ずれかを0.1〜5%含み、残部が実質的にFeからな
るものである。
Therefore, an object of the present invention is to provide a self-holding relay and switch that has a high residual magnetic flux density Br and a small amount of Co, and has good cold workability and hot workability, which enables miniaturization, high performance, and economicalization of self-holding relays and switches. In order to achieve this objective, the semi-hard magnetic alloy according to the present invention contains 5 to 40% of Co, 5 to 18% of W, and any one of Mn, V, and Mn in a weight ratio. 0.1 to 5%, with the remainder essentially consisting of Fe.

即ち、本発明に係る半硬質磁性合金は、基質である過飽
和α相からの金属間化合物の析出反応をもって、必要な
保磁力Haを得るための基本反応とするものであるが、
その場合、各元素成分はそれぞれ次のような役割を果し
ている。
That is, in the semi-hard magnetic alloy according to the present invention, the basic reaction for obtaining the necessary coercive force Ha is the precipitation reaction of intermetallic compounds from the supersaturated α phase that is the substrate.
In that case, each elemental component plays the following role.

先ずWは、時効により、FeおよびCoと結合した金属
間化合物として析出し、Hcおよび角形比(Br /B
 ’j001.ここでBsooは2000sを印i1ま
たと!の合金の磁束!!F[)を増加させるのに有効で
ある。
First, W precipitates as an intermetallic compound combined with Fe and Co due to aging, and increases Hc and squareness ratio (Br /B
'j001. Here Bsoo is 2000s with mark i1 again! The magnetic flux of the alloy! ! This is effective in increasing F[).

しかしながらW量が591(重量比、以下同じ)未満で
は析出反応が期待できず、従って冷間加工処理による磁
気異方性発達の効果が少ないため、HcおよびBr/B
錦Oが著しく低下する。またwtが部が金属間化合物と
して析出するためHeを増加させるのに有効である。し
かしながらCo量が5チ未満ではBrが著しく低下する
。またCo量が40%を越えると冷間加工が困難になる
とともに、素材費が高価とkる。
However, if the amount of W is less than 591 (weight ratio, the same applies hereinafter), no precipitation reaction can be expected, and therefore the effect of magnetic anisotropy development by cold working is small, so Hc and Br/B
Nishiki O decreases significantly. Furthermore, since the wt portion precipitates as an intermetallic compound, it is effective in increasing He. However, when the amount of Co is less than 5 inches, Br decreases significantly. Furthermore, if the Co content exceeds 40%, cold working becomes difficult and the material cost increases.

更にNi、Mn、Vは、合金のα−γ変態温度を低下さ
せ、加工性の良好なγ相領域を拡大させるとともに、金
属間化合物の析出相の粗大化を抑えることから、熱間加
工割れを防ぐのに極めて有効である。しかしながら、N
i、Mn、Vのいずれかの量が0.1−未満では、α−
γ変態点の低下および金属間化合物の析出相の粗大化を
抑える効果が十分でないため、熱間加工性の向上は期待
できない。またNi、Mn、Vのいずれかの量が5チを
越えるとBrが着しく低下する。
Furthermore, Ni, Mn, and V lower the α-γ transformation temperature of the alloy, expand the γ phase region with good workability, and suppress the coarsening of the precipitated phase of intermetallic compounds, thereby reducing hot processing cracking. It is extremely effective in preventing However, N
If the amount of any one of i, Mn, and V is less than 0.1-, α-
Since the effect of suppressing the lowering of the γ transformation point and the coarsening of the precipitated phase of intermetallic compounds is not sufficient, improvement in hot workability cannot be expected. Further, when the amount of any one of Ni, Mn, and V exceeds 5, Br decreases significantly.

次に、上記効果を明確にするために、具体的な実験例を
掲げて説明する。
Next, in order to clarify the above effect, a specific experimental example will be given and explained.

先ず、第1表に示した種々の組成の合金をアル−ボン雰
囲気において溶解して得た直径701m1の丸形インゴ
ットを1200℃で30分間加熱して均一化した後、熱
間鍛造を行なった。この熱間鍛造は、合金の温度が70
0℃になつ九ときに中断して、1200℃に再加熱した
後、再び熱間鍛造を同様にして行なった。これらの熱間
鍛造工程を繰り返して、最終的に直径15−とした。熱
間鍛造工程で、本発明外の合金番号4および80合金は
加工割れを起こしたが、本発明合金は加工割れを起むさ
ず非常に良好な熱間鍛造性を示した。その後、合金番号
1〜3,5〜フ、9〜11の本発明合金を1200℃に
加熱後、直径9■まで熱間溝ロール加工を行なった。
First, a round ingot with a diameter of 701 m1 obtained by melting alloys with various compositions shown in Table 1 in an argon atmosphere was heated at 1200°C for 30 minutes to homogenize it, and then hot forged. . In this hot forging, the temperature of the alloy is 70℃.
When the temperature reached 0° C., the hot forging was interrupted and reheated to 1200° C., and hot forging was carried out again in the same manner. These hot forging steps were repeated until the final diameter was 15 mm. In the hot forging process, Alloy No. 4 and 80 alloys other than those of the present invention suffered from work cracking, but the alloy of the present invention did not cause work cracking and exhibited very good hot forgeability. Thereafter, the alloys of the present invention having alloy numbers 1 to 3, 5 to 5, and 9 to 11 were heated to 1200 DEG C. and then hot groove rolled to a diameter of 9 cm.

この熱間溝ロール加工工程でも、本発明合金は加工割れ
を起こさず、非常に曳好な熱間加工性を示した。このよ
う1cNi、Mn、VはFs−Co−W系合金の熱間加
工性を著しく改善する効果がおる。ついでこれらの合金
は1200℃で1時間保持後水冷して溶体化処理し、加
工率95g6の冷間線引を施して直径2−の線材とした
後、700℃で1時間時効した。第2表に、第1表に示
した各組成の合金の磁気特性および熱間加工性を示す。
Even in this hot groove rolling process, the alloy of the present invention did not cause any processing cracks and exhibited very good hot workability. As described above, 1cNi, Mn, and V have the effect of significantly improving the hot workability of the Fs-Co-W alloy. These alloys were then held at 1200°C for 1 hour, water-cooled, solution treated, cold-drawn at a processing rate of 95g6 to form wire rods with a diameter of 2-2, and then aged at 700°C for 1 hour. Table 2 shows the magnetic properties and hot workability of the alloys having the respective compositions shown in Table 1.

第1表 第2表 第1表および第2表から明らかなように、本発明に係る
組成を有する合金では、熱間加工性が喪好で、保磁力H
eが32〜10000であシ、かつ17KG以上の高い
残留磁束密度が得られる。しかもC。
Table 1 Table 2 Table 2 As is clear from Tables 1 and 2, the alloy having the composition according to the present invention has good hot workability and coercive force H
When e is 32 to 10,000, a high residual magnetic flux density of 17 KG or more can be obtained. Moreover, C.

量は少ない。The quantity is small.

以上説明したように、本発明によれば、残留磁束密度B
Tが高く、かつCO量が少なく、シかも冷間加工が可能
であるとともに、量産性を向上させる丸めに極めて重要
な熱間加工性も嵐好な半硬質磁性合金が得られ、特に電
子交換機や通信用宅内機器などに用いられる自己保持形
リレーおよびスイッチの小形化、高性能化、経済化に対
して極めて大きな効果を有する。
As explained above, according to the present invention, the residual magnetic flux density B
A semi-hard magnetic alloy with high T and low CO content, which can be cold-worked and has good hot-workability, which is extremely important for rounding to improve mass productivity, can be obtained, especially for electronic exchange equipment. It has an extremely large effect on the miniaturization, performance improvement, and economicalization of self-holding relays and switches used in home communication equipment and telecommunications equipment.

特許出願人 日本電信電話公社 代理人 山川 政樹Patent applicant: Nippon Telegraph and Telephone Corporation Agent Masaki Yamakawa

Claims (1)

【特許請求の範囲】 重量比でCOを5〜40%、Wを5〜18%、Ni、M
n。 ■のいずれかを0.1〜5チ含み、残部が実質的にFe
からなる半硬質磁性合金。
[Claims] 5 to 40% CO, 5 to 18% W, Ni, M by weight
n. Contains 0.1 to 5 of any of ■, and the remainder is substantially Fe.
A semi-hard magnetic alloy consisting of
JP57014648A 1982-02-01 1982-02-01 Semi-hard magnetic alloy Pending JPS58133343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014648A JPS58133343A (en) 1982-02-01 1982-02-01 Semi-hard magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014648A JPS58133343A (en) 1982-02-01 1982-02-01 Semi-hard magnetic alloy

Publications (1)

Publication Number Publication Date
JPS58133343A true JPS58133343A (en) 1983-08-09

Family

ID=11867015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014648A Pending JPS58133343A (en) 1982-02-01 1982-02-01 Semi-hard magnetic alloy

Country Status (1)

Country Link
JP (1) JPS58133343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077965A (en) * 1983-10-06 1985-05-02 Res Inst Electric Magnetic Alloys Square hysteresis magnetic alloy and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077965A (en) * 1983-10-06 1985-05-02 Res Inst Electric Magnetic Alloys Square hysteresis magnetic alloy and its production

Similar Documents

Publication Publication Date Title
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JPS5813605B2 (en) Manufacturing method of magnetic silicon steel
JPS58133343A (en) Semi-hard magnetic alloy
JPH01309219A (en) Terminal for electric apparatus made of cu alloy
JPS6312936B2 (en)
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPH0873935A (en) Production of alloy strip of iron-nickel alloy
JP2674137B2 (en) High permeability magnetic material
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JP2870818B2 (en) Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties
JPS58133344A (en) Semi-hard magnetic alloy
JP2618560B2 (en) Production method of copper alloy
JP4139913B2 (en) Method for heat treatment of permanent magnet alloy
JPS58133349A (en) Semi-hard magnetic alloy
JP3619403B2 (en) Hot working method of S-added Fe-Ni alloy
JPS58133345A (en) Semi-hard magnetic alloy
JPS6260850A (en) Manufacture of copper alloy having superior stress relaxation resistance
JPS5983723A (en) Preparation of non-directional electric iron plate having high magnetic flux density
JPH0238658B2 (en)
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH05345964A (en) Manufacture of precipitation type copper alloy
JPS6316446B2 (en)
JPS6179723A (en) Manufacture of high silicon steel strip having superior magnetic characteristic
JPH06264195A (en) Fe-co series magnetic alloy