JPS58133345A - Semi-hard magnetic alloy - Google Patents

Semi-hard magnetic alloy

Info

Publication number
JPS58133345A
JPS58133345A JP57014651A JP1465182A JPS58133345A JP S58133345 A JPS58133345 A JP S58133345A JP 57014651 A JP57014651 A JP 57014651A JP 1465182 A JP1465182 A JP 1465182A JP S58133345 A JPS58133345 A JP S58133345A
Authority
JP
Japan
Prior art keywords
semi
alloy
hard magnetic
squareness ratio
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57014651A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kumasaka
熊坂 一裕
Kenichi Ono
小野 堅一
Shozo Kubota
窪田 昭三
Koichi Hoshino
耕一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57014651A priority Critical patent/JPS58133345A/en
Publication of JPS58133345A publication Critical patent/JPS58133345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a semi-hard magnetic alloy increased in residual magnetic flux density by a small amount of Co and improved in squareness ratio, by containing a specific amount of Co, W and Nb, Ta, Ti, Zr or Hf in Fe. CONSTITUTION:A semi-hard magnetic alloy consists of 5-40wt% Co, 5-18% W, 0.1-4% either one of Nb, Ta, Ti, Zr or Hf and substantially the remainder Fe. In this alloy composition, W is precipitated as an intermetallic compound bonded to Fe and Co by ageing and effective in increasing coersive force and squareness ratio. In addition, because Nb, Ta, Ti, Zr and Hf develops magnetic anisotropy in the alloy, it is effective in increasing the squareness ratio. This semi-hard magnetic alloy is suitable for a self-holding type relay and the iron core material for a switch.

Description

【発明の詳細な説明】 本発明は、自己保持形リレーおよびスイッチ用鉄心材と
して好適な、冷間加工が可能で高い残留磁束密度を有し
、かつ角形比が極めて良好な半硬質磁性合金に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semi-hard magnetic alloy that can be cold worked, has a high residual magnetic flux density, and has an extremely good squareness ratio, and is suitable as an iron core material for self-holding relays and switches. It is something.

電子交換機や通信用宅内機器などの自己保持形リレーお
よびスイッチ用鉄心材としての半硬質磁性合金は、リレ
ーおよびスイッチの設計条件によって種々の特性が要求
される。特に、これらの半硬質磁性合金は、加工性が良
好で数Oeからほぼ1000eの保ノAカ(Hc)を有
するとともに、リレーおよびスイッチの小形化のために
は残留磁束密度(Br )の高いことが極めて重要とな
る。
Semi-hard magnetic alloys used as core materials for self-holding relays and switches such as electronic exchanges and communication home equipment are required to have various properties depending on the design conditions of the relays and switches. In particular, these semi-hard magnetic alloys have good workability and a holding capacity (Hc) of several Oe to approximately 1000e, and are also required to have a high residual magnetic flux density (Br) for downsizing relays and switches. This is extremely important.

このような自己保持形リレーおよびスイ′ツテ用半硬質
磁性合金としては、従来からパイカロイ。
Picaloy has traditionally been used as a semi-hard magnetic alloy for such self-holding relays and switches.

リメンダなどのFe−Co系合金、ニプコロイなトノ高
co系合金、 Fe−Mn系合金、あるいId Fe−
Ni系合金などがある。しかしながら、これら従来の半
硬質磁性合金は、Hcがほぼ200e 〜gcioe 
、 Brがほぼ18〜12KGであるが、Fe−Mn系
合金のとと〈Coを含まぬ半硬質磁性合金で得られるB
rは17KG以下で返り、17xG以上の高いBrを得
るためには、リメンダ(49%Oo −481Fa −
3%V)Oごとく合金に高価なCoを多量に含ませなけ
ればならない欠点があった。
Fe-Co alloy such as Remenda, high co alloy such as Nipcoloy, Fe-Mn alloy, or Id Fe-
Examples include Ni-based alloys. However, these conventional semi-hard magnetic alloys have Hc of approximately 200e ~ gcioe
, Br is approximately 18 to 12 KG, but the Fe-Mn alloy and the B obtained from the semi-hard magnetic alloy that does not contain Co
r returns below 17KG, and in order to obtain a high Br of 17xG or above, remenda (49%Oo -481Fa -
There was a drawback that a large amount of expensive Co, such as 3% V)O, had to be included in the alloy.

近年、自己保持形リレーおよびスイッチの小形化、経済
化はますます重要になってきており、このためには従来
以上に高いBrを持ち、かつ高価なCo量の少ない半硬
質磁性合金の開発カミ待たれており、更にリレーおよび
スイッチの広範囲な設計に対処するためには、高いBr
を持ち、かつ数Oeから百数十Oeという従来以上に広
範囲なHeを持つ半硬質磁性合金の開発が待たれていた
In recent years, miniaturization and economicalization of self-holding relays and switches have become increasingly important, and to this end, efforts have been made to develop semi-hard magnetic alloys that have higher Br than ever before and low amounts of expensive Co. High Br is expected to further address the wide range of relay and switch designs.
It has been awaited to develop a semi-hard magnetic alloy having a wider range of He than before, from several Oe to over 100 Oe.

このような半硬質磁性合金の製造方法として、本出願人
は、先に、重量比で00の量が5〜40%。
As a manufacturing method for such a semi-hard magnetic alloy, the present applicant has previously proposed that the amount of 00 is 5 to 40% by weight.

Wの量が8〜18%で、残りFeからなる3元合金を、
1100℃以上の温度から焼入れだ後、加工率60%以
上の冷間加工を施して、500〜900℃の温度で焼戻
しを行なうことにより、Brが16KG以上、 )Ie
が30〜1200・の特性を有する半硬質磁性合金を得
る方法を提案した(%願8853−11316)。
A ternary alloy in which the amount of W is 8 to 18% and the remainder is Fe,
After quenching from a temperature of 1100℃ or higher, cold working is performed at a processing rate of 60% or higher, and tempering is performed at a temperature of 500 to 900℃, so that the Br is 16KG or higher, )Ie
proposed a method for obtaining a semi-hard magnetic alloy having a property of 30 to 1200 (% Application No. 8853-11316).

しかしながら、上記方法により得られた半裸性合金は、
その角形比(Br/Bsoo、ここでB5l0は200
0eを印磁し九ときの合金の磁束密度)が最も高いもの
で0.94でToυ、シかもこの値を得るためには非常
に高い加工率の冷間加工を施すことを必要とじ九。自己
保持形リレーおよびスイッチの高性能化のためには更に
高い角形比が必要であシ、経済化のためにはより低い加
工率で高い角形比が得られることが望ましい。
However, the semi-naked alloy obtained by the above method is
Its squareness ratio (Br/Bsoo, where B5l0 is 200
When 0e is applied, the highest magnetic flux density of the alloy is 0.94, Toυ, and in order to obtain this value, it is necessary to perform cold working at a very high working rate. In order to improve the performance of self-holding relays and switches, a higher squareness ratio is required, and for economical purposes, it is desirable to obtain a higher squareness ratio with a lower processing rate.

従って、本発明の目的は、自己保持形リレーおよびスイ
ッチの山形化、高性能化、経済化を可能にする、加工性
が良好で残留磁束密度Brが高く、かつ角形比が極めて
高く、シか4hOo量の少ない半硬質磁性合金を提供す
ることにある。
Therefore, an object of the present invention is to have good workability, high residual magnetic flux density Br, and extremely high squareness ratio, and to enable self-holding relays and switches to be made into chevron shapes, to improve performance, and to be economical. The object of the present invention is to provide a semi-hard magnetic alloy with a small amount of 4hOo.

このような目的を達成すb九峠に、本発明による半硬質
磁性合金は、重量比でCOを5〜40優、Wを15〜1
8%、Nb、Ta、Ti、Zr、Hfのいずれかを0.
1〜4−含み、残部を実質的KF・により構成したもの
である。
To achieve these objectives, the semi-hard magnetic alloy according to the present invention has a weight ratio of 5 to 40% CO and 15 to 1% W.
8%, Nb, Ta, Ti, Zr, or Hf.
1 to 4, with the remainder consisting essentially of KF.

即ち、本発明に係る半硬質磁性合金は、基質である過飽
和α相からの金属間化合物の析出反応をもって、必要な
Hcを得るための基本反応とするものであり、その場合
、各元素成分はそれぞれ次のような役割を果している。
That is, in the semi-hard magnetic alloy according to the present invention, the basic reaction for obtaining the necessary Hc is the precipitation reaction of intermetallic compounds from the supersaturated α phase that is the substrate, and in this case, each elemental component is Each of them plays the following roles.

先ずWは、時効によりFeおよびOoと結合した金属間
化合物として析出し、HCおよびBr/Bso。
First, W is precipitated by aging as an intermetallic compound combined with Fe and Oo, forming HC and Br/Bso.

を増加させるのに有効である。しかしながらW量が5チ
(重量比、以下同じ)未満では析出反応が期待できず、
従って冷間加工処理による磁気異方性発達の効果が少な
いため、’HcおよびBr/Bso。
It is effective in increasing the However, if the amount of W is less than 5 cm (weight ratio, the same applies hereinafter), precipitation reaction cannot be expected.
Therefore, since the effect of magnetic anisotropy development due to cold working treatment is small, 'Hc and Br/Bso.

が著しく低下する。またW量が18%を越えると冷間加
工が困難になる。
decreases significantly. Moreover, if the amount of W exceeds 18%, cold working becomes difficult.

また00は、飽和磁化を増加させてBrを増加させると
ともに、一部が金属間化合物として析出するためHcを
増加させるのに有効である。しかしながらOo量が51
未満ではBrが着しく低下する。
Further, 00 is effective for increasing saturation magnetization and increasing Br, and also for increasing Hc because a part of it is precipitated as an intermetallic compound. However, the amount of Oo is 51
If it is less than that, Br will decrease considerably.

を九Co量が40−を越えると冷間加工が困難になると
ともに、素材費が高価となる。
When the Co content exceeds 40 -, cold working becomes difficult and the material cost increases.

更にNb 、Ta 、Ti 、Zr 、Hfは、合金内
に磁気的な異方性を発達させることから、角形比Br/
Bl・Oを増加させるのに極めて有効である。しかしな
がら、Wb、Ta、’I’i、Zr、)Ifのいずれか
の量が0.1−未満では磁気的な異方性の発達が十分に
行なわれず、Br/BWmを増加させる効果が十分に現
われない。ま九Nb、′Ta、Ti、Zr、Hfのいず
れかの量が4%を越えると冷間加工が困難になる。
Furthermore, since Nb, Ta, Ti, Zr, and Hf develop magnetic anisotropy within the alloy, the squareness ratio Br/
It is extremely effective in increasing Bl.O. However, if the amount of any one of Wb, Ta, 'I'i, Zr, )If is less than 0.1-, magnetic anisotropy will not be sufficiently developed, and the effect of increasing Br/BWm will not be sufficient. does not appear in If the amount of any one of Nb, Ta, Ti, Zr, and Hf exceeds 4%, cold working becomes difficult.

次に%仁のような各効果を明確にするため、具体的な実
験例を掲げて説明する。
Next, in order to clarify each effect such as % ren, specific experimental examples will be given and explained.

先ず、20−のOo、13−のWを一定にして、T1が
096.IL2%のいずれかを含み、残Tpy・とから
なる各組成の合金をアルゴンガス雰囲気において、0.
5−のMflを脱酸剤として溶解して得た丸形インゴッ
トを1200℃で1時間均一化処理後水冷し、熱間加工
および冷間加工により直径9■、7■、5,5■。
First, with Oo of 20- and W of 13- constant, T1 is 096. An alloy of each composition containing 2% of IL and the remainder of Tpy was heated to 0.0% in an argon gas atmosphere.
Round ingots obtained by dissolving Mfl of No. 5 as a deoxidizing agent were homogenized at 1200°C for 1 hour, cooled with water, and hot-worked and cold-worked into diameters of 9cm, 7cm, and 5.5cm.

3.7111に加工した。ついで1200℃で1時間保
持後水冷して溶体化処理し、それぞれ加工率95L92
1.871.71−の冷間線引を施して直径2■の線材
とした後、700℃で1時間時効した。これらの処理で
得た各合金の角形比Br/B100と加工率との関係を
図に示す。図において、(イ)、(ロ))、(→がそれ
ツレTi 量カ0*、 1%、2110場合を示ス。
Processed to 3.7111. Then, after being held at 1200°C for 1 hour, it was cooled with water and subjected to solution treatment, resulting in a processing rate of 95L92.
1.871.71- was applied to make a wire rod with a diameter of 2 cm, and then aged at 700° C. for 1 hour. The relationship between the squareness ratio Br/B100 and processing rate of each alloy obtained by these treatments is shown in the figure. In the figure, (A), (B)), (→ indicate the case where the amount of Ti is 0*, 1%, 2110.

同図から明らかなように、各合金とも加工率が上昇する
に従ってBr/B’m・Oが増大しているが、同一の加
工率では、Ti量が増加するに従ってBr/Bwaが増
大している。そして、リレーおよびスイッチ期鉄心材と
して好ましい0,9以上のBr713100を得るため
には、Tiを含まない合金では約95−の加工率を必要
とするのに対し、1*Tiを含む合金では約SSSの加
工率、2%Tiを含む合金では約80−の加工率で0.
9のsr/Bsooが得られる。このようにTiは、合
金の磁気異方性を発達させるため、低い加工率でも高い
Br/Bl(10を得ることを可能にする。
As is clear from the figure, Br/B'm・O increases as the working rate increases for each alloy, but at the same working rate, Br/Bwa increases as the Ti content increases. There is. In order to obtain Br713100 of 0.9 or higher, which is preferable as an iron core material for relays and switches, alloys that do not contain Ti require a processing rate of approximately 95-, whereas alloys that contain 1*Ti require a processing rate of approximately The processing rate of SSS is approximately 80-0 for alloys containing 2% Ti.
An sr/Bsoo of 9 is obtained. Thus, Ti develops the magnetic anisotropy of the alloy, making it possible to obtain a high Br/Bl (10) even at a low processing rate.

このことJd、Nb、Ta、Zr、Hfについても同様
である。
This also applies to Jd, Nb, Ta, Zr, and Hf.

次に1第1表に示した種々の組成の合金をアルゴンガス
雰囲気において、0.51のMnを脱酸剤として溶解し
て得た丸形インゴットを1200℃で1時間均一化処理
後水冷し、熱間加工および冷間加工によ如直径9■の棒
材を作成した。これらの棒材を1200℃で1時間保持
後水冷して溶体化処理し、加工率95−の冷間線引を施
して直径2■の線材とじ九後、100℃で1時間時効し
た。第2表に、第1表に示し喪組成の合金の徴気特性お
よび加工性を第1表 第2表 第1表および第2表から明らかなように、合金番号が1
〜7および9〜130本発明による合金は、少ないOo
量で角形比Br/file・が0.94〜0.98と極
めて高く、シかもHaが35〜1000・でBrが17
.2KG以上と高く、かつ嵐好な加工性が得られた。
Next, round ingots obtained by dissolving alloys with various compositions shown in Table 1 in an argon gas atmosphere with 0.51 Mn as a deoxidizing agent were homogenized at 1200°C for 1 hour and cooled with water. A bar with a diameter of 9 cm was prepared by hot working and cold working. These rods were held at 1200° C. for 1 hour, cooled with water, subjected to solution treatment, subjected to cold drawing at a processing rate of 95°, bound to a wire having a diameter of 2 cm, and then aged at 100° C. for 1 hour. Table 2 shows the aeration characteristics and workability of the alloys with the composition shown in Table 1, as shown in Table 1 and Table 2.
~7 and 9~130 The alloy according to the invention has less Oo
The squareness ratio Br/file is extremely high at 0.94 to 0.98, and the squareness ratio is 35 to 1000 and Br is 17.
.. A high weight of 2KG or more and excellent workability were obtained.

これに対し、合金番号80本発明外の合金は、加工が困
難であった。
In contrast, Alloy No. 80, an alloy other than the present invention, was difficult to process.

以上説明したように、本発明によれば、冷間加工性が良
好で残留磁束密度が高く、かつ角形比(Br/B愈oo
 )が極めて高く、シかもCo量が少ない半硬質磁性合
金が得られ、特に電子交換機や通信用毛内機器などに用
いられる磁気自己保持形リレーおよびスイッチの小形化
、高性能化、経済化に対して極めて大きな効果を有する
As explained above, according to the present invention, the cold workability is good, the residual magnetic flux density is high, and the squareness ratio (Br/B
) and a small amount of Co can be obtained, which is particularly useful for miniaturizing, improving performance, and making economical magnetic self-holding relays and switches used in electronic exchanges and communication devices. It has an extremely large effect on

【図面の簡単な説明】[Brief explanation of the drawing]

図はTi量の異なる半硬質磁性合金における角形比と加
工率との関係を示すグラフである。 特許出願人  日本電信電話公社 代理人 山川 政樹
The figure is a graph showing the relationship between squareness ratio and processing rate in semi-hard magnetic alloys with different amounts of Ti. Patent applicant Masaki Yamakawa, agent of Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】 重量比でCOを5〜40%、Wを5〜18%、Nb、T
a、Ti。 Zr、Hfのいずれかを0.1〜4%含み、残部が実質
的にFeからなる半硬質磁性合金。
[Claims] 5 to 40% of CO, 5 to 18% of W, Nb, T by weight ratio
a.Ti. A semi-hard magnetic alloy containing 0.1 to 4% of either Zr or Hf, with the balance essentially consisting of Fe.
JP57014651A 1982-02-01 1982-02-01 Semi-hard magnetic alloy Pending JPS58133345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014651A JPS58133345A (en) 1982-02-01 1982-02-01 Semi-hard magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014651A JPS58133345A (en) 1982-02-01 1982-02-01 Semi-hard magnetic alloy

Publications (1)

Publication Number Publication Date
JPS58133345A true JPS58133345A (en) 1983-08-09

Family

ID=11867102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014651A Pending JPS58133345A (en) 1982-02-01 1982-02-01 Semi-hard magnetic alloy

Country Status (1)

Country Link
JP (1) JPS58133345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077965A (en) * 1983-10-06 1985-05-02 Res Inst Electric Magnetic Alloys Square hysteresis magnetic alloy and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077965A (en) * 1983-10-06 1985-05-02 Res Inst Electric Magnetic Alloys Square hysteresis magnetic alloy and its production

Similar Documents

Publication Publication Date Title
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
US4695333A (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
US4028144A (en) Semi-hard magnetic alloy with composite magnetic property and method of making the same
US3989556A (en) Semihard magnetic alloy and a process for the production thereof
JPS6352102B2 (en)
JPS58133345A (en) Semi-hard magnetic alloy
JPS58157935A (en) Shape memory alloy
JPH0339451A (en) Permanent magnet material
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS5942741B2 (en) Semi-hard magnetic alloy and its manufacturing method
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JPS58133344A (en) Semi-hard magnetic alloy
JPS58133343A (en) Semi-hard magnetic alloy
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS58209103A (en) Manufacture of soft magnetic material
JPS58133349A (en) Semi-hard magnetic alloy
JP2927826B2 (en) Soft magnetic alloy and manufacturing method thereof
JPS5928561A (en) Non-magnetic steel high in volume electric resistivity
JPS6053107B2 (en) Rare earth magnet manufacturing method
JPH01221820A (en) Manufacture of magnetic lead-piece with rectangular hysteresis and lead switch
JPS6365052A (en) Soft magnetic alloy for reed chip, its production and reed switch
JPH03179622A (en) Lead switch
JPS5887253A (en) Permanent magnet alloy
JPS6315336B2 (en)
JPS646258B2 (en)