JPS58127409A - Composite layer construction - Google Patents

Composite layer construction

Info

Publication number
JPS58127409A
JPS58127409A JP1036082A JP1036082A JPS58127409A JP S58127409 A JPS58127409 A JP S58127409A JP 1036082 A JP1036082 A JP 1036082A JP 1036082 A JP1036082 A JP 1036082A JP S58127409 A JPS58127409 A JP S58127409A
Authority
JP
Japan
Prior art keywords
core layer
layer
skin layer
resin
thermoplastic synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1036082A
Other languages
Japanese (ja)
Inventor
Tadashi Hasegawa
正 長谷川
Tadanobu Suzuki
鈴木 忠信
Kazuo Haga
芳賀 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aron Kasei Co Ltd
Original Assignee
Aron Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aron Kasei Co Ltd filed Critical Aron Kasei Co Ltd
Priority to JP1036082A priority Critical patent/JPS58127409A/en
Publication of JPS58127409A publication Critical patent/JPS58127409A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Abstract

PURPOSE:To minimize the use of conductive fillers as required without problems of exfoliation and oxidation, by using a thermoplastic synthetic resin excellent in the strength and external apparence for the skin layer with the co-injection method and a composite member excellent in the conductivity for the core layer. CONSTITUTION:A thermoplastic synthetic resin 3 forming a skin layer 3 from a nozzle 1 is charged in a metallic mold cavity 2. As the 2nd process of molding, in succeeding to the resin 3 charged in advance, a thermoplastic synthetic resin 5 having a conductive filler 4 is charged from the same nozzle 1 toward the inside of the resin 3 and the raw material is completely charged in a metallic mold cavity 3 for molding. The mold product after the end of charge and cooling is picked up from the metallic mold cavity 2 and completed into the composite layer construction through the finishing work.

Description

【発明の詳細な説明】 lC,LSIに代表されるエレクトロニクス技術の急速
な発展に伴ない、IC,LSIを使用するコンピュータ
ー、電子ケーム、テレビゲーム、電子金銭登録機、スイ
ッチング電源、テジタル時計、電卓、ツー1−10セ、
サー等のデジタル電子装置が広範囲に使用されるように
なった。
[Detailed Description of the Invention] With the rapid development of electronics technology represented by IC and LSI, computers, electronic games, video games, electronic cash registers, switching power supplies, digital clocks, and calculators that use IC and LSI have been developed. , 2 1-10th,
Digital electronic devices such as sensors have become widely used.

テンクル電子装置は動作の基本として毎秒10.000
ハルス以上のパルスを発生しており、このパルスに付随
して無線周波エネルキーが放射される。従ってこのよう
なデジタル電子装置を使用する場合には放射される無線
周波エネルキーかランオ、テレビ、無線通信機にノイス
、画像の乱れ等の問題(いわゆる電磁波障害)を起こす
ことかある。
Tenkuru electronic equipment operates at 10,000 speeds per second.
It generates a pulse larger than Hals, and radio frequency energy is emitted along with this pulse. Therefore, when such digital electronic devices are used, the radiated radio frequency energy may cause problems such as noise, image disturbance, etc. (so-called electromagnetic interference) on radios, televisions, and wireless communication devices.

デジタル電子装置の利用技術は今後、各種製造設備、事
務用機器、家庭用機器、輸送設備等、全ての産業分野、
生活分野に広がると考えられ、それに伴なって電磁波障
害の問題か多発すると予想される。このような事態に対
して、電磁波障害を防止するため、デジタル電子装置に
は障害電波を遮蔽すること・ シールド・・・か要求さ
れるようになり、Cl8PBO規格(国際規格)、FC
C規格(アメリカ規格) 、VDE規格(西ドイツ規格
)で障害電波の放射最大許容値が決められている。
In the future, technology for utilizing digital electronic devices will be used in all industrial fields, including various manufacturing equipment, office equipment, household equipment, transportation equipment, etc.
It is thought that this will spread to the daily life field, and it is expected that problems with electromagnetic interference will occur frequently as a result. In order to prevent electromagnetic interference in this situation, digital electronic devices are required to be shielded from interference radio waves, and the Cl8PBO standard (international standard), FC
The C standard (American standard) and the VDE standard (West German standard) determine the maximum permissible emission value of interference radio waves.

本発明は上述のデジタル電子装置が放射する障害電波を
シールドするシールド材に関するものである。
The present invention relates to a shielding material for shielding interference radio waves emitted by the above-mentioned digital electronic device.

デジタル電子装置のハウジングにプラスチ、りが多く使
用されるが、プラスチックは障害電波領域の電磁波を透
過してしまうためシールド技術か是非とも必要である。
Plastic is often used in the housings of digital electronic devices, but since plastic transmits electromagnetic waves in the interference range, shielding technology is absolutely necessary.

プラスチックにシールド性を与えるには、金属化して導
電性にすることが基本とされており、(1)プラスチッ
クの表面に導電性の層を形成させる方法と (2)プラ
スチ、ツクの中に導電性のフィラーを添加する方法が考
えられている。
In order to provide shielding properties to plastic, the basic method is to make it conductive by metallizing it. (1) forming a conductive layer on the surface of the plastic; and (2) forming a conductive layer inside the plastic. A method of adding a filler has been considered.

(1)の具体的な方法としては亜鉛溶射、導電性塗料塗
布、真空蒸着、スパッタリング、メッキ等があり、(2
)の具体的な方法としてはカーボン繊維、ツク、メタラ
イズドガラス、金属リボン、金属フレーク、金属繊維、
メタルパウダー、カーボン繊維等の導電性フィラー添加
がある。
Specific methods for (1) include zinc spraying, conductive paint coating, vacuum deposition, sputtering, plating, etc.
) Specific methods include carbon fiber, Tsuku, metallized glass, metal ribbon, metal flake, metal fiber,
Conductive fillers such as metal powder and carbon fiber are added.

しかしながら、(1)、(2)について以下のような問
題点が指摘されている。
However, the following problems have been pointed out regarding (1) and (2).

まず(1)では導電性層がプラスチ、ツクの成形後、数
種類の表面処理を行なってから溶射、スプレー、蒸着、
スパッタリング、メ、ツキ等で形成されるので、0時間
がかかる ■人手がかかる ■余分な設備がいる ■量
産性が低い等コスト高になる。
First, in (1), the conductive layer is made of plastic, after which it is formed and then subjected to several types of surface treatment, and then thermal sprayed, sprayed, vapor deposited, etc.
Since it is formed by sputtering, machining, plating, etc., it takes 0 hours. ■It takes a lot of manpower. ■It requires extra equipment. ■It is difficult to mass-produce it, resulting in high costs.

又、耐久性については、長時間使用しているとプラスチ
ックと表面導電性層との密着性か悪くなり最後にはクラ
ック剥離を起こす。剥離が生しると剥離場所から電磁波
を外部に放射したり、剥離片がプリント基板や内部配線
上に落下しショートして故障の原因や感電事故、火災の
原因になる。
Regarding durability, when used for a long time, the adhesion between the plastic and the surface conductive layer deteriorates, eventually causing cracks and peeling. If peeling occurs, electromagnetic waves may be emitted from the peeled area to the outside, or peeled pieces may fall onto the printed circuit board or internal wiring, causing short circuits and causing malfunctions, electric shocks, and fires.

更に使用する金属が酸化されるとシール1〜性か低下す
る。
Furthermore, if the metal used is oxidized, the sealability will decrease.

(2)ではプラスチックに導電性フィラーを均一に混入
し、しかも均一な成形物を得るのが困難である。これは
プラスチックとフィラーの流動特性が異なるためである
が、フィラーの分布が不均一であると不均一なシールド
効果しか得られず、このようなハウジングをデジタル電
子装置に使用すると、完成品1台毎にシールド性を検査
しなければならず、品質管理上、実用−性のないものに
なる。
In (2), it is difficult to uniformly mix the conductive filler into the plastic and to obtain a uniform molded product. This is due to the different flow characteristics of plastic and filler, but uneven distribution of filler will result in uneven shielding effect, and when such a housing is used for digital electronic devices, one finished product The shielding performance must be inspected every time, which is impractical from a quality control perspective.

仮にフィラーの分布が均一になったとしても、シールド
効果を上げるためには多くのフィラーを加えることが必
要であり、その結果として製品のコストが上ってしま−
・たり、プラスチックそのものの基本物性を損なうこと
になる。
Even if the filler distribution were uniform, it would be necessary to add a large amount of filler to increase the shielding effect, which would increase the cost of the product.
・This may damage the basic physical properties of the plastic itself.

我々は現在実1にされているプラスチックのシールド方
法の問題点を検討し、プラスチック本来の特性を損わず
に耐久性のあるシールド特性が得ら41、しかも生産性
に優れた方法を見出し本発明とな っ tこ 。
We investigated the problems of the currently available methods for shielding plastics, and found a method that provides durable shielding properties without impairing the original properties of plastics, and is highly productive. It became an invention.

本発明ではコインジェクション法でスキン層に強度、美
観に優れた熱可塑性合成樹脂を使用し、コア層に導電性
に優れた複合材を使用することを特徴とする。コインジ
ェクショノ法は***BA’lv1”)、WFELI)社
で開発された射出成形法であり、2本の射出筒の一方の
射出筒からスキン層を形成する熱可塑性樹脂を金型内に
射出し、続いて他の射出筒からコア層を形成する別途熱
可塑性発泡樹脂を同一ノズルより前記金型内のスキン層
を形成する樹脂内部に射出して2層構造の成形物を得る
方法であり、従来はコア層を発泡層にし大型成形物の軽
、−−−1 量化を主目的に検討されている方法である。
The present invention is characterized in that a thermoplastic synthetic resin with excellent strength and aesthetics is used for the skin layer by a co-injection method, and a composite material with excellent conductivity is used for the core layer. The coin injection molding method is an injection molding method developed by West German BA'lv1"), WFELI), in which the thermoplastic resin that forms the skin layer is injected into the mold from one of two injection tubes. injection, and then a separate thermoplastic foamed resin that forms the core layer is injected from the same nozzle into the resin that forms the skin layer in the mold to obtain a molded product with a two-layer structure. Conventionally, this method has been studied with the main purpose of reducing the weight of large molded products by using a foam layer as the core layer.

我々はスキ7層、コア層にそれぞれの機能を有する材料
を使用(特にコア層には導電性に優れしかもコインジェ
クショノ法に使用可能な複合材料を使用)することで従
来のプラスチ、りのシールド方法で問題となった点を全
て解決した。
By using materials with respective functions for the seven layers and the core layer (particularly for the core layer, we use a composite material that has excellent conductivity and can be used in the coin injection method), we have succeeded in replacing conventional plasti. Solved all the problems with the shielding method.

すなわちスキン層に強度、美観に優れた熱IJJm性樹
脂全樹脂することでプラスチ、り本来の特P1・を損な
わないテシタル電子装置用ハウン/グカ得られる。この
場合、表面は絶縁性なので、万一漏電事故が生じても感
電することもない。
That is, by using a thermal IJJm resin with excellent strength and aesthetic appearance in the skin layer, it is possible to obtain a material for electronic devices that does not impair the original properties of plastic. In this case, since the surface is insulating, there will be no electric shock even if an electrical leakage accident occurs.

又コア層に導電性に優れしかもコイノンエクノヨン法に
適した複合材料を使用することで目的とするシールド特
性が得られるとともに、従来のンールド技術で問題とな
った点が解決される。すなわち導電層が内蔵されるので
剥離問題、酸化問題もなくかつ導電性フィラーの使用を
必要最小限にすることが出来る。しかも同一成形機で処
理されるので成形後の後加工も必要なく、生産性に優れ
る。しかしなからコア層に使用する導電性複合材料には
コイノジェクション用に適した流れ性を示すものを使用
せねばならない。
Furthermore, by using a composite material for the core layer that has excellent conductivity and is suitable for the Koinon-Ekunoyon method, the desired shielding properties can be obtained, and problems that have arisen with the conventional rolled technology can be solved. That is, since the conductive layer is built-in, there is no peeling problem or oxidation problem, and the use of conductive filler can be minimized. Moreover, since they are processed using the same molding machine, there is no need for post-processing after molding, resulting in excellent productivity. However, the conductive composite material used for the core layer must exhibit flowability suitable for co-injection.

次に本発明を図面を用いて説明すれば、図面はコインジ
ェクション法による本発明に係る複層構漬物の成形過程
を示す説明図であって、第1図は成形の第1段階であっ
てノズル1よりスキン層を形成する熱可塑性合成樹脂3
を金型キャピテイ2内に注入している状態を示す。第2
図は成形の第2段階であ、て先に注入した熱可塑性合成
樹脂3に続いて、同樹脂3内部に向って同一ノズル1よ
り導電性フィラー4入り熱可塑性合成樹脂5を注入して
いる状態を示すものであり、第3図は成形の第3段階で
あって、第2段階により金型キャビティ3内に原料が完
全に注入された状態を示すものである。尚、第3段階に
より注入完了した成形品は公知方法により冷却された後
金型キャビティ2より取出され、仕上げ作業を経て本発
明に係る複層構造物として完成される。
Next, the present invention will be explained with reference to the drawings. The drawings are explanatory diagrams showing the process of forming multi-layered pickles according to the present invention by the coin injection method, and FIG. 1 shows the first stage of forming. Thermoplastic synthetic resin 3 forming a skin layer from nozzle 1
This shows the state in which is being injected into the mold cavity 2. Second
The figure shows the second stage of molding, in which thermoplastic synthetic resin 5 containing conductive filler 4 is injected into the resin 3 from the same nozzle 1, following the previously injected thermoplastic synthetic resin 3. FIG. 3 shows the third stage of molding, in which the raw material has been completely injected into the mold cavity 3 in the second stage. The molded product that has been injected in the third step is cooled by a known method, then taken out from the mold cavity 2, and subjected to finishing operations to complete the multilayer structure according to the present invention.

尚スキン層、コア層に使用される材料について詳しく述
べると、スキン層にはポリスチレン、ABS、ポリアミ
ド、ポリカーボネート、ポリプロピレノ、ポリフェニレ
ンオキサイド、ポリ塩化ビニル等射出成形に適する熱可
塑性合成樹脂が使用される。コア層に使用される材料と
しては先に述べた様にシールド特性、流れ性、スキン層
に対する密着性等が必要になり、熱可塑性合成樹脂材料
、導電性フィラーの種類と形状、及び熱可塑性合成樹脂
材料と導電性フィラーの比率の選定が正波である。
Regarding the materials used for the skin layer and core layer, thermoplastic synthetic resins suitable for injection molding such as polystyrene, ABS, polyamide, polycarbonate, polypropylene, polyphenylene oxide, and polyvinyl chloride are used for the skin layer. . As mentioned above, the material used for the core layer must have shielding properties, flowability, adhesion to the skin layer, etc., and the materials used for the core layer must have properties such as a thermoplastic synthetic resin material, the type and shape of the conductive filler, and a thermoplastic synthetic material. The selection of the ratio of resin material and conductive filler is a positive factor.

熱可塑性合成樹脂材料はスキン層に対する密着性、流れ
性より選定されるが、スキン層に対する密着性が支配的
であり、各スキン層を形成する熱可塑性合成樹脂に対す
るコア層熱可塑性合成樹脂には以下の組合せが好ましい
Thermoplastic synthetic resin materials are selected based on their adhesion to the skin layer and flowability, but adhesion to the skin layer is dominant, and the thermoplastic synthetic resin for the core layer is different from the thermoplastic synthetic resin forming each skin layer. The following combinations are preferred.

ポリスチレン−ポリスチレン、ポリフエニレンオキサイ
ド1ABs−ABS、ポリカーボネート、ポリ塩化ヒニ
ル;ポリアミドーポリアミド;ポリカーボネート−AB
C,ポリカーボネート;ポリプロピレン−ポリエチレン
、ポリプロピレノ;ポリフェニレンオキサイド−ポリプ
ロピレン、ポリスチレン9ポリ塩、−ヒニルーABS、
ポリメチルメタクリレート、ポリ塩化ビニル、 ル、亜鉛、銅−亜鉛合金、カーホンがシールド特性より
望ましい。しかし流れ性、混和性より形状に限定が加わ
る。望ましい形状は厚みがQ、l sn以下で大きな面
の面積が4−以下のフレークか径(功が10〜100μ
mで長さくL)が1〜4關の微小繊維が望ましい。形状
が繊維の場合、L/Dの値が大きくなると繊維自体が玉
になりやすく、導電性フィラーとしての機能が低下する
ので1/′Dは200以下にするのが望ましい。
Polystyrene-polystyrene, polyphenylene oxide 1ABs-ABS, polycarbonate, polyhinyl chloride; polyamide polyamide; polycarbonate-AB
C, polycarbonate; polypropylene-polyethylene, polypropylene; polyphenylene oxide-polypropylene, polystyrene 9 polysalt, -hinyl-ABS,
Polymethyl methacrylate, polyvinyl chloride, zinc, copper-zinc alloy, and carphone are preferable due to their shielding properties. However, there are restrictions on the shape due to flowability and miscibility. The desired shape is a flake with a thickness of less than Q, l sn and a large surface area of less than 4 mm, or a diameter of 10 to 100 μm.
Fine fibers with length L) of 1 to 4 m are desirable. When the shape is a fiber, when the value of L/D becomes large, the fiber itself tends to form beads, and its function as a conductive filler decreases, so it is desirable that 1/'D be 200 or less.

更にコア層の熱可塑性合成樹脂材料と導電性フィラーの
比率もシールド特性と流れ性より決まり導電性フィラー
の容積比率は10〜25%が望ましい。
Furthermore, the ratio of the thermoplastic synthetic resin material of the core layer to the conductive filler is determined by the shielding properties and flowability, and the volume ratio of the conductive filler is preferably 10 to 25%.

容積比率が10%未満の場合は充分なシールド特性が得
られず25%より大きくなると導電性フィラーか多くな
るため流れが悪くなり、導電性フィラーが均一に分布し
たコア層が得られない。
When the volume ratio is less than 10%, sufficient shielding properties cannot be obtained, and when it is more than 25%, the amount of conductive filler increases, resulting in poor flow and a core layer in which the conductive filler is uniformly distributed cannot be obtained.

本発明の複層構造物を構成するスキン層、コア層につい
ては先に述べたようにスキン層は強度、美観に優れた機
能をもちコア層はシールド性に俊才1だ機能をもつもの
で両者が組合わされることにより目的とするテジタル電
子用ハウシ7りか得られるのでその比率は容積比でスキ
ン層:コア層スキン層にはポリスチレンIT −40(
出光石油化学社製 耐衝撃性ポリスチレン)を使用する
。コア層にはポリスチレンHF−10(出光石油化学社
製)100重量部とTransmet K−102(1
−ランスメノト社製アルミフレーク) 64.3重量部
を単軸の押出し機にかけ混線押出してペレ、Jト化した
ものを使用する。コア層のポリスチレンとフレークの容
積比率は80 : 20である。
Regarding the skin layer and core layer that constitute the multilayer structure of the present invention, as mentioned above, the skin layer has excellent strength and aesthetic functions, and the core layer has excellent shielding properties. By combining these, only the desired digital electronic housing 7 can be obtained, so the ratio by volume is skin layer: core layer The skin layer contains polystyrene IT-40 (
Use impact-resistant polystyrene manufactured by Idemitsu Petrochemical Co., Ltd. The core layer contains 100 parts by weight of polystyrene HF-10 (manufactured by Idemitsu Petrochemical Co., Ltd.) and Transmet K-102 (1 part by weight).
- 64.3 parts by weight of Aluminum flakes (manufactured by Lancemenoto) were mixed in a single-screw extruder and extruded into pellets and J-shaped sheets. The volume ratio of polystyrene to flakes in the core layer is 80:20.

コア層材料、スキン層材料をそれぞれ別のシリンダーで
加熱、閲練し2チヤンネルのノズルを通じ図tに示すよ
うな過程を経て800 X 800 x 7 tzの寸
法の金型に同時射出成形し、コア層に導電性フィラーを
含有する複層構造物を得た。
The core layer material and the skin layer material are heated and refined in separate cylinders, and then simultaneously injection molded into a mold with dimensions of 800 x 800 x 7 tz through a two-channel nozzle as shown in Figure t. A multilayer structure containing a conductive filler in the layer was obtained.

得られた複層構造物の表面は平滑であり、X線透過法で
フレークの分散状態を調べた所、分散も良好であった。
The surface of the obtained multilayer structure was smooth, and when the state of dispersion of the flakes was examined using an X-ray transmission method, the dispersion was also good.

次にシールド特性をW、D、Na5on等の方法に準じ
て測定した。180X140X200龍の箱を銅板で作
り、これに120Hの間隔をおいて送信アンテナと受信
アンテナを設置する。送信アンテナに安売電気製標準信
号発生器MO645Bを接続し、受信アンテナに送信ア
ンテナに供給し、この強度をスペクトラムアナライザー
で測定する。
Next, the shielding characteristics were measured according to the methods of W, D, Na5on, etc. A 180x140x200 dragon box is made of a copper plate, and a transmitting antenna and a receiving antenna are installed on it with an interval of 120H. A standard signal generator MO645B manufactured by Kansai Electric Co., Ltd. is connected to the transmitting antenna, and the signal is supplied to the receiving antenna to be supplied to the transmitting antenna, and its intensity is measured with a spectrum analyzer.

次に上で製造した複層構造物より140X100yzの
パネルを切り出し送信アンテナと受信アンテナの中間に
セットして同様の測定を実施する。シールド性はパネル
が無い場合の信号強度よりパネルが号強度の99.0%
がパネルで吸収・反射され、パネルを通過する信号強度
は1%)であり、十分なシールド性を示した。
Next, a 140 x 100 yz panel was cut out from the multi-layer structure manufactured above and placed between the transmitting antenna and the receiving antenna, and similar measurements were carried out. The shielding performance is 99.0% of the signal strength with the panel compared to the signal strength without the panel.
was absorbed and reflected by the panel, and the signal intensity passing through the panel was 1%), indicating sufficient shielding performance.

実施例2 コア層にポリスチレンHF−10100重11部とTr
ansmet K−10228,6重量部(容積比はポ
リスチレン:フレーク−90: 10 )をベレット化
したものを使用する以外は実施例1と同様に成形し、シ
ールド効果を測定した。シールド効果はほぼ一定のB 85#(信号強度の98.22%がパネルで吸収・反射
され、パネルを通過するものは1.78%)であり、シ
ールド性としては下限であった。
Example 2 11 parts by weight of polystyrene HF-10100 and Tr in the core layer
It was molded in the same manner as in Example 1, except that 6 parts by weight of ansmet K-10228 (volume ratio: polystyrene:flake-90:10) was used, and the shielding effect was measured. The shielding effect was almost constant at B85# (98.22% of the signal intensity was absorbed and reflected by the panel, and 1.78% passed through the panel), which was at the lower limit of the shielding performance.

実施例3 コア層にポリスチレンJ(F−10100重量部、Tr
ansmet K−402B5重量部をヘレット化 し
たものを使用する以外は実施例1と同様に成形しシー8 ルド効果を測定した。シールド効果は約50q(信号強
度の99.67%がパネルで吸収、反射され、パネルを
通過するものが0.33%)であり十分なシールド性が
示されたが、コア層の流れが悪くなったためか実用上は
問題ない程度であるが表面に凹凸が認められ、コア層の
導電性フィラーをこれより多くするのは無理と判断され
た。
Example 3 Polystyrene J (F-10 100 parts by weight, Tr
It was molded in the same manner as in Example 1, except that 5 parts by weight of ansmet K-402B was used as a heret, and the shielding effect was measured. The shielding effect was approximately 50q (99.67% of the signal intensity was absorbed and reflected by the panel, and 0.33% passed through the panel), indicating sufficient shielding performance, but the flow of the core layer was poor. This may be due to the fact that there was no problem in practical use, but irregularities were observed on the surface, and it was judged that it would be impossible to increase the amount of conductive filler in the core layer.

実施例4 スキン層にノリル?31J(エンジニアリングブラスチ
ソクス社製 ポリフェニレンオキサイド樹脂)を使用す
る。コア層にポリスチレンHF−10100重量部とア
ルミ繊維(径20μm、長さ8 fil ) 45.4
重量部を使用する。容積比は85 : 15である。こ
れらの材料を使用し実施例1と同様に成形し、シールド
効果を測定した。
Example 4 Noryl in the skin layer? 31J (polyphenylene oxide resin manufactured by Engineering Blastisox Co., Ltd.) is used. Core layer contains 100 parts by weight of polystyrene HF-10 and aluminum fiber (diameter 20 μm, length 8 fil) 45.4
Use parts by weight. The volume ratio is 85:15. These materials were molded in the same manner as in Example 1, and the shielding effect was measured.

B シールド効果はほぼ一定で40−であり十分なシールド
効果を示し表面も平滑であった。
B The shielding effect was almost constant at 40-, indicating a sufficient shielding effect and the surface was smooth.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、コインジェクション法による本発明に係る複層
構造物の成形過程を示す説明図であって第1図はスキン
層を形成する熱可塑性樹脂を金型内に注入している状態
を示し、第2図は第1図より注入された熱可塑性樹脂に
続いて同樹脂の内部に向って導電性フィラー入り熱可塑
性樹脂を注入している状態を示し、第3図は金型内に原
料が完全に注入された状態を示すものである。 ■・・ノズル     2・・・金形キャビティ3・ス
キン層を形成する熱可塑性樹脂 4 ・導電性フィラー 5・・導電性フィラーと共にコア層を形成する熱可塑性
樹脂 特許出願人  アロン化成株式会社 第11履 第21辺 第 3 図 5 手 続 補 正 書(自発) 昭和57年9月27日 昭和57年特許願第010360号 3、補正をする者 事件との関係  特許出願人 住所   東京都港区西新橋1丁目14番1号名称(0
50)  アロン化成株式会社代表者   江 口 活
 太 部 氏名   小 野 正 相中K 0726−32−51
615、補正命令の日付  自 発 6、補正により増加する発明の数。 7、補正の対象  明細書の特許請求の範囲の欄8、補
正(7)F5容  別紙のとおり8、補正の内容 明細書の特許請求の範囲を下記のとおり訂正する。 2、特許請求の範囲 熱可塑性樹脂からなるスキン層と、該熱可塑性樹脂と相
雇する熱可塑性樹脂と導電性フィラーの混合物からなる
コア層により構成される障害電波を遮断するに有用な複
層構造物。
The drawings are explanatory diagrams showing the process of molding a multilayer structure according to the present invention by a co-injection method, and FIG. 1 shows a state in which a thermoplastic resin forming a skin layer is injected into a mold, Figure 2 shows the state in which thermoplastic resin containing conductive filler is injected into the resin following the thermoplastic resin injected from Figure 1, and Figure 3 shows that the raw material is injected into the mold. This shows the fully injected state. ■ Nozzle 2 Mold cavity 3 Thermoplastic resin forming the skin layer 4 Conductive filler 5 Thermoplastic resin forming the core layer together with the conductive filler Patent applicant Aron Kasei Co., Ltd. No. 11 Page 21, No. 3, Figure 5 Procedural amendment (voluntary) September 27, 1980 Patent Application No. 010360, filed in 1983, Relationship with the case of the person making the amendment Patent applicant's address Nishi, Minato-ku, Tokyo Shinbashi 1-14-1 Name (0
50) Aron Kasei Co., Ltd. Representative Katsu Eguchi Tabe Name Tadashi Ono K Ainaka 0726-32-51
615. Date of amendment order Vol. 6. Number of inventions increased by amendment. 7. Subject of amendment Claims column 8 of the specification, Amendment (7) F5 content As shown in Attachment 8. Contents of amendment The scope of claims of the specification is corrected as follows. 2. Claims: A multi-layer useful for blocking interference radio waves, which is composed of a skin layer made of a thermoplastic resin and a core layer made of a mixture of a thermoplastic resin and a conductive filler, which coexist with the thermoplastic resin. Structure.

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性樹脂からなるスキン層と、該熱可塑性樹脂と相
客する熱可塑性樹脂と導電性フィラーの混合物からなる
コア層により構成される障害電波を遮断するに有用な複
層構造物。
A multilayer structure useful for blocking interference radio waves, comprising a skin layer made of a thermoplastic resin and a core layer made of a mixture of a thermoplastic resin and a conductive filler.
JP1036082A 1982-01-25 1982-01-25 Composite layer construction Pending JPS58127409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036082A JPS58127409A (en) 1982-01-25 1982-01-25 Composite layer construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036082A JPS58127409A (en) 1982-01-25 1982-01-25 Composite layer construction

Publications (1)

Publication Number Publication Date
JPS58127409A true JPS58127409A (en) 1983-07-29

Family

ID=11747993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036082A Pending JPS58127409A (en) 1982-01-25 1982-01-25 Composite layer construction

Country Status (1)

Country Link
JP (1) JPS58127409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252003A (en) * 1988-03-31 1989-10-06 Kyowa Denki Kagaku Kk Reflector for parabolic antenna for satellite broadcasting reception and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252003A (en) * 1988-03-31 1989-10-06 Kyowa Denki Kagaku Kk Reflector for parabolic antenna for satellite broadcasting reception and its manufacture

Similar Documents

Publication Publication Date Title
KR102298791B1 (en) Electromagnetic shielding film, circuit board and manufacturing method of electromagnetic shielding film
Huang EMI shielding plastics: a review
US5945213A (en) EMI shield and a method of forming the same
US6809254B2 (en) Electronics enclosure having an interior EMI shielding and cosmetic coating
USH526H (en) Non-metallic chassis structure with electromagnetic field attenuating capability
JPH05327275A (en) Electromagnetic shield and manufacture thereof
EP0750453A2 (en) Housing for electronic apparatus and method of damping unwanted radiation of electromagnetic waves
JPS58127743A (en) Thermoplastic resin composition
US4585686A (en) Two-layer structure molded by using thermoplastic resin
WO2021182381A1 (en) Electromagnetic wave-transmitting metallic lustrous member and method for producing same
JPS58127409A (en) Composite layer construction
TW517002B (en) Electromagnetic shielding multi-layered structure and method of making the same
JPS6013516A (en) Manufacture of multilayer injection molded product with electromagnetic shielding property
JPS58222124A (en) Thermoplastic resin composition
JPS60134500A (en) Electromagnetic wave shielding material
JPS58127744A (en) Thermoplastic resin composition
JPS5938244A (en) Electromagnetic wave-shielding synthetic resin molding material
JPH11112182A (en) Electromagnetic wave shield case and its manufacture
JPS59210957A (en) Electrically conductive plastic film or sheet
JPS5986638A (en) Resin composition having excellent electromagnetic wave shielding property and rigidity
JPS6042899A (en) Method of producing electromagnetic wave shielding multilayer molded part
JPS58200599A (en) Electromagnetically shielded molded article
JPS58222144A (en) Thermoplastic resin composition
JPH0319862B2 (en)
CN1215303A (en) Radio telephone electromagnetic radiation shielding cover and its production method