JPS58127744A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPS58127744A
JPS58127744A JP1035982A JP1035982A JPS58127744A JP S58127744 A JPS58127744 A JP S58127744A JP 1035982 A JP1035982 A JP 1035982A JP 1035982 A JP1035982 A JP 1035982A JP S58127744 A JPS58127744 A JP S58127744A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
carbon black
shielding
weight
digital electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1035982A
Other languages
Japanese (ja)
Inventor
Tadashi Hasegawa
正 長谷川
Tadanobu Suzuki
鈴木 忠信
Kazuo Haga
芳賀 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aron Kasei Co Ltd
Original Assignee
Aron Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aron Kasei Co Ltd filed Critical Aron Kasei Co Ltd
Priority to JP1035982A priority Critical patent/JPS58127744A/en
Publication of JPS58127744A publication Critical patent/JPS58127744A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a resin compsn. useful as a shielding material against jamming wave radiated by digital electronic devices, consisting of a thermoplastic resin, a metallic flake and carbon black having a hollow shell particle structure. CONSTITUTION:A thermoplastic resin compsn. consists of 25-35wt% metallic flake 2 such as aluminum flake having a thickness of 0.1mm. or below and an area (larger surface) of 4mm.<2> or below, 1-4wt% carbon black 3 having a hollow shell particle structure such as ketjen black EC (a product of AKZO N.V.) and the balance of a thermoplastic resin 1 such as PVC, PS or ABS. This compsn. is useful as a shielding material against jamming wave radiated by digital electronic devices. The metallic flake 2 and carbon black 3 constitute horizontal and vertical directions of an electrically conductive network, respectively. The network can be formed by using smaller amounts of components 2, 3 than when they are individually used.

Description

【発明の詳細な説明】 本発明は、デジタル電子装置が放射する妨害電波をシー
ルドするシールド材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shielding material that shields interference waves emitted by digital electronic devices.

IC,LSIに代表されるエレクトロニクス技術の急速
な進歩に伴ない、IC,LSIを使用するコンピュータ
ー、電子ゲーム、テレビゲーム、電子金銭登録機、スイ
ッチング電源、デジタル時計。
With the rapid advancement of electronics technology represented by ICs and LSIs, computers, electronic games, video games, electronic cash registers, switching power supplies, and digital watches that use ICs and LSIs.

電卓、 ワードプロセッサー等のデジタル電子装置が広
範囲に使用されるようになった。
Digital electronic devices such as calculators and word processors became widely used.

デジタル電子装置は動作の基本として毎秒10.000
パルス以上のパルスを発生しており、このパルスに付随
して無線周波数エネルギーが放射される。
Digital electronic devices operate at 10,000 speeds per second.
It generates more than a pulse, and radio frequency energy is emitted along with the pulse.

従って、このようなデジタル電子装置を使用する場合に
は放射される無線周波エネルギーがラジオ、テレビ、無
線機にノイズ、画像の乱れ等の問題(いわゆる電磁波障
害)を起こすことがある。
Therefore, when using such digital electronic devices, the radiated radio frequency energy may cause problems such as noise and image disturbance (so-called electromagnetic interference) on radios, televisions, and wireless devices.

デジタル電子技術の利用技術は今後、各種製造設備、事
務用機器、家庭用機器、輸送設備等、全ての産業分野、
生活分野に広がると考えられ、それに伴なって電磁波障
害の問題が多発すると予想される。
In the future, digital electronic technology will be used in all industrial fields, including various manufacturing equipment, office equipment, household equipment, transportation equipment, etc.
It is expected that electromagnetic interference will spread into the daily life field, and that electromagnetic interference problems will occur frequently.

このような事態に対して、電磁波障害を防止するため、
デジタル電子装置には、障害電波を遮蔽すること・・・
・・・・・・シールド・・・・・・・・・が要求される
ようになりCl5PRO規格(国際規格)、FCC規格
(アメリカ規格)、VDE規格(西ドイツ規格)が決め
られている。
In order to prevent electromagnetic interference in such situations,
Digital electronic devices must be shielded from interference radio waves...
... Shielding ...... has become required, and the Cl5PRO standard (international standard), FCC standard (American standard), and VDE standard (West German standard) have been established.

デジタル電子装置のハウジングに、ポリスチレン、AB
S、ポリアミド、ポリカーボネート、ポリプロピレン、
ポリフェニレンオキサイド、ポリ塩化ビニル等の熱可塑
性プラスチックが多く使用されるが、プラスチックは障
害電波領域の電磁波を透過してしまうため、シールド技
術が是非とも必要である。プラスチックにシールド性を
与えるには金属化して導電性にすることが基本とされて
おり、(1)プラスチックの表面に導電性の層を形成さ
せる方法と、(2)プラスチックの中に導電性のフィラ
ーを添加する方法が考えられている。
Polystyrene, AB for housing of digital electronic equipment
S, polyamide, polycarbonate, polypropylene,
Thermoplastic plastics such as polyphenylene oxide and polyvinyl chloride are often used, but since plastics transmit electromagnetic waves in the interference radio wave range, shielding technology is absolutely necessary. The basic idea of giving shielding properties to plastic is to make it conductive by metallizing it.There are two methods: (1) forming a conductive layer on the surface of the plastic, and (2) forming a conductive layer inside the plastic. A method of adding fillers has been considered.

(1)の具体的な方法としては、亜鉛溶射、導電性塗料
塗布、真空蒸着、スパッタリング、メッキ等があり、(
2)の具体的な方法としては、カーボンブラック、メタ
ライズドガラス、金属リボン、金属フレーク、メタルパ
ウダー、カーボン繊維等の導電性フィラー添加がある。
Specific methods for (1) include zinc spraying, conductive paint coating, vacuum deposition, sputtering, and plating.
Specific methods for 2) include addition of conductive fillers such as carbon black, metallized glass, metal ribbons, metal flakes, metal powder, and carbon fibers.

しかしながら、(1)、(2)について以下のような問
題点が指摘されている。
However, the following problems have been pointed out regarding (1) and (2).

まず、(1)では導電性層がプラスチックの成形後、数
種類の表面処理を行なってから溶射、スプレー。
First, in (1), after the conductive layer is molded from plastic, it is subjected to several types of surface treatments, and then thermal sprayed and sprayed.

蒸着、スパッタリング、メッキ等で形成されるので0時
間がか5る、■人手がか\る、■余分な設備がいる、■
量産性が低い等コスト高になる。
It is formed by vapor deposition, sputtering, plating, etc., so it takes 0 hours, ■ It takes a lot of manpower, ■ It requires extra equipment, ■
Mass production is low and costs are high.

又、耐久性については、長時間使用しているとプラスチ
ックと表面導電性層との密着性が悪くなり、最後にはク
ラック、剥離を起こす。クラック、剥離が生じるとその
場所から、電磁波を外部に放射したり、剥離片がプリン
ト基板や内部配線上に落下し、ショートして故障の原因
や感電事故、火災の原因になり信頼性に乏しい。
Regarding durability, when used for a long time, the adhesion between the plastic and the surface conductive layer deteriorates, eventually causing cracks and peeling. If cracks or peeling occur, electromagnetic waves may be emitted from the location, or peeled pieces may fall onto the printed circuit board or internal wiring, causing short circuits, causing malfunctions, electric shocks, and fires, resulting in poor reliability. .

(2)は、剥離問題はないが、導電性フィラーを均一に
混入し、しかも均一な成形物を得るのが困難剋 である。これはプラスチックとフィラーの流水特性が異
なるために、シールド特性を良くするには導電性フィラ
ーの量を多くする必要があるが、フ叶 イラーの量を多くすると流水性が悪くなるからである。
In case (2), there is no peeling problem, but it is difficult to mix the conductive filler uniformly and to obtain a uniform molded product. This is because the water flow characteristics of plastic and filler are different, so it is necessary to increase the amount of conductive filler to improve shielding characteristics, but increasing the amount of filler worsens water flow.

従って導電性フィラーを添加する場合、添加量を少なく
してもシールド特性を低下させない工夫が是非とも必要
である。
Therefore, when adding a conductive filler, it is absolutely necessary to devise a method that does not reduce the shielding properties even if the amount added is reduced.

我々は、デジタル電子装置のプラスチック製ハウジング
にシールド性を与える方法として工程が簡単で、かつ、
信頼性の高い導電性フィラー添加法の問題点を種々検討
した結果、金属フレークと中空シェル状粒子構造を有す
るカーボンブラックをある割合で配合することで添加量
を少なくしてもシールド特性を低下させないという驚く
べき現象を見出した。
We have developed a method for providing shielding properties to plastic housings for digital electronic devices that is easy to process and that
As a result of various studies on the problems of highly reliable conductive filler addition methods, we found that by blending metal flakes and carbon black with a hollow shell particle structure in a certain ratio, the shielding properties will not deteriorate even if the amount added is small. I discovered this surprising phenomenon.

金属フレークと中空シェル状粒子構造を有するカーボン
ブラックをある割合で使用した場合、少量でも良好なシ
ールド性が得られることについては、両者の形状に関係
があると考えられる。つまりシールド性の高い低いは導
電性ネットワークの密度に関係し、金属フレークと中空
シェル状粒子構造を有するカーボンブラックを併用する
場合、図1に示すように両者が、導電性ネットワークの
水平方向、垂直方向を構成し、単独の場合よりも少ない
量で効率よくネットワークが゛形成されると想像される
The reason why good shielding properties can be obtained even with a small amount when metal flakes and carbon black having a hollow shell particle structure are used in a certain ratio is considered to be related to the shapes of the two. In other words, whether the shielding property is high or low is related to the density of the conductive network, and when metal flakes and carbon black with a hollow shell particle structure are used together, as shown in Figure 1, both the horizontal and vertical directions of the conductive network. It is envisioned that a network can be formed more efficiently with a smaller amount than in the case of a single method.

次に本発明を図面を用いて詳細に説明すれば、第1図は
、本発明に係る熱可塑性樹脂組成物の構成を示す断面図
であり、図中1は熱可塑性樹脂を5− 示す。熱可塑性樹脂]の使用については、特に樹脂の種
類に制限はないが、例えば、ポリスチレン。
Next, the present invention will be explained in detail using the drawings. Fig. 1 is a sectional view showing the structure of the thermoplastic resin composition according to the present invention, and 1 in the figure indicates the thermoplastic resin. Regarding the use of the thermoplastic resin, there is no particular restriction on the type of resin, but for example, polystyrene.

ABS、ポリアミド、ポリカーボネイト、ポリプロピレ
ン、ポリフェニレンオキサイド、ポリ塩化ビニル等が成
形上適当である。図中2.3は熱可塑性樹脂1に添加す
る金属フレークと中空シェル状粒子構造を有するカーボ
ンブラック(以下Aカーボンブラック3という)である
が、金属フレーク2としては材質がアルミ、銅、ニッケ
ル、亜鉛。
ABS, polyamide, polycarbonate, polypropylene, polyphenylene oxide, polyvinyl chloride, etc. are suitable for molding. In the figure, 2.3 is carbon black (hereinafter referred to as A carbon black 3) having a metal flake and hollow shell particle structure added to the thermoplastic resin 1, but the material of the metal flake 2 is aluminum, copper, nickel, zinc.

銅−亜鉛合金であり、厚みQ、 1 mm以下、大きな
面の面積が4 rust以下のものが望ましい。
It is preferably a copper-zinc alloy with a thickness Q of 1 mm or less and a large surface area of 4 rust or less.

中空シェル状粒子構造を有するカーボンブラック3(以
下Aカーボンブラック3という)については、例えば、
アクゾ社製ケッチンブラックECを使用するが粒子が中
空であり、従って表面積が大きい点に特徴をもつもので
ある。
Regarding carbon black 3 having a hollow shell-like particle structure (hereinafter referred to as A carbon black 3), for example,
Kettin Black EC manufactured by Akzo Corporation is used, and its particles are hollow and therefore have a large surface area.

添加量は、金属フレーク2が25〜35重量%。The amount of metal flakes 2 added is 25 to 35% by weight.

Aカーボンブラック3.1〜4重量%の範囲である。こ
れは金属フレーク2の方がシールド性に対して効果的で
あるが25%(容量を省略。以下同6一 じ)より少ない場合は、目的とするシールド性が得られ
ず35%より多い場合は、シールド性は十分であるが流
柔性が悪くなり均一な成形物が得難い。又、Aカーボン
ブラック3に関しては1%よりその添加効果が認められ
るが、4%でほぼ添加効果は上限になる。
A carbon black ranges from 3.1 to 4% by weight. This is because Metal Flake 2 is more effective for shielding performance, but if it is less than 25% (capacity is omitted, the same applies hereafter), the desired shielding performance cannot be obtained, and if it is more than 35%. Although the shielding property is sufficient, the fluidity becomes poor and it is difficult to obtain a uniform molded product. Regarding A carbon black 3, its addition effect is recognized from 1%, but the addition effect almost reaches its upper limit at 4%.

金属フレーク2を単独で用いる場合最少40%が必要と
されており、その場合も金属フレーク2が均一に分布し
た成形物を得るため、ゲートの大きさ、数、成形物の形
状等成形条件の検討が必要である。
When using metal flakes 2 alone, a minimum of 40% is required, and even in that case, in order to obtain a molded product in which metal flakes 2 are evenly distributed, the molding conditions such as the size and number of gates and the shape of the molded product must be adjusted. Needs consideration.

これに対し本発明は、従来よりも少ない添加量で十分な
シールド性が得られるだけでなく、製造は導電性フィラ
ーを添加しない場合と同様の条件で良いという顕著な効
果を有するものである。
On the other hand, the present invention has the remarkable effect that not only can sufficient shielding performance be obtained with a smaller amount added than before, but also that the manufacturing conditions can be the same as when no conductive filler is added.

上に述べた金属フレーク2.Aカーボンブラック3を使
用し、デジタル電子装置から放射される障害電波をシー
ルドするプラスチック製ハウジングを製造する工程は、
l)プラスチックに所定の金属フレーク、Aカーボンブ
ラック3を配合、2)押出機で混練り、押出しペレット
加工する。
Metal flakes mentioned above2. The process of manufacturing a plastic housing that uses carbon black 3 to shield interference radio waves emitted from digital electronic devices is as follows:
1) Blend specified metal flakes and A carbon black 3 into plastic; 2) Knead with an extruder and process into extrusion pellets.

3)射出成形機で目的とする製品を作る。Aカーボンブ
ラック3以外は従来の工程と同じである。
3) Make the desired product using an injection molding machine. The steps other than A carbon black 3 are the same as the conventional process.

以下、実施例に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

実施例I JSRABS  85(日本合成ゴム社製ABS樹脂)
68重量部、  Transmet K−102(トラ
ンスメット社製アルミフレーク)30重量部、ケッチン
ブラックEC(アクゾ社製)2重量部を単軸の押出機に
かけ、混線押出し後カットしてペレット化した。
Example I JSRABS 85 (ABS resin manufactured by Japan Synthetic Rubber Co., Ltd.)
68 parts by weight, 30 parts by weight of Transmet K-102 (aluminum flakes manufactured by Transmet), and 2 parts by weight of Ketchin Black EC (manufactured by Akzo) were put into a single-screw extruder, cross-wire extruded, and cut into pellets.

次にこのペレットを使用し、140 X 100 X 
3Mのパネルを射出成形により製造した。
Next, use this pellet, 140 x 100 x
3M panels were manufactured by injection molding.

得られたパネルの表面は平滑であり、X線透過法でフレ
ークの分散状態を調べた所分散も良好であった。
The surface of the obtained panel was smooth, and when the state of dispersion of flakes was examined using an X-ray transmission method, the dispersion was also good.

次にシールド特性をW、D、Na5on等の方法に準じ
て測定した。180 X 140 X200mmの箱を
銅板で作り、これに120騎の間隔をおいて送信アンテ
ナと受信アンテナを設置する。送信アンテナに安売電気
社製標準信号発生器MG645Bを接続し、受信アンテ
ナに安売電気社製スペクトラムアナライザーMS62A
を接続する。0.5〜1000L M旧の周波数の信号を連続的に送信アンテナに供給し、
この強度をスペクトラムアナライザーで測定する。
Next, the shielding characteristics were measured according to the methods of W, D, Na5on, etc. A box measuring 180 x 140 x 200 mm is made from a copper plate, and a transmitting antenna and a receiving antenna are installed at intervals of 120 mm. Connect the standard signal generator MG645B manufactured by Yasuri Electric Co., Ltd. to the transmitting antenna, and connect the spectrum analyzer MS62A manufactured by Yasuri Electric Co., Ltd. to the receiving antenna.
Connect. 0.5~1000L Continuously supply the old frequency signal to the transmitting antenna,
This intensity is measured with a spectrum analyzer.

同様の測定を送信アンテナと受信アンテナの中間に上で
製造したフレーク、ケッチンブラックECの添加のパネ
ルをセットして行なう。シールド性はパネルが無い場合
の信号強度よりパネルがある場合の強度を差引いた値で
示されるが、0,52 〜100.’OMf[の周波数範囲でほぼ一定の40 
dB(信号強度の99,0%がパネルで吸収2反射され
、パネルを通過する信号強度は1%)であり十分なシー
ルド性を示した。
A similar measurement was carried out by setting a panel to which the flakes prepared above and Kettin Black EC were added between the transmitting antenna and the receiving antenna. Shielding performance is expressed as the value obtained by subtracting the signal strength with a panel from the signal strength without a panel, and it ranges from 0.52 to 100. 40 which is almost constant in the frequency range of 'OMf[
dB (99.0% of the signal intensity is absorbed and reflected by the panel, and the signal intensity passing through the panel is 1%), indicating sufficient shielding performance.

実施例2 JSRABS  85 74重量部、アルミフレーク 
25重量部、ケッチンブラックEC1重量部のものにつ
いて、実施例1と同様に成形しシールド効果を測定した
。シールド効果はほぼ一定の359− dB(信号強度の98.22%がパネルで吸収9反射さ
れパネルを通過するものは1.78%)でありシールド
性としては下限であった。
Example 2 JSRABS 85 74 parts by weight, aluminum flakes
A product containing 25 parts by weight and 1 part by weight of Kettin Black EC was molded in the same manner as in Example 1, and the shielding effect was measured. The shielding effect was almost constant at 359-dB (98.22% of the signal intensity was absorbed and reflected by the panel, and 1.78% passed through the panel), which was at the lower limit of the shielding performance.

実施例3 JSRABS  35 61重量部、アルミフレーク3
5重量部、ケッチェンブラックEC4重量部のものにつ
いて同様にパネルを成形しシールド特性を測定した。シ
ールド効果は約50dB(信号強度の99.67%がパ
ネルで吸収9反射されパネルを通過するものは0.33
%)であり十分なシールド件数 を示すが表面性が流水が悪くなったためか、少し平滑性
が低下気味となった。
Example 3 JSRABS 35 61 parts by weight, aluminum flakes 3
Panels containing 5 parts by weight and 4 parts by weight of Ketjenblack EC were similarly molded and the shielding properties were measured. The shielding effect is approximately 50 dB (99.67% of the signal intensity is absorbed by the panel, reflected by the panel, and 0.33% of the signal intensity passes through the panel)
%), indicating a sufficient number of shields, but the smoothness slightly decreased, perhaps because the surface quality deteriorated in water flow.

比較例I JSRABS  35 60重量部、アルミフレーク3
5重量部、ケッチェンブラックEC5部 、:。
Comparative Example I JSRABS 35 60 parts by weight, aluminum flakes 3
5 parts by weight, 5 parts of Ketjenblack EC, :.

のものについて同様にパネルを成形しシールド特性を測
定した。シールド効果は約50dBであり、実施例3の
場合と比較しdも差が認められなかった。
Panels were formed in the same manner and the shielding properties were measured. The shielding effect was about 50 dB, and no difference was observed in d compared to the case of Example 3.

lO− 実施例4 ノリル781 J (エンジニアリングプラスチック製
ポリフェニレンオキサイド樹脂)68重量部、アルミフ
レーク30重量、ケッチェンブラックEC2重量部を押
出し機にかけて混線押出し後、ペレット化した。
IO- Example 4 68 parts by weight of Noryl 781 J (polyphenylene oxide resin manufactured by Engineering Plastics), 30 parts by weight of aluminum flakes, and 2 parts by weight of Ketjen Black EC were mixed in an extruder and cross-extruded, and then pelletized.

このペレットを使用し、実施例1と同様にパネルを成形
しシールド性を測定した。シールド効果は、約45dB
(信号強度の99.44%がパネルにより吸収9反射さ
れパネルを通過するものは0.56%)で十分なシール
ド性を示し、表面性も問題なかった。
Using this pellet, a panel was molded in the same manner as in Example 1, and the shielding properties were measured. Shielding effect is approximately 45dB
(99.44% of the signal intensity was absorbed and reflected by the panel, and 0.56% passed through the panel), indicating sufficient shielding properties, and there were no problems with surface properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る熱可塑性樹脂組成物の断面図で
ある。 l・・・・・・・・・熱可塑性樹脂  2・・・・・・
・・・金属フレーク8・・・・・・・・・Aカーボンブ
ラック(中空シェル状粒子構造を有するカーボンブラッ
ク) 特許出願人 アロン化成株式会社 11− 笛 11刀 300−
FIG. 1 is a sectional view of a thermoplastic resin composition according to the present invention. l・・・・・・Thermoplastic resin 2・・・・・・
...Metal flake 8...A carbon black (carbon black having a hollow shell-like particle structure) Patent applicant Aron Kasei Co., Ltd. 11- Flute 11 Sword 300-

Claims (1)

【特許請求の範囲】[Claims] l 金属フレーク25〜35重量%、中空シェル状粒子
構造を有するカーボンブラック1〜4重量%、および残
部が熱可塑性樹脂からなる障害電波を遮蔽するに有用な
熱可塑性樹脂組成物。
l A thermoplastic resin composition useful for shielding interference radio waves, comprising 25 to 35% by weight of metal flakes, 1 to 4% by weight of carbon black having a hollow shell particle structure, and the balance being a thermoplastic resin.
JP1035982A 1982-01-25 1982-01-25 Thermoplastic resin composition Pending JPS58127744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1035982A JPS58127744A (en) 1982-01-25 1982-01-25 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1035982A JPS58127744A (en) 1982-01-25 1982-01-25 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPS58127744A true JPS58127744A (en) 1983-07-29

Family

ID=11747967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1035982A Pending JPS58127744A (en) 1982-01-25 1982-01-25 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS58127744A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945336A (en) * 1982-09-07 1984-03-14 Toshiba Chem Corp Synthetic resin molding material for shielding electromagnetic wave
JPS60109921U (en) * 1983-12-28 1985-07-25 日本ピグメント株式会社 Metal flake composite thermoplastic synthetic resin molded product
EP0918361A1 (en) * 1997-03-11 1999-05-26 Matsushita Electric Industrial Co., Ltd. Secondary battery
CN104530595A (en) * 2014-12-24 2015-04-22 陈程 High-strength PVC (polyvinyl chloride) conducting composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50748A (en) * 1973-05-02 1975-01-07
JPS5665035A (en) * 1979-11-01 1981-06-02 Dainippon Jushi Kenkyusho:Kk Electrically conductive thermoplastic polymer composition
JPS5716045A (en) * 1980-05-19 1982-01-27 Rca Corp Electroconductive formation composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50748A (en) * 1973-05-02 1975-01-07
JPS5665035A (en) * 1979-11-01 1981-06-02 Dainippon Jushi Kenkyusho:Kk Electrically conductive thermoplastic polymer composition
JPS5716045A (en) * 1980-05-19 1982-01-27 Rca Corp Electroconductive formation composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945336A (en) * 1982-09-07 1984-03-14 Toshiba Chem Corp Synthetic resin molding material for shielding electromagnetic wave
JPS60109921U (en) * 1983-12-28 1985-07-25 日本ピグメント株式会社 Metal flake composite thermoplastic synthetic resin molded product
EP0918361A1 (en) * 1997-03-11 1999-05-26 Matsushita Electric Industrial Co., Ltd. Secondary battery
EP0918361A4 (en) * 1997-03-11 2004-11-24 Matsushita Electric Ind Co Ltd Secondary battery
CN104530595A (en) * 2014-12-24 2015-04-22 陈程 High-strength PVC (polyvinyl chloride) conducting composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
Huang EMI shielding plastics: a review
Geetha et al. EMI shielding: Methods and materials—A review
EP0083723B1 (en) Electromagnetic wave-shielding materials
Simon EMI shielding through conductive plastics
USH526H (en) Non-metallic chassis structure with electromagnetic field attenuating capability
US20080248230A1 (en) Polymer Emi Housing Comprising Conductive Fibre
EP0117700A1 (en) Rigid resin composition having electromagnetic shielding properties
US4783279A (en) Plastic mixture with electromagnetic shielding characteristics
JPS59158016A (en) Electromagnetically shielding material
US5554678A (en) Electromagnetic shielding composite
JPS58127743A (en) Thermoplastic resin composition
JPH0416500B2 (en)
JP2005011878A (en) Electromagnetic wave absorber
JPS58127744A (en) Thermoplastic resin composition
JPS6013516A (en) Manufacture of multilayer injection molded product with electromagnetic shielding property
JPS58222124A (en) Thermoplastic resin composition
KR100850007B1 (en) Composition for shielding electromagnetic wave, method of manufacturing the composition, and camera houseing for shielding electromagnetic wave
JPS58222144A (en) Thermoplastic resin composition
JPS59210957A (en) Electrically conductive plastic film or sheet
JPS612519A (en) Method of injection molding
JP2005281357A (en) Conductive coating
JPS5945336A (en) Synthetic resin molding material for shielding electromagnetic wave
JPS5986638A (en) Resin composition having excellent electromagnetic wave shielding property and rigidity
CN87104336A (en) Electro-magnetic wave shield
JPS58127409A (en) Composite layer construction