JPS58115877A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS58115877A
JPS58115877A JP21463281A JP21463281A JPS58115877A JP S58115877 A JPS58115877 A JP S58115877A JP 21463281 A JP21463281 A JP 21463281A JP 21463281 A JP21463281 A JP 21463281A JP S58115877 A JPS58115877 A JP S58115877A
Authority
JP
Japan
Prior art keywords
layer
doped
shaped groove
semiconductor laser
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21463281A
Other languages
Japanese (ja)
Other versions
JPS6124840B2 (en
Inventor
Toshiro Hayakawa
利郎 早川
Nobuyuki Miyauchi
宮内 伸幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21463281A priority Critical patent/JPS58115877A/en
Publication of JPS58115877A publication Critical patent/JPS58115877A/en
Publication of JPS6124840B2 publication Critical patent/JPS6124840B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the reliability and to suppress the noise characteristics of the titled laser element an also to enable to put the laser element into practical use by a method wherein, in regard to a Ga1-xAlxAs double hetero junction type semiconductor element, Mg is added to the active layer which oscillates a laser beam of visual range. CONSTITUTION:A P type clad layer 3 whereon Mg of 10<18>cm<-3> was doped, a 5X10<17>cm<-3>Mg doped P type active layer 4, a 10<18>cm<-3>Te doped N type clad layer 5 and a 10<18>cm<-3>Te doped N type cap layer 6 are successively laminated using a continued liquid-phase epitaxial growing method. A current circuit 7, where a concentrated current runs, is provided at the V-shaped groove where a current limiting layer 2 was removed. A P side electrode 8 and an N side electrode 9 are formed by evaporation on a GaAs substrate 1 and the cap layer 6 respectively. As a layer 3 is formed thin on the area excluding the V-shaped groove and it is thickly formed at the V-shaped groove, the oscillating beam of light is oozed out to the layer 2 through the layer 3 on the part other than the V-shaped groove. Accordingly the lateral mode, for which practically effective refractive index difference is established in the lateral direction of the layer 4, can be stabilized.

Description

【発明の詳細な説明】 本発明は可視光半導体レーザ素子の寿命特性及び雑音特
性の改良に関し、特に結晶組成に技術的手段を駆使した
GaI−1AlzAs系ダブルへテロ接合型半導体レー
ザ素子に関するものである0発光波長が800OA帯に
あるGaI−xAlzAs系の発光素子は近年急速な進
歩を遂げ、特に半導体レーザ素子は室温に於いてtof
t〜106時間の推定寿命が報告されるに至り、光通信
用の光源として実用化が促進されつつある。発光素子の
長寿命化の達成は、結晶成長技術の改善や成長系中の酸
素の低減により成長結晶中の欠陥密度を減少させ、ダー
クラインやダークスポット等の発生を抑制することが可
能になったこと及び共、振端面を誘電体膜で保護するこ
とにより端面腐蝕を防止したことが主な成功の要因とな
っている。しかしながら、発振波長が800OA以上の
赤外レーザ素子に於いては高い信頼性が確立されている
が、発振波長80ωA未満の可視光レーザ素子に関して
は赤外レーザ素子に比較して寿命が短かく信頼性が薄い
現状にある。この点に関し、結晶成長用基板としてP型
基板を使用し結晶性に問題のあるTe又はSe ドープ
n型クラッド層を活性層形成後にエピタキシャル成長さ
せることにより活性層の結晶性を向上させ、Ga1−x
AlzAB系可視光レーザ素子の信頼性を飛躍的に改善
する技術が本出願人により特願昭55−166124号
及び特願昭56−44775号にて出願されている。し
かしながらこの技術を用いたとしても赤外レーザ素子に
比職するとやや劣化率が大きくなる傾向がある。また活
性層には従来よりSiがドープされていたが、このよう
なレーザ素子ではIEEE、ジャーナル・オプ・カンタ
ムエレクトロニクス、 Vol、 QE−15、No、
 8.pp、 74 B(+979)にて報告されてい
るようにサブモードの抑圧が小さいため、縦モードジャ
ンプ時にモード競合雑音を生じ、実用化に際して支障が
あった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the lifetime characteristics and noise characteristics of a visible light semiconductor laser device, and in particular to a GaI-1AlzAs double heterojunction semiconductor laser device that utilizes technical means for crystal composition. GaI-xAlzAs light-emitting devices, whose zero emission wavelength is in the 800 OA band, have made rapid progress in recent years, and semiconductor laser devices in particular have low tof at room temperature.
An estimated lifespan of t~106 hours has been reported, and its practical use as a light source for optical communications is being promoted. Achieving a longer lifespan for light-emitting devices is possible by reducing the defect density in the grown crystal by improving crystal growth technology and reducing oxygen in the growth system, making it possible to suppress the occurrence of dark lines and dark spots. In addition, the main reason for the success was that end face corrosion was prevented by protecting the end face with a dielectric film. However, although high reliability has been established for infrared laser elements with an oscillation wavelength of 800 OA or more, visible light laser elements with an oscillation wavelength of less than 80 ωA have a shorter lifespan and are less reliable than infrared laser elements. The current situation is that the gender is weak. Regarding this point, the crystallinity of the active layer can be improved by using a P-type substrate as a crystal growth substrate and epitaxially growing a Te or Se-doped n-type cladding layer, which has a problem with crystallinity, after forming the active layer.
A technique for dramatically improving the reliability of AlzAB-based visible light laser elements has been filed by the present applicant in Japanese Patent Application No. 166124/1982 and Japanese Patent Application No. 44775/1982. However, even if this technique is used, the rate of deterioration tends to increase somewhat when compared to infrared laser elements. In addition, the active layer has conventionally been doped with Si, but in such laser devices, IEEE, Journal of Quantum Electronics, Vol. QE-15, No.
8. As reported in pp. 74 B (+979), since the suppression of submodes is small, mode competition noise occurs at the time of longitudinal mode jump, which poses a problem in practical application.

一方、活性層にドーピングを行なわず高純度にした場合
には縦モードの温度変化にヒステリシスが現出し縦モー
ドジャンプ時のモード競合雑音は解消されるもののレー
ザ光の単色性が強くなるため光学部品等からの反射レー
ザ光による自己結合効果によって極めて高いレベルの高
周波雑音を発生することとなり同様に実用化が阻害され
る結果となる。
On the other hand, if the active layer is made highly pure without doping, hysteresis will appear in the temperature change of the longitudinal mode, and although the mode competition noise at the time of longitudinal mode jump will be eliminated, the monochromaticity of the laser light will become stronger, resulting in optical components. The self-coupling effect caused by the reflected laser light from etc. generates an extremely high level of high frequency noise, which also hinders its practical application.

本発明は上述の問題点に鑑み、従来の可視光半導体レー
ザ素子の信頼性を改善するとともに雑音特性が小さく抑
制され実用化が容易に行なえる新規有用な半導体レーザ
素子を提供することを目的とするものである。
In view of the above-mentioned problems, an object of the present invention is to provide a new and useful semiconductor laser device that improves the reliability of conventional visible light semiconductor laser devices, has suppressed noise characteristics, and can be easily put into practical use. It is something to do.

以下、本発明を実施例に従って図面を参照しながら詳説
する。
Hereinafter, the present invention will be explained in detail according to embodiments with reference to the drawings.

第1図は本発明の一実施例を示す半導体レーザ素子の断
面構成図である。
FIG. 1 is a cross-sectional configuration diagram of a semiconductor laser device showing one embodiment of the present invention.

p型GaAs基板1に電流狭窄用ストライプ構造を形成
するためにn型GaAsの電流制限層2が成長された後
エツチングによシミ流制限層2表面よりGaAs基板1
に達するV字形溝が加工されている。このV字形溝及び
電流制限層2上にはP型不純物であるMgがl018c
rn″″3ドープされたGaO,45AI□、55As
のP型クラッド層8、Mgが5 X I O’r’cm
−3ドープされたGa o、sり A 10.+5 A
 sのP型活性層4、Teが10+8crn=8ドープ
されたG ao、45 A Io、55 A SOn型
クラッド層5、Teが10!8cIn−8ドープされた
GaAsのn型キャップ層6が連続液相エピタキシャル
成長法により順次積層されている。電流制限層2は注入
電流に対して逆導電型に接合されているためこの部分に
は電流が流れず、電流制限層2が除去されたV字形溝の
部分に集中して電流が流れる電流通路7が構成される。
After an n-type GaAs current-limiting layer 2 is grown on a p-type GaAs substrate 1 to form a stripe structure for current confinement, the GaAs substrate 1 is etched from the surface of the current-limiting layer 2.
A V-shaped groove reaching . On this V-shaped groove and the current limiting layer 2, Mg, which is a P-type impurity, is l018c.
rn″″3 doped GaO, 45AI□, 55As
P-type cladding layer 8, Mg is 5 X I O'r'cm
-3 doped Ga o,sri A 10. +5 A
s P-type active layer 4, Te doped with 10+8crn=8 Gao, 45A Io, 55A SOn-type cladding layer 5, and Te-doped GaAs n-type cap layer 6 doped with 10!8cIn-8. The layers are sequentially stacked using a liquid phase epitaxial growth method. Since the current limiting layer 2 is connected in a conductivity type opposite to the injected current, no current flows through this part, and the current flows concentrated in the V-shaped groove where the current limiting layer 2 is removed. 7 is composed.

GaAs基板l基板上ャップ層6にはそれぞれp側電極
8、n側電極9が蒸着形成されている。
A p-side electrode 8 and an n-side electrode 9 are formed by vapor deposition on the top layer 6 of the GaAs substrate 1, respectively.

ストライブ構造とな不電流通路7の形成はアンモニア水
と過酸化水素水と水の混合比が1:]:50のエツチン
グ液ヲ用い、フォトリソグラフィ法で電流制限層2表面
からV字形に溝加工することにより行なう。これによっ
てp型クラッド層3の厚さはV字形溝部以外では薄くV
字形溝部では厚く層設されるため活性層4内の発振光は
V字形溝部以外ではp型クラッド層8を介して電流制限
層2に迄滲み出す。捉って、活性層4の横方向に実効的
な屈折率差が設けられることとなり横モードが安定化さ
れ室温連続発振時には第2図(A)(B)に示す如(2
0mW以上迄基本横モードで発振する。尚、第2図(A
)(B)は駆動電流対光出力特性及び各光出力における
p−n接合に水平方向の遠視野像を示す説明図である。
The non-current path 7 having a striped structure is formed by forming V-shaped grooves from the surface of the current limiting layer 2 by photolithography using an etching solution with a mixing ratio of ammonia water, hydrogen peroxide water and water of 1:]:50. This is done by processing. As a result, the thickness of the p-type cladding layer 3 is thinner than the V-shaped groove.
Since the layer is thick in the groove, the oscillation light in the active layer 4 leaks through the p-type cladding layer 8 to the current limiting layer 2 in areas other than the V-shaped groove. As a result, an effective refractive index difference is provided in the lateral direction of the active layer 4, and the transverse mode is stabilized, so that during continuous oscillation at room temperature, as shown in FIGS. 2(A) and 2(B),
It oscillates in the fundamental transverse mode up to 0mW or more. In addition, Fig. 2 (A
) (B) is an explanatory diagram showing drive current vs. optical output characteristics and a horizontal far-field image of a pn junction at each optical output.

上記実施例の半導体レーザ素子は発振波長が約780 
nmであり、これを70℃に於いて光出力5mWの条件
で駆動した場合の駆動電流の経時変化を第3図に示す。
The semiconductor laser device of the above embodiment has an oscillation wavelength of about 780
FIG. 3 shows the change in drive current over time when this was driven at 70° C. and an optical output of 5 mW.

この図より、p型不純物としてMgを用いた本実施例の
半導体レーザ素子は3000時間迄はとんど劣化は認め
られず極めて安定な動作状態を維持することができる。
From this figure, the semiconductor laser device of this example using Mg as a p-type impurity can maintain an extremely stable operating state with almost no deterioration observed for up to 3000 hours.

尚、活性層をSiドープあるいは無添加とした場合には
他の条件が同一であっても寿命特性は上記実施例の素子
より劣る。第4図は活性層にSiを5×1O17crI
r3添加した場合のレーザ素子を70℃に於いて光出力
3mWの条件で駆動した場合の駆動電流の経時変化を示
す説明図そある。
Incidentally, when the active layer is Si-doped or Si-doped, even if other conditions are the same, the life characteristics are inferior to the elements of the above embodiments. Figure 4 shows Si in the active layer at 5×1O17crI.
There is an explanatory diagram showing the change in driving current over time when a laser element doped with r3 is driven at 70° C. with an optical output of 3 mW.

次に上記実施例の半導体レーザ素子の雑音特性について
実験データに基いて説明する。
Next, the noise characteristics of the semiconductor laser device of the above embodiment will be explained based on experimental data.

第5図は第1図に示す半導体レーザ素子の発振波長の直
流駆動電流依存性を示す。電流増減に伴なう素子温度の
変化によりヒステリシスを有するモードジャンプが認め
られる。従来の活性層が無添加の半導体レーザ素子で説
明した如く横モードが安定化された半導体レーザ素子に
於いて縦モードの温度変化にヒステリシスが現われると
モードジャンプ時に雑音が出ないことが知られている。
FIG. 5 shows the dependence of the oscillation wavelength of the semiconductor laser device shown in FIG. 1 on the DC drive current. Mode jumps with hysteresis are observed due to changes in element temperature as the current increases and decreases. As explained in the conventional semiconductor laser device in which the active layer has no additives, it is known that in a semiconductor laser device in which the transverse mode is stabilized, if hysteresis appears in the temperature change in the longitudinal mode, no noise will be generated during mode jump. There is.

本実施例では活性層に不純物としてMgを添加した場合
でも縦モード温度変化にヒステリシスが現われることを
利用してモードジャンプ時のモード競合雑音を解消しか
つ被照射体からの反射光に対しても従来の無添加活性層
のレーザ素子に比較してその鋭敏性を低減したものであ
る。
In this example, even when Mg is added as an impurity to the active layer, hysteresis appears in the temperature change in the longitudinal mode to eliminate mode competition noise at the time of mode jump and also to eliminate reflected light from the irradiated object. Its sensitivity is reduced compared to conventional laser elements with additive-free active layers.

第6図は1.5MHz 、 30KHz幅の雑音対光出
力(N/S)比の温度特性について第1図の半導体レー
ザ素子(破線)と活性層にSi を5 X 1017c
rn−3添加した半導体レーザ素子(実線)を比較して
説明する特性図である。本実施例の半導体レーザ素子で
は雑音レベルの変化はほとんど現われていない。
Figure 6 shows the temperature characteristics of the noise to optical output (N/S) ratio at 1.5 MHz and 30 KHz width using the semiconductor laser device shown in Figure 1 (dashed line) and the active layer containing 5 x 1017c of Si.
FIG. 2 is a characteristic diagram comparing and explaining semiconductor laser elements (solid line) doped with rn-3. In the semiconductor laser device of this example, there is almost no change in the noise level.

活性層4に添加するMgの濃度を変化させて実験した結
果、I X 1017cIn−8以上に添加した場合に
再現性良くヒステリシス特性が実現されることが判明し
た。
As a result of experiments by varying the concentration of Mg added to the active layer 4, it was found that hysteresis characteristics can be achieved with good reproducibility when added to I x 1017cIn-8 or more.

第7図は被照射体からの反射光(戻り光)が半導体レー
ザ素子に与える影響を測定する光学系の構成図である。
FIG. 7 is a configuration diagram of an optical system for measuring the influence of reflected light (return light) from an irradiated object on a semiconductor laser element.

半導体レーザ素子11から出力されたレーザ光を対物レ
ンズ(NA=0.25 ) I 2で集束させ、反射率
が75%のハーフミラ−13を介してPINダイオード
14等の光検出器で出力光強度を検出し検出結果をスペ
クトラムアナライザ15でデータとして記録する。ハー
フミラ−13で反射された光は対物レンズ12を介して
半導体レーザ素子11へ帰還されるがこの反射光による
出力特性の変動がスペクトラムアナライザ15に記録さ
れる。
The laser beam output from the semiconductor laser element 11 is focused by an objective lens (NA=0.25) I2, and the output light intensity is detected by a photodetector such as a PIN diode 14 via a half mirror 13 with a reflectance of 75%. The spectrum analyzer 15 records the detection results as data. The light reflected by the half mirror 13 is returned to the semiconductor laser element 11 via the objective lens 12, and fluctuations in output characteristics due to this reflected light are recorded on the spectrum analyzer 15.

活性層を無添加とした場合の半導体レーザ素子を第7図
の測定系で測定した結果、第8図に示す如く反射光の存
在により極めて不安定な強い高周波雑音が発生した。こ
れに対して第1図の半導体レーザ素子では第9図に示す
如く雑音レベルが低くまた安定していることが確められ
た。このような雑音特性が得られる理由は、活性層4が
p型不純物を含有する場合にはエネルギーバンドの乱れ
が比較的少ないことによるものと考えられる。
As a result of measuring a semiconductor laser device with no additives in the active layer using the measuring system shown in FIG. 7, extremely unstable strong high frequency noise was generated due to the presence of reflected light as shown in FIG. 8. On the other hand, it was confirmed that the semiconductor laser device shown in FIG. 1 had a low noise level and was stable as shown in FIG. The reason why such noise characteristics are obtained is considered to be that when the active layer 4 contains p-type impurities, there is relatively little disturbance in the energy band.

以上詳説した如く本発明によれば70℃程度の高温下に
於いても数千時間にわたりほとんど経時変化がなく極め
て高い信頼性を維持することができ、また温度変化に伴
なうモード競合雑音がなくかつ被照射体からの反射光が
帰還された場合にも雑音の発生は軽減されるため非常に
実用的価値の高い半導体レーザ素子を確立することがで
きる。
As explained in detail above, according to the present invention, it is possible to maintain extremely high reliability with almost no change over time for several thousand hours even under high temperatures of about 70°C, and mode competition noise due to temperature changes can be maintained. Even when the reflected light from the irradiated object is fed back, the generation of noise is reduced, making it possible to establish a semiconductor laser device with very high practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す半導体レーザ素子の断
面構成図である。第2図は第1図に示す半導体レーザ素
子の駆動電流対光出力特性及びp−n接合に平行な遠視
野像を示す説明図である。第3図は第1図に示す半導体
レーザ素子の駆動電流の経時変化を示す特性図である。 第4図は従来の半導体レーザ素子の駆動電流の経時変化
を示す特性図である。第5図は第1図に示す半導体レー
ザ素子の発振波長の直流駆動電流依存性を示す特性図で
ある。第6図は雑音対直流光出力比の温度依存性を示す
特性図である。第7図は雑音特性を測定する光学系の構
成図である。第8図は従来の半導体レーザ素子の雑音電
力の駆動電流依存性を示す特性図である。第9図は第1
図に示す半導体レーザ索子の雑音電力の駆動電流依存性
を示す特性図である。 1・・・GaAs基板、2・・・電流制限層、3・・・
p型クラッド層、4・・・活性層、5・・・n型クラッ
ド層、6・・・キャップ層、7・・・電流通路。 代理人 弁理士 福 士 愛 彦 第5図       −(會オ龜シ尤 (mA)1度 
CC>
FIG. 1 is a cross-sectional configuration diagram of a semiconductor laser device showing one embodiment of the present invention. FIG. 2 is an explanatory diagram showing the drive current vs. optical output characteristics of the semiconductor laser device shown in FIG. 1 and a far-field pattern parallel to the pn junction. FIG. 3 is a characteristic diagram showing changes over time in the drive current of the semiconductor laser device shown in FIG. FIG. 4 is a characteristic diagram showing changes over time in the drive current of a conventional semiconductor laser device. FIG. 5 is a characteristic diagram showing the dependence of the oscillation wavelength of the semiconductor laser device shown in FIG. 1 on the DC drive current. FIG. 6 is a characteristic diagram showing the temperature dependence of the noise to DC optical output ratio. FIG. 7 is a block diagram of an optical system for measuring noise characteristics. FIG. 8 is a characteristic diagram showing the drive current dependence of noise power of a conventional semiconductor laser device. Figure 9 is the first
FIG. 3 is a characteristic diagram showing the drive current dependence of the noise power of the semiconductor laser probe shown in the figure. DESCRIPTION OF SYMBOLS 1... GaAs substrate, 2... Current limiting layer, 3...
p-type cladding layer, 4... active layer, 5... n-type cladding layer, 6... cap layer, 7... current path. Agent Patent Attorney Aihiko Fuku Figure 5 - (Meeting charge (mA) 1 degree
CC>

Claims (1)

【特許請求の範囲】 1、  GaAlAsを主として成る混晶で構成された
可視領域のレーザ光を発振する活性層に不純物としてM
gを添加したことを特徴とする半導体レーザ素子。 2、Mgの添加濃度をI X 10IT tM−s以上
に設定した特許請求の範囲第1項記載の半導体レーザ素
子0
[Claims] 1. M as an impurity is added to the active layer which oscillates laser light in the visible region and is composed of a mixed crystal mainly composed of GaAlAs.
A semiconductor laser device characterized by adding g. 2. Semiconductor laser device 0 according to claim 1, in which the concentration of Mg added is set to I x 10 IT tM-s or more
JP21463281A 1981-12-28 1981-12-28 Semiconductor laser element Granted JPS58115877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463281A JPS58115877A (en) 1981-12-28 1981-12-28 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463281A JPS58115877A (en) 1981-12-28 1981-12-28 Semiconductor laser element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9400287A Division JPS62247584A (en) 1987-04-16 1987-04-16 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS58115877A true JPS58115877A (en) 1983-07-09
JPS6124840B2 JPS6124840B2 (en) 1986-06-12

Family

ID=16658948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463281A Granted JPS58115877A (en) 1981-12-28 1981-12-28 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS58115877A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160490A2 (en) * 1984-04-24 1985-11-06 Sharp Kabushiki Kaisha A semiconductor laser
JPS60225490A (en) * 1984-04-24 1985-11-09 Sharp Corp Semiconductor laser element
JPS62247584A (en) * 1987-04-16 1987-10-28 Sharp Corp Semiconductor laser element
US5136601A (en) * 1984-11-19 1992-08-04 Hitachi, Ltd. Semiconductor laser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060189A (en) * 1973-09-26 1975-05-23
JPS50144393A (en) * 1974-05-10 1975-11-20
JPS5236988A (en) * 1975-09-18 1977-03-22 Mitsubishi Electric Corp Semiconductor laser
JPS52114289A (en) * 1976-03-22 1977-09-24 Mitsubishi Electric Corp Semiconductor light emittiing element
JPS5348669A (en) * 1976-10-15 1978-05-02 Mitsubishi Electric Corp Growth method of semiconductor crystal
JPS5628390A (en) * 1979-08-10 1981-03-19 Nissan Motor Supporting structure of main body of internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060189A (en) * 1973-09-26 1975-05-23
JPS50144393A (en) * 1974-05-10 1975-11-20
JPS5236988A (en) * 1975-09-18 1977-03-22 Mitsubishi Electric Corp Semiconductor laser
JPS52114289A (en) * 1976-03-22 1977-09-24 Mitsubishi Electric Corp Semiconductor light emittiing element
JPS5348669A (en) * 1976-10-15 1978-05-02 Mitsubishi Electric Corp Growth method of semiconductor crystal
JPS5628390A (en) * 1979-08-10 1981-03-19 Nissan Motor Supporting structure of main body of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160490A2 (en) * 1984-04-24 1985-11-06 Sharp Kabushiki Kaisha A semiconductor laser
JPS60225490A (en) * 1984-04-24 1985-11-09 Sharp Corp Semiconductor laser element
US4792960A (en) * 1984-04-24 1988-12-20 Sharp Kabushiki Kaisha Semiconductor laser
JPH0564478B2 (en) * 1984-04-24 1993-09-14 Sharp Kk
US5136601A (en) * 1984-11-19 1992-08-04 Hitachi, Ltd. Semiconductor laser
JPS62247584A (en) * 1987-04-16 1987-10-28 Sharp Corp Semiconductor laser element

Also Published As

Publication number Publication date
JPS6124840B2 (en) 1986-06-12

Similar Documents

Publication Publication Date Title
Harder et al. High-power ridge-waveguide AlGaAs GRIN-SCH laser diode
US4615032A (en) Self-aligned rib-waveguide high power laser
EP0408373B1 (en) Transverse-mode oscillation semiconductor laser device
US5556804A (en) Method of manufacturing semiconductor laser
JPH09199803A (en) Semiconductor laser and its manufacture method
Iga et al. Room temperature pulsed oscillation of GaAlAs/GaAs surface emitting junction laser
US4815082A (en) Semiconductor laser device
JPS58115877A (en) Semiconductor laser element
US4800565A (en) Semiconductor laser device having high optical intensity and reliability
JP3040273B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3251003B2 (en) Semiconductor laser device and optical recording / reproducing device
US5329134A (en) Superluminescent diode having a quantum well and cavity length dependent threshold current
JP2001068789A (en) Semiconductor laser
JP2842465B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0521902A (en) Semiconductor laser device
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JPS62247584A (en) Semiconductor laser element
JPH09232681A (en) Nitride compd. semiconductor optical device
JP4362873B2 (en) Semiconductor laser and optical disk apparatus
JPH0671121B2 (en) Semiconductor laser device
Takahashi et al. High-efficiency and high-power AlGaAs/GaAs laser
JP3503715B2 (en) Semiconductor laser device
Watanabe et al. Mechanism of the negative slope in the current‐light characteristics of twin‐stripe lasers
JP2536044B2 (en) Semiconductor laser device
JP2821150B2 (en) Semiconductor laser device