JPH0521902A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0521902A
JPH0521902A JP19887691A JP19887691A JPH0521902A JP H0521902 A JPH0521902 A JP H0521902A JP 19887691 A JP19887691 A JP 19887691A JP 19887691 A JP19887691 A JP 19887691A JP H0521902 A JPH0521902 A JP H0521902A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
type
laser device
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19887691A
Other languages
Japanese (ja)
Inventor
Akihiro Shima
顕洋 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19887691A priority Critical patent/JPH0521902A/en
Publication of JPH0521902A publication Critical patent/JPH0521902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To oscillate laser beams having specific long wavelength, and to obtain basic mode operation easily even at the time of high optical output operation by increasing the N-type carrier concentration of a current block layer, to which silicon is doped, to a specific value or more. CONSTITUTION:A semiconductor laser device has a ridge 6-shaped upper clad layer 4 formed onto an active layer 3 oscillating light of 900nm or more in wavelength and current block layers 11 formed on both sides of the upper clad layer 4 and composed of GaAs. Silicon is doped in high concentration so that N-type carrier concentration in the GaAs current block layers 11 reaches 6X10<18>cm<-3> or more, and a deep level is shaped near a 900-1000nm band. Accordingly, wavelength light having 900nm or more reaching the GaAs current block layers 11 through clad layers 2, 4 from both sides of a laser emitting section can be absorbed, and the higher mode of a laser is suppressed, thus easily acquiring a basic mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、波長が900nm以
上の光を発振する活性層を備えた半導体レーザに関し、
特に、Erドープファイバ光増幅器の励起光源として使
用される980nm帯半導体レーザに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser provided with an active layer that oscillates light having a wavelength of 900 nm or more,
In particular, the present invention relates to a 980 nm band semiconductor laser used as a pumping light source for an Er-doped fiber optical amplifier.

【0002】[0002]

【従来の技術】図3は、ELECTRONICS LETTERS(エレクト
ロニクス レターズ) 〔28th September 1989 Vol.25,
No.20 〕に示された従来の830nm帯の波長を発する
半導体レーザ装置の断面図であり、図において、1はn
型GaAs基板、2はn型Al0.5 Ga0.5 As下クラ
ッド層、3はダブルカンタムウエル活性層、3aは活性
層3を構成する厚さ70オングストロームのGaAs量
子井戸層、3bはAl0. 3 Ga0.7 Asガイド層、3c
はAl0.3 Ga0.7 Asバリア層、4はp型Al0.5
0.5 As上クラッド層、5はp型GaAsオーミック
コンタクト層、6はリッジ、7はシリコンドープされた
n型GaAs電流阻止層、8はn側電極、9はp側電極
である。
2. Description of the Related Art FIG. 3 shows ELECTRONICS LETTERS [28th September 1989 Vol.25,
No. 20], which is a cross-sectional view of a conventional semiconductor laser device that emits a wavelength in the 830 nm band, where 1 is n
-Type GaAs substrate, 2 n-type Al 0.5 Ga 0.5 As lower cladding layer, a double quantum well active layer 3, 3a is GaAs quantum well layer having a thickness of 70 Å constituting the active layer 3, 3b is Al 0. 3 Ga 0.7 As guide layer, 3c
Is an Al 0.3 Ga 0.7 As barrier layer, and 4 is p-type Al 0.5 G
a 0.5 As upper cladding layer, 5 a p-type GaAs ohmic contact layer, 6 a ridge, 7 a silicon-doped n-type GaAs current blocking layer, 8 an n-side electrode, and 9 a p-side electrode.

【0003】次に、上記半導体レーザ装置の形成工程を
図4を用いて説明する。図4は、上記半導体レーザ装置
の形成工程を示す断面図であり、図において、10はS
iO2 マスクであり、図3と同一符号は同一または相当
する部分を示している。
Next, a process of forming the semiconductor laser device will be described with reference to FIG. FIG. 4 is a cross-sectional view showing a forming process of the semiconductor laser device, in which 10 is an S.
This is an iO 2 mask, and the same symbols as those in FIG. 3 indicate the same or corresponding portions.

【0004】先ず、n型GaAs基板1上にn型AlG
aAs下クラッド層2,活性層3,p型AlGaAs上
クラッド層4,p型GaAsオーミックコンタクト層5
を順次MOCVD(Metal Organic Chemical Vapor Depo
sition) 法により成長し、次いで、図4(a) に示すよう
に、共振器方向に数ミクロンの幅を有するストライプ状
のSiO2 マスク10を形成し、更に、このSiO2
スク10をマスクとしてケミカルエッチングにより、p
型AlGaAs上クラッド層4,p型GaAsオーミッ
クコンタクト層5をエッチングして、図4(b) に示すよ
うなリッジ6を形成する。ここで、リッジ6の段差量は
エッチング面に活性層3のGaAs量子井戸層3aから
の光が充分に到達する距離となる程度にする。次に、S
iO2 マスク10を選択成長マスクとして使用し、MO
CVD法を用いて2回目の結晶成長を行い、図4(c) に
示すような、n型GaAs電流阻止層7を形成する。こ
の時、SiO2 マスク10上には結晶が成長しないた
め、リッジ6の段差量分に相当する層厚にn型GaAs
電流阻止層7を結晶成長すると、平坦に上記リッジ6が
埋め込こまれる。次いで、SiO2 マスク10を除去
し、基板1側にn側電極8,オーミックコンタクト層5
側にp側電極9をそれぞれ形成すると、図3に示した半
導体レーザ装置が得られる。
First, n-type AlG is formed on the n-type GaAs substrate 1.
aAs lower clad layer 2, active layer 3, p-type AlGaAs upper clad layer 4, p-type GaAs ohmic contact layer 5
MOCVD (Metal Organic Chemical Vapor Depo
sition) method, and then, as shown in FIG. 4 (a), a stripe-shaped SiO 2 mask 10 having a width of several microns in the cavity direction is formed, and this SiO 2 mask 10 is used as a mask. P by chemical etching
The upper AlGaAs cladding layer 4 and the p-type GaAs ohmic contact layer 5 are etched to form a ridge 6 as shown in FIG. 4 (b). Here, the step amount of the ridge 6 is set to such a distance that the light from the GaAs quantum well layer 3a of the active layer 3 can reach the etching surface sufficiently. Then S
Using the iO 2 mask 10 as a selective growth mask, MO
A second crystal growth is performed using the CVD method to form an n-type GaAs current blocking layer 7 as shown in FIG. 4 (c). At this time, since no crystal grows on the SiO 2 mask 10, the n-type GaAs has a layer thickness corresponding to the step difference of the ridge 6.
When the current blocking layer 7 is crystal-grown, the ridge 6 is flatly embedded. Then, the SiO 2 mask 10 is removed, and the n-side electrode 8 and the ohmic contact layer 5 are formed on the substrate 1 side.
When the p-side electrode 9 is formed on each side, the semiconductor laser device shown in FIG. 3 is obtained.

【0005】次に、上記半導体レーザ装置の動作につい
て説明する。n側電極8に陰極を、p側電極9に陽極を
それぞれ接続して、電流を流していくと、リッジ6直下
の活性層3で発光が始まる。この発光する光の波長は、
一般に、活性層を構成する量子井戸層の構造で決定さ
れ、量子井戸層がアンドープGaAsの場合、活性層は
870〜880nm程度の波長の光を発する。、また、
アンドープGaAsからなる量子井戸層がAlGaAs
層に挟まれ、該層の層厚が100オングストローム以下
である場合、発光波長はより短くなる。上記の半導体レ
ーザでは活性層3を構成する量子井戸層3aが、層厚が
70オングストロームのGaAs結晶によって構成され
ており、約830nmの波長の光を発し、更に、電流を
注入すると、レーザ発振を始めるが、その時のレーザ光
の発振波長も830nm近傍の波長となる。ところで、
この発振するレーザ光はリッジ6の直下の活性層3を中
心にある程度の広がりをもつが、GaAs電流阻止層7
は、この層のバンド端波長(〜850nm)よりも短い
波長を吸収し、活性層3に対して水平方向に広がる光は
該電流阻止層7に吸収される。このため、上記半導体体
レーザ光はリッジ6内にしか存在しなくなり、リッジ6
の幅を3ないし5μmにまで狭くすると、発光スポット
径が小さくなって、基本モードを実現することができ
る。
Next, the operation of the semiconductor laser device will be described. When a cathode is connected to the n-side electrode 8 and an anode is connected to the p-side electrode 9, and a current is applied, light emission starts in the active layer 3 immediately below the ridge 6. The wavelength of this emitted light is
Generally, it is determined by the structure of the quantum well layer that constitutes the active layer. When the quantum well layer is undoped GaAs, the active layer emits light with a wavelength of about 870 to 880 nm. ,Also,
The quantum well layer made of undoped GaAs is AlGaAs.
When sandwiched between layers and the layer thickness is less than 100 Å, the emission wavelength is shorter. In the above semiconductor laser, the quantum well layer 3a forming the active layer 3 is made of a GaAs crystal having a layer thickness of 70 angstroms, emits light of a wavelength of about 830 nm, and further injects a current, laser oscillation occurs. Although it starts, the oscillation wavelength of the laser light at that time also becomes a wavelength near 830 nm. by the way,
This oscillating laser light has a certain spread around the active layer 3 immediately below the ridge 6, but the GaAs current blocking layer 7
Absorbs a wavelength shorter than the band edge wavelength (up to 850 nm) of this layer, and the light spreading in the horizontal direction with respect to the active layer 3 is absorbed by the current blocking layer 7. Therefore, the semiconductor laser light exists only inside the ridge 6,
If the width is narrowed to 3 to 5 μm, the diameter of the light emission spot becomes small and the basic mode can be realized.

【0006】一方、図5は、1990年の秋季第51回
応用物理学会学術講演会講演予稿集(28a−R−4)
に示された980nm帯半導体レーザの断面であり、上
記の図3に示した半導体レーザ装置のGaAs量子井戸
層3aをIn0.24Ga0.76As量子井戸層3dに置き換
えて、900nm以上の波長を有するレーザ光が発振す
るように改良された半導体レーザであり、特に、Erド
ープファイバ光増幅器の励起光源として使用するため、
発振する光の波長が約980nm近傍となるように改良
されたものである。しかしながら、この半導体レーザ装
置は上記の図3に示した半導体レーザ装置と同様に、G
aAs電流阻止層7が約850nm以下の波長の光しか
吸収できないため、980nmの発振波長に対しては透
明体となってしまう。
On the other hand, FIG. 5 is a collection of proceedings (28a-R-4) of the 51st Autumn Meeting of the Applied Physics Society of Japan in 1990.
3 is a cross-sectional view of the 980 nm band semiconductor laser shown in FIG. 3, in which the GaAs quantum well layer 3a of the semiconductor laser device shown in FIG. 3 is replaced with an In 0.24 Ga 0.76 As quantum well layer 3d, and a laser having a wavelength of 900 nm or more is obtained. A semiconductor laser improved to oscillate light, particularly for use as an excitation light source of an Er-doped fiber optical amplifier,
The wavelength of the oscillated light is improved so as to be around 980 nm. However, this semiconductor laser device is similar to the semiconductor laser device shown in FIG.
Since the aAs current blocking layer 7 can absorb only light having a wavelength of about 850 nm or less, it becomes a transparent body for an oscillation wavelength of 980 nm.

【0007】[0007]

【発明が解決しようとする課題】上記の発振する光の波
長が900nm以上を示すように改良された従来の半導
体レーザ装置は、リッジ6の両脇にも光が拡がりやす
く、リッジ6の幅を狭くしても基本モードが得られ難
く、低光出力動作時には基本モードが得られても高光出
力動作時にはモードが不安定になって、高次モードが立
ちやすくなり、ドープファイバ光増幅器の励起光源とし
て使用する際に、ファイバ内に光を効率良く入射するこ
とができなくなる問題点があった。
In the conventional semiconductor laser device improved so that the wavelength of the oscillated light is 900 nm or more, the light easily spreads to both sides of the ridge 6 and the width of the ridge 6 is increased. It is difficult to obtain the basic mode even if it is narrowed, and even if the basic mode is obtained at low light output operation, the mode becomes unstable at high light output operation, and higher-order modes are likely to rise. However, there is a problem in that the light cannot be efficiently incident on the fiber.

【0008】この発明は上記のような問題点を解消する
ためになされたもので、900nm以上、特に、980
nm近傍の波長を有するレーザ光を発振し、且つ、高光
出力動作時にも容易に基本モード動作が得られる半導体
レーザ装置を得ることを目的とする。
The present invention has been made to solve the above problems, and is 900 nm or more, and particularly 980
An object of the present invention is to obtain a semiconductor laser device that oscillates a laser beam having a wavelength in the vicinity of nm and can easily obtain the fundamental mode operation even at the time of high light output operation.

【0009】[0009]

【課題を解決するための手段】この発明に係る半導体レ
ーザ装置は、900nm以上の光を発振する活性層を有
し、該活性層上に形成されたリッジ状の上クラッド層と
該リッジ状上クラッド層の両サイドに形成されたGaA
sからなる電流阻止層とを備えた半導体レーザにおい
て、上記GaAsからなる電流阻止層中にシリコンをド
ーピングして、該電流阻止層内のn型キャリア濃度が6
×1018cm-3以上になるようにしたものである。
A semiconductor laser device according to the present invention has an active layer that oscillates light having a wavelength of 900 nm or more, and a ridge-shaped upper cladding layer formed on the active layer and the ridge-shaped upper clad layer. GaA formed on both sides of the clad layer
In a semiconductor laser having a current blocking layer made of s, the current blocking layer made of GaAs is doped with silicon so that the n-type carrier concentration in the current blocking layer is 6
× 10 18 cm −3 or more.

【0010】[0010]

【作用】この発明においては、GaAs電流阻止層内の
n型キャリア濃度が6×1018cm-3以上となるようにシ
リコンを高濃度にドープして、900〜1000nm帯
付近にディープレベルを形成したので、レーザ発光部両
脇からクラッド層を介して、該GaAs電流阻止層に到
達する900nm以上の波長光を吸収でき、レーザの高
次モードが抑圧されて、基本モードが得やすくなる。
In the present invention, silicon is doped at a high concentration so that the n-type carrier concentration in the GaAs current blocking layer becomes 6 × 10 18 cm -3 or more, and a deep level is formed near the 900 to 1000 nm band. Therefore, the light having a wavelength of 900 nm or more that reaches the GaAs current blocking layer can be absorbed from both sides of the laser emitting portion through the cladding layer, and the higher mode of the laser is suppressed, and the fundamental mode is easily obtained.

【0011】[0011]

【実施例】以下、この発明の一実施例を図について説明
する。図1は、この発明の一実施例による半導体レーザ
装置の断面を示す図であり、図において、11はn型キ
ャリア濃度が6×1018cm-3以上となるようにシリコン
をドーピングしたn型GaAs電流阻止層であり、図3
及び図5と同一符号は、同一或いは相当する部分を示し
ている。そして、この半導体レーザは、図4で示した従
来の半導体レーザ装置の形成工程と殆ど同じ工程によっ
て得ることができ、電流阻止層の結晶成長時に、成長温
度を750℃にし、シリコンを多量にドープして得られ
たものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a cross section of a semiconductor laser device according to an embodiment of the present invention. In FIG. 1, 11 is an n-type doped with silicon so that the n-type carrier concentration is 6 × 10 18 cm −3 or more. GaAs current blocking layer, as shown in FIG.
The same reference numerals as those in FIG. 5 denote the same or corresponding parts. This semiconductor laser can be obtained by almost the same steps as the steps of forming the conventional semiconductor laser device shown in FIG. 4, and the growth temperature is set to 750 ° C. and the silicon is heavily doped at the time of crystal growth of the current blocking layer. It was obtained by doing.

【0012】次に、このレーザ装置の動作について説明
する。n側電極8に陰極を、p側電極9に陽極をそれぞ
れ接続し、電流を注入し、電流を流していくと、リッジ
6直下の活性層3で発光が始まり、更に、電流を流して
いくと、レーザ発振を始める。
Next, the operation of this laser device will be described. When the cathode is connected to the n-side electrode 8 and the anode is connected to the p-side electrode 9, current is injected, and current is flown, light emission starts in the active layer 3 immediately below the ridge 6, and current is further flowed. Then, laser oscillation is started.

【0013】図2は、MOCVD法において、成長温度
750℃で結晶成長したシリコンドープn型GaAs結
晶層の室温におけるフォトルミネッセンススペクトルの
n型キャリア濃度依存性を示した図である。図中、85
0nm近傍にみられるピークはGaAsのバンド端から
の発光ピークであり、n型キャリア濃度が増えるに従っ
てこのピーク強度は減少し、1000nm付近にはブロ
ードなディープレベルが現れている。この図より、85
0nm近傍より短い波長の光は、キャリア濃度に関係な
くGaAs結晶層に吸収されるが、980nmより長い
波長の光は、GaAs結晶層に必ずしも吸収されるわけ
ではなく、特に、ディープレベルの存在しないn型のキ
ャリア濃度が3×1018cm-3のGaAs結晶層ではこの
波長の光は吸収されず、n型キャリア濃度が高くなると
ディープレベルが現れ、キャリア濃度が6×1018cm-3
程度の濃度になると、ディープレベルによって980n
m付近の長い波長の光も吸収できることがわかる。
FIG. 2 is a diagram showing the n-type carrier concentration dependence of the photoluminescence spectrum at room temperature of a silicon-doped n-type GaAs crystal layer grown by MOCVD at a growth temperature of 750 ° C. 85 in the figure
The peak seen in the vicinity of 0 nm is an emission peak from the band edge of GaAs, the peak intensity decreases as the n-type carrier concentration increases, and a broad deep level appears in the vicinity of 1000 nm. From this figure, 85
Light having a wavelength shorter than 0 nm is absorbed by the GaAs crystal layer regardless of carrier concentration, but light having a wavelength longer than 980 nm is not always absorbed by the GaAs crystal layer, and in particular, there is no deep level. Light of this wavelength is not absorbed in the GaAs crystal layer having an n-type carrier concentration of 3 × 10 18 cm −3 , and a deep level appears when the n-type carrier concentration is high, and the carrier concentration is 6 × 10 18 cm −3.
At a level of about 980n, depending on the deep level
It can be seen that light with a long wavelength near m can also be absorbed.

【0014】本実施例の半導体レーザのn型GaAs電
流阻止層11は、上記のようにn型キャリア濃度が6×
1018cm-3以上となるようにシリコンがドーピングされ
ており、図2から分かるように、発振波長が980nm
の光に対して不透明な材料となる。従って、リッジ6の
両脇に拡がるレーザ光はこの電流阻止層11に吸収さ
れ、リッジ6の幅を3〜5μm程度の幅に狭くしていく
と、発光スポットの幅もリッジ6の幅以上に制限され
て、高次モードの発生を抑制することができる。
The n-type GaAs current blocking layer 11 of the semiconductor laser of this embodiment has an n-type carrier concentration of 6 × as described above.
Silicon is doped so as to have a density of 10 18 cm −3 or more, and as can be seen from FIG. 2, the oscillation wavelength is 980 nm.
The material becomes opaque to the light. Therefore, the laser light that spreads on both sides of the ridge 6 is absorbed by the current blocking layer 11, and if the width of the ridge 6 is narrowed to a width of about 3 to 5 μm, the width of the light emission spot becomes larger than the width of the ridge 6. It is possible to suppress the generation of the higher-order mode due to the limitation.

【0015】このようような本実施例の半導体レーザ装
置では、n型GaAs基板1上にn型Al0.5 Ga0.5
As下クラッド層2,波長が900nm以上の光を発振
するダブルカンタムウエル活性層3,p型Al0.5 Ga
0.5 As上クラッド層4,p型GaAsオーミックコン
タクト層5を順次形成し、上記p型上クラッド層4とp
型オーミックコンタクト層5とをリッジ状に形成し、該
リッジ状に形成されたp型上クラッド層4とp型オーミ
ックコンタクト層5の側部にシリコンドープによって層
内のn型キャリア濃度を6×1018cm-3以上にしたn型
GaAs電流阻止層11を形成したため、ダブルカンタ
ムウエル活性層3で発振した980nm近傍の波長を有
するレーザ光のリッジ6の両脇に拡がる光はこの電流阻
止層11で吸収されて、高次モードが抑制され、その結
果、モードが安定して基本モードで動作するようにな
り、ドープファイバ光増幅器の励起光源として使用する
際に、ファイバ内に光を効率良く入射することができ
る。
In such a semiconductor laser device of this embodiment, n-type Al 0.5 Ga 0.5 is formed on the n-type GaAs substrate 1.
As lower clad layer 2, double quantum well active layer that oscillates light with a wavelength of 900 nm or more 3, p-type Al 0.5 Ga
A 0.5 As upper clad layer 4 and a p-type GaAs ohmic contact layer 5 are sequentially formed, and the p-type upper clad layer 4 and p
Type ohmic contact layer 5 is formed in a ridge shape, and the n-type carrier concentration in the layer is 6 × by silicon doping on the sides of the p-type upper cladding layer 4 and the p-type ohmic contact layer 5 formed in the ridge shape. Since the n-type GaAs current blocking layer 11 having a size of 10 18 cm −3 or more is formed, the laser light oscillated in the double quantum well active layer 3 and having a wavelength near 980 nm that spreads to both sides of the ridge 6 is the current blocking layer. It is absorbed by 11 and the higher order modes are suppressed, and as a result, the modes are stably operated in the fundamental mode, and when used as a pumping source for a doped fiber optical amplifier, the light can be efficiently introduced into the fiber. Can be incident.

【0016】尚、上記実施例ではn型GaAs電流阻止
層11の成長方法をMOCVD法を用いたが、MBE(M
olecular Beam Epitaxy)法,ハイドライドVPE(Vapor
Phase Epitaxy)法,クロライドVPE法等の他の気相
成長を用いても、上記実施例と同じ効果を得ることがで
きる。
Although the MOCVD method was used as the growth method of the n-type GaAs current blocking layer 11 in the above embodiment, MBE (M
olecular beam epitaxy method, hydride VPE (Vapor
The same effect as in the above embodiment can be obtained by using other vapor phase growth methods such as the phase epitaxy method and the chloride VPE method.

【0017】また、上記実施例では、下クラッド層2,
上クラッド層4を、それぞれAlGaAsとしたが、I
nGaAsP等の他の材料を用いても、上記実施例と同
様の効果を得ることができる。
In the above embodiment, the lower cladding layer 2,
The upper clad layer 4 is made of AlGaAs, respectively.
Even if another material such as nGaAsP is used, the same effect as in the above embodiment can be obtained.

【0018】また、上記実施例では、波長が980nm
近傍となるレーザ光を発振するために組成がIn0.24
0.76Asとなる結晶層を活性層3における量子井戸層
としたが、該量子井戸層は900nm以上の波長の光を
発振するようにInGaAs結晶の組成を種々変更する
ことができる。
In the above embodiment, the wavelength is 980 nm.
In order to oscillate a laser beam in the vicinity, the composition is In 0.24 G
Although the crystal layer of a 0.76 As was used as the quantum well layer in the active layer 3, the composition of the InGaAs crystal can be variously changed so that the quantum well layer oscillates light having a wavelength of 900 nm or more.

【0019】[0019]

【発明の効果】以上のように、この発明によれば、n型
GaAs電流阻止層にシリコンをドープし、該電流阻止
層のn型キャリア濃度が6×1018cm-3以上となるよう
にしたので、該電流阻止層内に900〜1000nmの
波長の光に対するディープレベルが形成され、これによ
って、900nm以上の波長を有するレーザ光を発振す
る活性層から該電流阻止層内に届く光を吸収することが
でき、その結果、900nm以上の長波長のレーザ光を
発振し、高光出力動作時にも容易に基本モード動作が得
られる半導体レーザ装置を得ることがてきる効果があ
る。
As described above, according to the present invention, the n-type GaAs current blocking layer is doped with silicon so that the n-type carrier concentration of the current blocking layer is 6 × 10 18 cm −3 or more. As a result, a deep level for light having a wavelength of 900 to 1000 nm is formed in the current blocking layer, which absorbs light reaching the current blocking layer from the active layer that oscillates laser light having a wavelength of 900 nm or more. As a result, it is possible to obtain a semiconductor laser device that oscillates a laser beam having a long wavelength of 900 nm or more and can easily obtain the fundamental mode operation even during the high light output operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による980nm帯半導体
レーザ装置の断面図。
FIG. 1 is a sectional view of a 980 nm band semiconductor laser device according to an embodiment of the present invention.

【図2】n型GaAs結晶におけるフォトルミネッセン
ススペクトルのシリコン濃度依存性を示す図。
FIG. 2 is a diagram showing a silicon concentration dependence of a photoluminescence spectrum in an n-type GaAs crystal.

【図3】従来の830nm帯半導体レーザ装置の断面
図。
FIG. 3 is a cross-sectional view of a conventional 830 nm band semiconductor laser device.

【図4】図3の半導体レーザ装置の結晶成長工程を示す
断面図。
4 is a cross-sectional view showing a crystal growth process of the semiconductor laser device of FIG.

【図5】従来の980nm帯半導体レーザ装置の断面
図。
FIG. 5 is a cross-sectional view of a conventional 980 nm band semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 下クラッド層 3 活性層 3a GaAs量子井戸層 3b AlGaAsガイド層 3c AlGaAsバリア層 3d InGaAs量子井戸層 4 上クラッド層 5 オーミックコンタクト層 6 リッジ 7 電流阻止層 8 n側電極 9 p側電極 10 SiO2 マスク 11 電流阻止層1 GaAs substrate 2 lower cladding layer 3 active layer 3a GaAs quantum well layer 3b AlGaAs guide layer 3c AlGaAs barrier layer 3d InGaAs quantum well layer 4 upper cladding layer 5 ohmic contact layer 6 ridge 7 current blocking layer 8 n-side electrode 9 p-side electrode 10 SiO 2 mask 11 current blocking layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 n型GaAs基板上にn型下クラッド
層,波長が900nm以上の光を発振する活性層,p型
上クラッド層,p型オーミックコンタクト層を順次形成
し、 上記p型上クラッド層とp型オーミックコンタクト層と
をリッジ状に形成し、 該リッジ状に形成されたp型上クラッド層とp型オーミ
ックコンタクト層の側部にn型電流阻止層を形成した半
導体レーザ装置において、 上記n型電流阻止層はシリコンドープによる6×1018
cm-3以上のn型キャリア濃度を有することを特徴とする
半導体レーザ装置。
1. An n-type lower cladding layer, an active layer for oscillating light having a wavelength of 900 nm or more, a p-type upper cladding layer, and a p-type ohmic contact layer are sequentially formed on an n-type GaAs substrate. A semiconductor laser device in which a layer and a p-type ohmic contact layer are formed in a ridge shape, and an n-type current blocking layer is formed on a side portion of the p-type upper cladding layer and the p-type ohmic contact layer formed in the ridge shape, The n-type current blocking layer is 6 × 10 18 made of silicon doping.
A semiconductor laser device having an n-type carrier concentration of cm -3 or more.
【請求項2】 請求項1に記載の半導体レーザ装置にお
いて、 上記活性層は、Al0.3 Ga0.7 Asバリア層と、該A
0.3 Ga0.7 Asバリア層を挟む2層のIn0.24Ga
0.76As量子井戸層と、該Al0.3 Ga0.7 Asバリア
層と2層のIn0.24Ga0.76As量子井戸層とを挟む2
層のAl0.3 Ga0.7 Asガイド層とから構成された量
子井戸活性層であることを特徴とする半導体レーザ装
置。
2. The semiconductor laser device according to claim 1, wherein the active layer is an Al 0.3 Ga 0.7 As barrier layer, and
l 0.3 Ga 0.7 As Two layers of In 0.24 Ga sandwiching a barrier layer
The 0.76 As quantum well layer, the Al 0.3 Ga 0.7 As barrier layer, and the two In 0.24 Ga 0.76 As quantum well layers are sandwiched 2
A semiconductor laser device comprising a quantum well active layer composed of a layer of Al 0.3 Ga 0.7 As guide layer.
【請求項3】 請求項1または2に記載の半導体レーザ
装置において、 上記クラッド層がAlGaAsからなることを特徴とす
る半導体レーザ装置。
3. The semiconductor laser device according to claim 1, wherein the cladding layer is made of AlGaAs.
JP19887691A 1991-07-11 1991-07-11 Semiconductor laser device Pending JPH0521902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19887691A JPH0521902A (en) 1991-07-11 1991-07-11 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19887691A JPH0521902A (en) 1991-07-11 1991-07-11 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH0521902A true JPH0521902A (en) 1993-01-29

Family

ID=16398395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19887691A Pending JPH0521902A (en) 1991-07-11 1991-07-11 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0521902A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175598A (en) * 1991-12-25 1993-07-13 Sanyo Electric Co Ltd Semiconductor laser device
JPH07226564A (en) * 1994-02-14 1995-08-22 Mitsubishi Electric Corp Semiconductor laser device and its estimation method
DE19653600A1 (en) * 1996-01-23 1997-07-24 Mitsubishi Electric Corp Semiconductor laser and method for manufacturing the semiconductor laser
JPH10294533A (en) * 1997-02-21 1998-11-04 Toshiba Corp Nitride compound semiconductor laser and its manufacture
US6023484A (en) * 1995-08-11 2000-02-08 Sharp Kabushiki Kaisha Semiconductor laser device
WO2004027951A1 (en) * 2002-09-17 2004-04-01 Bookham Technology Plc High power semiconductor laser diode and method for making such a diode
US8023545B2 (en) 2007-12-12 2011-09-20 Fujifilm Corporation Semiconductor light emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132288A (en) * 1990-09-25 1992-05-06 Nec Corp Strain quantum well type semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132288A (en) * 1990-09-25 1992-05-06 Nec Corp Strain quantum well type semiconductor laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175598A (en) * 1991-12-25 1993-07-13 Sanyo Electric Co Ltd Semiconductor laser device
JPH07226564A (en) * 1994-02-14 1995-08-22 Mitsubishi Electric Corp Semiconductor laser device and its estimation method
US6023484A (en) * 1995-08-11 2000-02-08 Sharp Kabushiki Kaisha Semiconductor laser device
DE19653600A1 (en) * 1996-01-23 1997-07-24 Mitsubishi Electric Corp Semiconductor laser and method for manufacturing the semiconductor laser
US5661743A (en) * 1996-01-23 1997-08-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
JPH10294533A (en) * 1997-02-21 1998-11-04 Toshiba Corp Nitride compound semiconductor laser and its manufacture
WO2004027951A1 (en) * 2002-09-17 2004-04-01 Bookham Technology Plc High power semiconductor laser diode and method for making such a diode
US6862300B1 (en) 2002-09-17 2005-03-01 Bookham Technology Plc High power semiconductor laser diode and method for making such a diode
US7623555B2 (en) 2002-09-17 2009-11-24 Oclaro Technology Plc High power semiconductor laser diode
US8023545B2 (en) 2007-12-12 2011-09-20 Fujifilm Corporation Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US5661743A (en) Semiconductor laser
JPH07263798A (en) Semiconductor laser and its manufacture
JP5023419B2 (en) Semiconductor quantum dot device
JPH08195529A (en) Semiconductor laser epitaxial crystalline laminate and semiconductor laser
US5020067A (en) Semiconductor laser device
JPH0521902A (en) Semiconductor laser device
JPH0856045A (en) Semiconductor laser device
US4759025A (en) Window structure semiconductor laser
JPH10284800A (en) Semiconductor light-emitting element and manufacture therefor
JP2001068789A (en) Semiconductor laser
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JPH0936474A (en) Semiconductor laser and fabrication thereof
JPS6258557B2 (en)
JP2661307B2 (en) Semiconductor laser
JP2679974B2 (en) Semiconductor laser device
JPH0945986A (en) Semiconductor laser element
JPH09232681A (en) Nitride compd. semiconductor optical device
EP0713275B1 (en) Method for fabricating a semiconductor laser diode
JP2536044B2 (en) Semiconductor laser device
US5357124A (en) Superluminescent diode with stripe shaped doped region
JPS61253882A (en) Semiconductor laser device
JPH09148669A (en) Semiconductor laser of buried-structure
JPH0278290A (en) Semiconductor laser device
JP2629194B2 (en) Manufacturing method of semiconductor laser
JP3182173B2 (en) Method for manufacturing semiconductor laser device