JPH1179752A - Nickel oxide particles and their production - Google Patents

Nickel oxide particles and their production

Info

Publication number
JPH1179752A
JPH1179752A JP9251286A JP25128697A JPH1179752A JP H1179752 A JPH1179752 A JP H1179752A JP 9251286 A JP9251286 A JP 9251286A JP 25128697 A JP25128697 A JP 25128697A JP H1179752 A JPH1179752 A JP H1179752A
Authority
JP
Japan
Prior art keywords
nickel oxide
oxide particles
lithium
nickel
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9251286A
Other languages
Japanese (ja)
Inventor
Tatsuya Nakamura
龍哉 中村
Hideaki Sadamura
英昭 貞村
Mitsuaki Hataya
光昭 畑谷
Akihisa Kajiyama
▲亮▼尚 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP9251286A priority Critical patent/JPH1179752A/en
Publication of JPH1179752A publication Critical patent/JPH1179752A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To produce nickel oxide particles having high reactivity in solid phase reaction with a lithium compd. and capable of giving lithium-nickel oxide suitable for use as the active material of the positive electrode of a lithium battery by short-time firing. SOLUTION: A water-soluble nickel salt is mixed with an aq. alkali carbonate soln. so that the molar ratio of alkali metal ions to Ni<2+> ions is regulated to >=2.0 and the resultant precipitate is fired at 280-400 deg.C in an atmosphere of an oxygen-contg. gas to produce the objective nickel oxide particles represented by the formula NiO1+ X (where x>=0.1) and having <=50 nm average particle diameter and >=50 m<2> /g BET specific surface area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化ニッケル粒子
およびその製造方法に関するものであり、詳しくは、リ
チウム電池の正極活物質用材料としてのリチウムニッケ
ル酸化物の原料として好適である、式:NiO1+x(式
中、xは0.1以上)で示される酸化ニッケル粒子およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nickel oxide particles and a method for producing the same. More specifically, the present invention relates to the following formula: NiO which is suitable as a raw material for lithium nickel oxide as a material for a positive electrode active material of a lithium battery. The present invention relates to a nickel oxide particle represented by 1 + x (where x is 0.1 or more) and a method for producing the same.

【0002】[0002]

【従来の技術】近年、パーソナルコンピューター、携帯
電話などのポータブル機器の開発に伴って、小型電池の
需要が増大している。特に、リチウムは、原子量が小さ
いがイオン化エネルギーが大きい物質である。そのた
め、リチウム電池は、起電力が高く且つ高エネルギー密
度を得ることの出来る電池として着目されている。リチ
ウム電池に使用される正極活物質として、より高い起電
力と高エネルギー密度化を得ることの出来る、例えば、
4V程度の高電圧を発生することの出来るLiNi
2、LiCoO2等の酸化物の開発が行われている。
2. Description of the Related Art In recent years, with the development of portable devices such as personal computers and mobile phones, demand for small batteries has increased. In particular, lithium is a substance having a small atomic weight but a large ionization energy. For this reason, lithium batteries have attracted attention as batteries having high electromotive force and high energy density. As a positive electrode active material used in lithium batteries, higher electromotive force and higher energy density can be obtained, for example,
LiNi capable of generating a high voltage of about 4V
Oxides such as O 2 and LiCoO 2 are being developed.

【0003】上記のリチウムニッケル酸化物は、ニッケ
ル酸化物とリチウム化合物との混合粉体を500℃以上
の高温で焼成することにより得られる。しかしながら、
上述の固相反応においては、酸化ニッケル粒子の反応性
が低いため、長時間の焼成が必要となる。ところが、5
00℃以上の高温で長時間の焼成を行った場合、リチウ
ムが蒸発するため、リチウム量が低下し、正極活物質と
して好適な組成を有するリチウムニッケル酸化物を得る
ことが出来ない。
The above-mentioned lithium nickel oxide is obtained by firing a mixed powder of a nickel oxide and a lithium compound at a high temperature of 500 ° C. or higher. However,
In the above-described solid-phase reaction, the nickel oxide particles have low reactivity, and thus require long-term firing. However, 5
When firing is performed at a high temperature of 00 ° C. or more for a long time, lithium evaporates, so that the amount of lithium decreases, and a lithium nickel oxide having a composition suitable as a positive electrode active material cannot be obtained.

【0004】また、電池の電極は、電極材料用粉末とバ
インダーとの混合物を基板上に塗布して得られる。この
ため、電極材料用粉末は、バインダーに対して分散性の
良いことが要求される。しかしながら、500℃以上の
高温で長時間焼成して得られたリチウムニッケル酸化物
は、粒子間が焼結しているため、リチウム電池の電極を
製造する際のバインダーに対する分散性が良好ではな
い。
[0004] A battery electrode is obtained by applying a mixture of a powder for an electrode material and a binder onto a substrate. For this reason, the electrode material powder is required to have good dispersibility in the binder. However, lithium nickel oxide obtained by firing at a high temperature of 500 ° C. or more for a long time has poor dispersibility in a binder when manufacturing an electrode of a lithium battery because the particles are sintered.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みなされたものであり、その目的は、リチウム化合物
との固相反応における反応性が高く、リチウム電池の正
極活物質として好適なリチウムニッケル酸化物を短時間
の焼成で得ることの出来る酸化ニッケル粒子およびその
製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a lithium battery which has high reactivity in a solid phase reaction with a lithium compound and is suitable as a positive electrode active material for a lithium battery. It is an object of the present invention to provide nickel oxide particles capable of obtaining nickel oxide by firing in a short time and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の第1
の要旨は、 一般式:NiO1+x(式中、xは0.1以
上)で示され、平均粒径が50nm以下で、且つ、BE
T比表面積が50m2/g以上であることを特徴とする
酸化ニッケル粒子に存し、本発明の第2の要旨は、水可
溶性ニッケル塩と炭酸アルカリ水溶液とをNi2+イオン
に対するアルカリ金属イオンのモル比が2.0以上の割
合で混合した後、得られた沈殿生成物を酸素含有ガス雰
囲気中で280〜400℃で焼成することを特徴とする
酸化ニッケル粒子の製造方法に存する。
That is, the first aspect of the present invention is as follows.
Is represented by a general formula: NiO 1 + x (where x is 0.1 or more), the average particle size is 50 nm or less, and BE
The second aspect of the present invention resides in nickel oxide particles having a T specific surface area of 50 m 2 / g or more, wherein a water-soluble nickel salt and an aqueous solution of alkali carbonate are mixed with an alkali metal ion with respect to Ni 2+ ion. Is mixed at a molar ratio of 2.0 or more, and then the obtained precipitation product is calcined at 280 to 400 ° C. in an oxygen-containing gas atmosphere.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
先ず、本発明の酸化ニッケル粒子について説明する。本
発明の酸化ニッケル粒子は、一般式:NiO1+xで示さ
れる。式中、xは0.1以上、好ましくは0.2〜0.
5である。本発明の酸化ニッケル粒子は、平均粒子径が
50nm以下、好ましくは5〜50nmで、そのBET
比表面積が50m2/g以上、好ましくは50〜200
2/gである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the nickel oxide particles of the present invention will be described. The nickel oxide particles of the present invention are represented by the general formula: NiO 1 + x . In the formula, x is 0.1 or more, preferably 0.2 to 0.1.
5 The nickel oxide particles of the present invention have an average particle size of 50 nm or less, preferably 5 to 50 nm, and the BET
Specific surface area of 50 m 2 / g or more, preferably 50 to 200
m 2 / g.

【0008】xが0.1未満の場合、平均粒子径が50
nmを超える場合、または、BET比表面積が50m2
/g未満の場合、リチウムニッケル酸化物の生成の固相
反応における酸化ニッケル粒子の反応性が低いため、5
00℃以上の高温での長時間の焼成が必要となる。その
結果、リチウムが蒸発してリチウム量が低下し、正極活
物質として好適な組成を有する、また、粒子間が焼結す
るため、リチウム電池の電極を製造する際のバインダー
に対する分散性が良好なリチウムニッケル酸化物を得る
ことが出来ない。
When x is less than 0.1, the average particle size is 50
nm or a BET specific surface area of 50 m 2
/ G, the reactivity of the nickel oxide particles in the solid phase reaction for the production of lithium nickel oxide is low.
Long-time firing at a high temperature of 00 ° C. or more is required. As a result, lithium evaporates to reduce the amount of lithium, and has a suitable composition as a positive electrode active material.Also, since the particles sinter, the dispersibility in the binder when producing an electrode of a lithium battery is good. Lithium nickel oxide cannot be obtained.

【0009】次に、本発明の酸化ニッケル粒子の製造方
法について説明する。先ず、本発明の製造方法において
は、水可溶性ニッケル塩と炭酸アルカリ水溶液とを混合
して沈殿生成物を得る。水可溶性ニッケル塩としては、
塩化ニッケル、硫酸ニッケル、硝酸ニッケル等が使用さ
れる。炭酸アルカリ水溶液としては、炭酸ナトリウム、
炭酸カリウム等の水溶液が使用される。
Next, a method for producing the nickel oxide particles of the present invention will be described. First, in the production method of the present invention, a water-soluble nickel salt and an aqueous alkali carbonate solution are mixed to obtain a precipitation product. As water-soluble nickel salts,
Nickel chloride, nickel sulfate, nickel nitrate and the like are used. As the aqueous alkali carbonate solution, sodium carbonate,
An aqueous solution such as potassium carbonate is used.

【0010】水可溶性ニッケル塩と炭酸アルカリ水溶液
との混合割合は、Ni2+イオンに対するアルカリ金属イ
オンのモル比として、2.0以上、好ましくは2.0〜
3.0である。モル比が2.0未満の場合は、Ni2+
イオンの一部分が溶解したまま水溶液中に残存するた
め、収率が低下する。
The mixing ratio of the water-soluble nickel salt and the aqueous alkali carbonate solution is 2.0 or more, preferably 2.0 to 2.0, as a molar ratio of the alkali metal ion to the Ni 2+ ion.
3.0. When the molar ratio is less than 2.0, Ni 2+
Since a part of the ions remains in the aqueous solution while being dissolved, the yield decreases.

【0011】水可溶性ニッケル塩と炭酸アルカリ水溶液
との混合は、通常、撹拌条件下に行なわれ、混合温度
は、通常100℃以下、好ましくは5〜80℃、更に好
ましくは15〜50℃、混合時間は、通常60分間以
下、好ましくは5〜30分間とされる。沈殿生成物の回
収は、通常、瀘別手段によって行なわれ、回収された沈
殿生成物は水洗処理される。
The mixing of the water-soluble nickel salt and the aqueous alkali carbonate solution is usually performed under stirring conditions, and the mixing temperature is usually 100 ° C. or less, preferably 5 to 80 ° C., more preferably 15 to 50 ° C. The time is generally 60 minutes or less, preferably 5 to 30 minutes. The precipitation product is usually recovered by a filtration means, and the recovered precipitation product is washed with water.

【0012】次に、本発明の製造方法においては、上記
の沈殿生成物を酸素含有ガス雰囲気中、280〜400
℃、好ましくは300〜350℃の温度で焼成すること
が重要である。焼成温度が280℃未満の場合は、沈殿
物であるニッケル水酸化物の一部分のみが酸化物とな
り、ニッケル水酸化物の中にニッケル酸化物が存在する
混合粒子が生成する。この混合粒子は不均一な固相反応
を生ずるため、当該混合粒子から得られたリチウムニッ
ケル酸化物は正極活物質としての目的を達成し得ない。
焼成温度が400℃を超える場合は、式中のxが0.1
未満の酸化ニッケル粒子得られたり、また、50nmを
超えた粒子径の酸化ニッケル粒子や50m2/g未満の
BET比表面積を有する酸化ニッケル粒子が得られるた
め、正極活物質としての目的を達成し得ない。
Next, in the production method of the present invention, the above-mentioned precipitated product is placed in an oxygen-containing gas atmosphere at 280 to 400
It is important to fire at a temperature of 300C, preferably 300-350C. If the firing temperature is lower than 280 ° C., only a part of the nickel hydroxide as a precipitate becomes an oxide, and mixed particles in which the nickel oxide is present in the nickel hydroxide are generated. Since the mixed particles cause an inhomogeneous solid phase reaction, the lithium nickel oxide obtained from the mixed particles cannot achieve the purpose as the positive electrode active material.
When the firing temperature exceeds 400 ° C., x in the formula is 0.1
Nickel oxide particles having a particle diameter of less than 50 nm and nickel oxide particles having a BET specific surface area of less than 50 m 2 / g can be obtained. I can't get it.

【0013】酸素含有ガス雰囲気は、特に限定されない
が、通常、酸素含有率が20〜100%の雰囲気であ
る。通常、酸素含有率が20%未満の場合は、式中のx
が0.1未満の酸化ニッケル粒子得られるため、当該酸
化ニッケル粒子から得られるリチウムニッケル酸化物は
正極活物質としての目的を達成し得ない。焼成時間は、
特に限定されないが、通常15〜300分である。
The oxygen-containing gas atmosphere is not particularly limited, but is usually an atmosphere having an oxygen content of 20 to 100%. Usually, when the oxygen content is less than 20%, x in the formula
Is less than 0.1, so that the lithium nickel oxide obtained from the nickel oxide particles cannot achieve the object as the positive electrode active material. The firing time is
Although not particularly limited, it is usually 15 to 300 minutes.

【0014】上述の方法によって得られた酸化ニッケル
粒子は、一般式:NiO1+x(式中、xは0.1以上)
で示され、平均粒径が50nm以下で、且つ、BET比
表面積が50m2/g以上であり、リチウム電池の正極
活物質用材料としてのリチウムニッケル酸化物を短時間
の焼成で生成することの出来るリチウムニッケル酸化物
の原料として好適である。
The nickel oxide particles obtained by the above method have the general formula: NiO 1 + x (where x is 0.1 or more)
And having a mean particle size of 50 nm or less, a BET specific surface area of 50 m 2 / g or more, and producing lithium nickel oxide as a material for a positive electrode active material of a lithium battery by firing in a short time. It is suitable as a raw material of a possible lithium nickel oxide.

【0015】[0015]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明は、その要旨を超えない限り、以下の実施例
に限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0016】(1)粒子径:透過型電子顕微鏡写真から
測定した数値の平均値で示した。
(1) Particle size: The average value of numerical values measured from a transmission electron micrograph.

【0017】(2)BET比表面積:BET法により測
定した値で示した。吸着剤としてはモノソーブMSー1
1(カンタクロム(株)製)を使用し、吸着ガスとして
は窒素ガスを使用した。
(2) BET specific surface area: Shown by a value measured by the BET method. Monosorb MS-1 as adsorbent
1 (manufactured by Cantachrome Co., Ltd.), and nitrogen gas was used as the adsorption gas.

【0018】(3)反応生成物の同定および結晶構造:
X線回折法(理学電機(株)製のX線回折装置)によ
り、Mnフィルターで濾波されたFeのKα線を使用
し、加速電圧40kV、電流20mAの条件で測定し
た。尚、xは、組成分析により測定した。
(3) Identification and crystal structure of the reaction product:
The measurement was performed by an X-ray diffraction method (X-ray diffractometer manufactured by Rigaku Denki Co., Ltd.) under the conditions of an acceleration voltage of 40 kV and a current of 20 mA, using a Kα ray of Fe filtered by a Mn filter. Note that x was measured by composition analysis.

【0019】実施例1 200mlの水に0.2モルのNi(NO32・7H2
Oを溶解した。別に、50mlの水に0.225モルの
Na2CO3を溶かして水溶液とし、この水溶液を先に調
製した硝酸ニッケル水溶液に添加し、得られた混合液を
25℃で10分間機械的に攪拌した。生成した沈殿物を
瀘別、水洗した後、60℃で乾燥して粉末を得た。得ら
れた粉末をアルミナるつぼに入れて、大気中で320℃
で30分間加熱焼成して黒色粉末を得た。粉末X線回析
の結果、得られた黒色粉末は酸化ニッケル粒子であり、
TEMでの観察の結果、その粒子径は12nmで、且
つ、BET比表面積は160m2/gで、組成分析の結
果、NiO1.30で示される酸化ニッケル粒子あった。
[0019] Example 1 200 ml of water 0.2 mol of Ni (NO 3) 2 · 7H 2
O was dissolved. Separately, 0.225 mol of Na 2 CO 3 is dissolved in 50 ml of water to form an aqueous solution, and this aqueous solution is added to the previously prepared aqueous nickel nitrate solution, and the resulting mixture is mechanically stirred at 25 ° C. for 10 minutes. did. The resulting precipitate was separated by filtration, washed with water, and dried at 60 ° C. to obtain a powder. Put the obtained powder in an alumina crucible, and in air
For 30 minutes to obtain a black powder. As a result of the powder X-ray diffraction, the obtained black powder is nickel oxide particles,
As a result of observation with a TEM, the particle diameter was 12 nm, the BET specific surface area was 160 m 2 / g, and as a result of composition analysis, nickel oxide particles represented by NiO 1.30 were found.

【0020】実施例2〜4及び比較例1〜4 実施例1において、表1〜3に示す様に焼成温度および
焼成雰囲気を変更した以外は実施例1と同様にして黒色
粉末を得た。得られた粒子は、何れも粉末X線回析の結
果、酸化ニッケル粒子であることが認められた。表1〜
3に酸化ニッケル粒子の諸特性を示す。
Examples 2 to 4 and Comparative Examples 1 to 4 Black powders were obtained in the same manner as in Example 1 except that the firing temperature and the firing atmosphere were changed as shown in Tables 1 to 3. As a result of powder X-ray diffraction, all of the obtained particles were found to be nickel oxide particles. Table 1
3 shows the characteristics of the nickel oxide particles.

【0021】参考例<リチウムニケル酸化物の製造> 実施例1〜4及び比較例1〜4で得られた各々の酸化ニ
ッケル粒子と水酸化リチウム(LiOH・H2O)をL
i/Ni=1.0となる様に、機械的に混合し、得られ
た混合粉末を電気炉に入れて700℃に加熱して6時間
反応した。得られた粉末を乳鉢で粉砕して、リチウムニ
ッケル酸化物の黒色粉末を得た。
Reference Example <Production of Lithium Nickel Oxide> Each of the nickel oxide particles and lithium hydroxide (LiOH.H 2 O) obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was L
The mixture was mechanically mixed such that i / Ni = 1.0, and the obtained mixed powder was placed in an electric furnace, heated to 700 ° C., and reacted for 6 hours. The obtained powder was pulverized in a mortar to obtain a black powder of lithium nickel oxide.

【0022】X線回折による測定結果、実施例1〜4で
得られた酸化ニッケル粒子を使用して得た黒色粉末は、
何れも層状岩塩型規則配列のLiNiO2で示されるリ
チウムニッケル酸化物粉末であった。他方、比較例1〜
4で得られた酸化ニッケル粒子を使用して得た黒色粉末
は、リチウムとニッケルの規則配列程度の低い層状岩塩
型のLiNiO2で示されるリチウムニッケル酸化物粉
末であった。
As a result of measurement by X-ray diffraction, black powder obtained using the nickel oxide particles obtained in Examples 1 to 4
All were lithium nickel oxide powders represented by LiNiO 2 having a layered rock salt type regular arrangement. On the other hand, Comparative Examples 1 to
The black powder obtained by using the nickel oxide particles obtained in 4 was a lithium nickel oxide powder represented by a layered rock salt type LiNiO 2 having a low regular arrangement of lithium and nickel.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上説明した本発明によれば、リチウム
電池の正極活物質用材料としてのリチウムニッケル酸化
物の原料として好適である酸化ニッケル粒子およびその
製造方法が提供される。
According to the present invention described above, nickel oxide particles suitable as a raw material for lithium nickel oxide as a material for a positive electrode active material of a lithium battery and a method for producing the same are provided.

フロントページの続き (72)発明者 梶山 ▲亮▼尚 山口県小野田市新沖一丁目1番1号 戸田 工業株式会社小野田開発センター内Continued on the front page (72) Inventor Kajiyama ▲ Ryo ▼ Sho 1-1-1 Shinoki, Onoda-shi, Yamaguchi Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式:NiO1+x(式中、xは0.1
以上)で示され、平均粒径が50nm以下で、且つ、B
ET比表面積が50m2/g以上であることを特徴とす
る酸化ニッケル粒子。
1. The general formula: NiO 1 + x (where x is 0.1
Above), the average particle size is 50 nm or less, and B
Nickel oxide particles having an ET specific surface area of 50 m 2 / g or more.
【請求項2】 水可溶性ニッケル塩と炭酸アルカリ水溶
液とをNi2+イオンに対するアルカリ金属イオンのモル
比が2.0以上の割合で混合した後、得られた沈殿生成
物を酸素含有ガス雰囲気中で280〜400℃で焼成す
ることを特徴とする酸化ニッケル粒子の製造方法。
2. A water-soluble nickel salt and an aqueous solution of an alkali carbonate are mixed at a molar ratio of alkali metal ions to Ni 2+ ions of 2.0 or more, and the resulting precipitate is placed in an oxygen-containing gas atmosphere. Baking at 280 to 400 ° C. in a method for producing nickel oxide particles.
JP9251286A 1997-09-01 1997-09-01 Nickel oxide particles and their production Withdrawn JPH1179752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9251286A JPH1179752A (en) 1997-09-01 1997-09-01 Nickel oxide particles and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9251286A JPH1179752A (en) 1997-09-01 1997-09-01 Nickel oxide particles and their production

Publications (1)

Publication Number Publication Date
JPH1179752A true JPH1179752A (en) 1999-03-23

Family

ID=17220554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9251286A Withdrawn JPH1179752A (en) 1997-09-01 1997-09-01 Nickel oxide particles and their production

Country Status (1)

Country Link
JP (1) JPH1179752A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137795A (en) * 2007-12-06 2009-06-25 Tanaka Chemical Corp Method for producing nickel oxide
JP2009196870A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Nickel oxide powder and its production method
JP2009298647A (en) * 2008-06-13 2009-12-24 Tanaka Chemical Corp Nickel oxide and production method of the same
JP2010089988A (en) * 2008-10-08 2010-04-22 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method of producing the same
JP2011042528A (en) * 2009-08-21 2011-03-03 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
JP2011042541A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method for producing the same
JP2012041265A (en) * 2011-08-23 2012-03-01 Tanaka Chemical Corp Method of producing nickel oxide
JP2012166967A (en) * 2011-02-10 2012-09-06 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method for producing the same
JP2013040067A (en) * 2011-08-13 2013-02-28 Sumitomo Metal Mining Co Ltd Nickel oxide powder, and method for manufacturing the same
JP2013040068A (en) * 2011-08-13 2013-02-28 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for producing the same
KR20190139514A (en) * 2018-06-08 2019-12-18 주식회사 엘지화학 Nickel oxide powder and method for preparing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137795A (en) * 2007-12-06 2009-06-25 Tanaka Chemical Corp Method for producing nickel oxide
JP2009196870A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Nickel oxide powder and its production method
JP2009298647A (en) * 2008-06-13 2009-12-24 Tanaka Chemical Corp Nickel oxide and production method of the same
JP2010089988A (en) * 2008-10-08 2010-04-22 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method of producing the same
JP2011042528A (en) * 2009-08-21 2011-03-03 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
JP2011042541A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method for producing the same
JP2012166967A (en) * 2011-02-10 2012-09-06 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method for producing the same
JP2013040067A (en) * 2011-08-13 2013-02-28 Sumitomo Metal Mining Co Ltd Nickel oxide powder, and method for manufacturing the same
JP2013040068A (en) * 2011-08-13 2013-02-28 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for producing the same
JP2012041265A (en) * 2011-08-23 2012-03-01 Tanaka Chemical Corp Method of producing nickel oxide
KR20190139514A (en) * 2018-06-08 2019-12-18 주식회사 엘지화학 Nickel oxide powder and method for preparing the same

Similar Documents

Publication Publication Date Title
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
JP2003292307A (en) Ferrous phosphate hydrate crystal, production method therefor, and method for producing lithium/iron/ phosphorus-based complex oxide
CN109830679B (en) Positive electrode material precursor, preparation method and application thereof
JP2009054576A (en) Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
JP2002316823A (en) Lithium manganese multi component oxide and method for manufacturing the same as well as application for the same
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JPH1179752A (en) Nickel oxide particles and their production
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002279987A (en) Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2001114521A (en) Trimanganese tetraoxide and method for its production
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2004059417A (en) Layered rock salt-type lithium nickelate powder and its manufacturing method
JPH0896809A (en) Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material
TW404078B (en) Spinel compounds as cathodes for lithium batteries
JP4734672B2 (en) Method for producing lithium-iron-manganese composite oxide
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2006265032A (en) Lithium ferritic compound oxide and method for producing the same
JPH10324522A (en) Production of lithium cobalt oxide particulate powder
JP4458230B2 (en) Positive electrode active material, method for producing the same, and secondary battery using the positive electrode active material
KR100307163B1 (en) Method of preparing positive active material of lithium secondary battery
JP3914981B2 (en) Cubic rock salt type lithium ferrite oxide and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102