JP2002279987A - Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material - Google Patents

Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material

Info

Publication number
JP2002279987A
JP2002279987A JP2001073900A JP2001073900A JP2002279987A JP 2002279987 A JP2002279987 A JP 2002279987A JP 2001073900 A JP2001073900 A JP 2001073900A JP 2001073900 A JP2001073900 A JP 2001073900A JP 2002279987 A JP2002279987 A JP 2002279987A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
positive electrode
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001073900A
Other languages
Japanese (ja)
Inventor
Ryuichi Nagase
隆一 長瀬
Yoshio Kajitani
芳男 梶谷
Hiroshi Tazaki
博 田崎
Takeshi Kinoshita
剛 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001073900A priority Critical patent/JP2002279987A/en
Publication of JP2002279987A publication Critical patent/JP2002279987A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a material of a positive electrode for lithium secondary battery mixingly, capable of satisfactorily maintaining initial capacity and suppressing deterioration at high temperatures and having proper charging cycle characteristics for maintaining a high charging rate by using a lithium manganate material and a nickel-lithium cobalite material of spinel structure, so as to supplement the defects of both materials. SOLUTION: In this material of the positive electrode for lithium secondary battery, the lithium manganate material of 100 to 110 mAh/g in the initial capacity and the nickel cobalt acid lithium material of 170 to 200 mAh/g in the initial capacity are mixed with each other, and the lithium secondary battery uses this material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用正極材料、特に高温におけるサイクル特性が良好であ
りかつ安全性に優れたリチウム二次電池用正極材料及び
該材料を用いたリチウム二次電池に関する。
The present invention relates to a positive electrode material for a lithium secondary battery, particularly to a positive electrode material for a lithium secondary battery having excellent cycle characteristics at high temperatures and excellent safety, and a lithium secondary battery using the material. Battery.

【0002】[0002]

【従来の技術】リチウム二次電池は従来の二次電池に比
べ高いエネルギー密度を有するので、携帯電話、携帯用
ビデオカメラ、ノート型パソコンなどの電子機器用電池
として普及しているが、将来的には電気自動車や一般家
庭の分散配置型電源としての利用が期待されており、さ
らに高容量、高能率の電池を得るための研究開発が行わ
れている。
2. Description of the Related Art Lithium secondary batteries have a higher energy density than conventional secondary batteries, and thus have become widespread as batteries for electronic devices such as mobile phones, portable video cameras, and notebook personal computers. Is expected to be used as a distributed power source for electric vehicles and ordinary households, and further research and development are being carried out to obtain high-capacity, high-efficiency batteries.

【0003】現在、市販されているリチウム二次電池用
正極活物質にLiCoOが主に用いられているが、熱
的安定性が悪いため安全性に問題があり、またコバルト
自体の地球資源の採掘可能な埋蔵量が少なく、高価であ
るという欠点を持っている。これに替わるものとして、
豊富な資源を持ち経済性に優れているリチウム・ニッケ
ル複合酸化物の研究が行われている。しかし、このリチ
ウム・ニッケル複合酸化物はLiNiOの合成の際に
酸素気流が必要であるという工程の難しさがあり、また
Niの一部が本来Liの入るべきサイトに混入するなど
の結晶の乱れがあって十分なサイクル特性が得られない
という欠点があるので殆ど実用化に至っていないのが現
状である。
At present, LiCoO 2 is mainly used as a commercially available positive electrode active material for a lithium secondary battery, but has a problem in safety due to poor thermal stability, and also has a problem in that cobalt itself is a global resource. It has the drawback that the reserves that can be mined are small and expensive. As an alternative,
Research is being conducted on lithium-nickel composite oxides that have abundant resources and are economical. However, this lithium-nickel composite oxide has a difficulty in the step of requiring an oxygen gas flow in the synthesis of LiNiO 2 , and has a problem in that a part of Ni is mixed into a site where Li should originally enter. At present, it has hardly been put to practical use because there is a defect that sufficient cycle characteristics cannot be obtained due to disturbance.

【0004】このようなことから、コバルトやニッケル
に比べさらに価格が安く、埋蔵されている量も豊富であ
るLi1+xMn2-xスピネル化合物が注目さ
れ、近年研究が盛んに行われている。そして上記のよう
な電気自動車等の用途にも対応できるものと期待されて
いる。このリチウム・マンガン複合酸化物であるスピネ
ルLi1+xMn2-xはLiが8a四面体サイト
に、Mnは16d八面体サイトにある。酸素の配置は立
方細密充填構造であり、基本の骨格はλ-MnOであ
る。リチウムイオンは可逆的に四面体サイトを占めるの
でLi1+xMn2-xを正極材とするリチウム二
次電池においては基本骨格の構造破壊は殆ど起こらな
い。充放電に伴って結晶格子の膨張・収縮が起こるのみ
である。このため充放電が安定しているという特徴を有
している。
[0004] For these reasons, attention has been paid to Li 1 + x Mn 2-x O 4 spinel compounds, which are cheaper than cobalt and nickel and have abundant reserves, and have been actively studied in recent years. I have. It is expected that it can be used for electric vehicles and the like as described above. In the spinel Li 1 + x Mn 2-x O 4 which is this lithium-manganese composite oxide, Li is located at the 8a tetrahedral site and Mn is located at the 16d octahedral site. The arrangement of oxygen is a cubic close-packed structure, and the basic skeleton is λ-MnO 2 . Lithium ions reversibly structural destruction of the basic skeleton in the lithium secondary battery according to cathode material of Li 1 + x Mn 2-x O 4 since occupy tetrahedral sites hardly occurs. Only the expansion and contraction of the crystal lattice occur with charge and discharge. For this reason, it has the feature that charge and discharge are stable.

【0005】ところが、Li1+xMn2-xスピ
ネル化合物はこのように熱的安定性が高いけれども、こ
れを正極活物質として使用した二次電池はサイクル特性
が悪く、実用上の大きな支障となっている。充放電サイ
クルを繰り返すことによって充放電容量が低下する容量
低下の原因としては、マンガン酸リチウムからのMnの
溶出及び溶出したMnの負極活物質上又はセパレータへ
の析出や活物質粒子の遊離による不活性化、含有水分に
より生成した酸の影響、マンガン酸リチウムからの酸素
の放出による電解液の劣化などがあると考えられてい
る。従来、この欠点を改良しようとして活物質の均一性
を高めたり、他の物質のドーピングなどの方法を用いて
サイクル特性改善の図られているがいまだ十分なものと
は言えない。例えば、Li1+xMn2-xスピネ
ル化合物のMn塩のMnサイトをZn、Ti、Zr等で
一部置換する提案がなされた。しかし、これによって得
たものは、Mn酸化数が大きく変動し、初期容量が著し
く低下するという問題があった。このようなことから、
Li1+xMn2-xスピネル化合物は、さらに改
良がなければ実用に供することができなかった。
[0005] However, although the Li 1 + x Mn 2-x O 4 spinel compound has high thermal stability as described above, a secondary battery using the same as a positive electrode active material has poor cycle characteristics, which is a serious obstacle to practical use. Has become. As a cause of the capacity decrease in which the charge / discharge capacity is reduced by repeating the charge / discharge cycle, elution of Mn from lithium manganate and precipitation of the eluted Mn on the negative electrode active material or on the separator or separation of the active material particles are caused. It is considered that there is activation, influence of an acid generated by the contained water, deterioration of the electrolyte due to release of oxygen from lithium manganate, and the like. Conventionally, attempts have been made to improve the uniformity of the active material in order to improve this drawback, or to improve the cycle characteristics by using a method such as doping with another material, but this is still not satisfactory. For example, it has been proposed to partially replace the Mn site of the Mn salt of the Li 1 + x Mn 2−x O 4 spinel compound with Zn, Ti, Zr, or the like. However, those obtained by this method had a problem that the Mn oxidation number fluctuated greatly and the initial capacity was significantly reduced. From such a thing,
The Li 1 + x Mn 2-x O 4 spinel compound could not be put to practical use without further improvement.

【0006】従来、LiMnスピネル化合物のサ
イクル特性を改善する方法として、LiMn粉の
表面にAgを被覆する技術の提案がなされている(「L
iMn粉の表面処理の充放電特性への影響1.A
g被覆」Electrochemistry 67,No.4(1999) p.359-363
)。しかし、この技術報告書によるとLiMn
粒子へのAg被覆により、30°Cでは充放電サイクル
特性は良好であったが、60°Cではサイクル特性数の
増加とともに放電容量が低下し、50サイクル目の容量
は初期容量の70%に低下し、必ずしも良好な結果が得
られていない。しかも、60°CではLiMn
からのマンガンイオンの溶出があり、それをAg被覆で
は防止できないと報告されており、LiMn粉の
表面にAgを被覆することでは、サイクル特性の改善は
困難なことが分かっている。
Conventionally, as a method for improving the cycle characteristics of a LiMn 2 O 4 spinel compound, a technique of coating Ag on the surface of LiMn 2 O 4 powder has been proposed (see “L.
Effect of surface treatment of iMn 2 O 4 powder on charge and discharge characteristics A
g coating '' Electrochemistry 67, No. 4 (1999) p.359-363
). However, according to this technical report, LiMn 2 O 4
Due to the Ag coating on the particles, the charge / discharge cycle characteristics were good at 30 ° C, but at 60 ° C, the discharge capacity decreased as the number of cycle characteristics increased, and the capacity at the 50th cycle was reduced to 70% of the initial capacity. And good results have not always been obtained. Moreover, there is dissolution of manganese ions from the 60 ° C in LiMn 2 O 4 powder, it has been reported that it can not prevent the Ag coating is to coat the Ag on the surface of LiMn 2 O 4 powder, the cycle characteristics Improvements have proven difficult.

【0007】また、LiMnスピネル化合物の高
温サイクル特性を改善する方法として、ポリアニリン高
分子化合物でLiMn粒を被覆して電解液との直
接的接触を防止し、マンガン溶解に起因する充放電容量
の低下を抑制する方法が提案されている(「ポリアニリ
ン被覆スピネルLiMnの充放電挙動」Electroc
hemistry 68,No.7(2000) p.587-590)。しかし、この方
法はサイクル数が少ない場合に効果があると報告がなさ
れているが、サイクル数が増大する場合の効果は十分に
確認されていない。しかも、ポリアニリン自体の充放電
挙動が電解液に強く依存するため、電解液の種類によっ
ては十分な効果が得られず、汎用性のある安定したサイ
クル特性改善効果のある材料とは必ずしも言えない問題
がある。
Further, as a method for improving the high-temperature cycle characteristics of the LiMn 2 O 4 spinel compound, LiMn 2 O 4 particles are coated with a polyaniline polymer compound to prevent direct contact with the electrolytic solution, resulting in dissolution of manganese. (“Charging and discharging behavior of polyaniline-coated spinel LiMn 2 O 4 ” Electroc) has been proposed.
hemistry 68, No. 7 (2000) p.587-590). However, although this method is reported to be effective when the number of cycles is small, the effect when the number of cycles is increased has not been sufficiently confirmed. In addition, since the charge / discharge behavior of polyaniline itself strongly depends on the electrolytic solution, sufficient effects cannot be obtained depending on the type of the electrolytic solution, and it is not necessarily a versatile material having a stable cycle characteristic improving effect. There is.

【0008】この外、LiMn粒子にLiMn
層を形成するか又はLiMnとの複合体
として、高電位における充放電時にマンガンの溶出を防
止し、サイクル特性を向上させようとするもの(特開平
10−199528)あるいはスピネルマンガン正極活
物質粒子表面のマンガンの一部をSc、Ti、V、C
r、Fe、希土類の遷移金属で置換して表面層を形成し
サイクル特性を向上させようとするもの(特開2000
−30709)が提案されている。しかし、表面被覆層
形成の作業工程が複雑になり、また安定した十分なサイ
クル特性を向上させることができないという問題があ
る。
[0008] In addition, Li 2 Mn is added to LiMn 2 O 4 particles.
Forming a 2 O 4 layer or as a complex with Li 2 Mn 2 O 4 to prevent elution of manganese during charging and discharging at a high potential and to improve cycle characteristics (JP-A-10-199528) Alternatively, part of the manganese on the surface of the spinel manganese positive electrode active material particles is replaced with Sc, Ti, V, C
A method for improving cycle characteristics by forming a surface layer by substituting with a transition metal of r, Fe, or rare earth (Japanese Patent Laid-Open No. 2000-2000)
-30709) has been proposed. However, there is a problem that the operation process of forming the surface coating layer becomes complicated, and stable and sufficient cycle characteristics cannot be improved.

【0009】さらに、正極活物質としてLiMn
等のリチウムマンガン複合酸化物とリチウムニッケル複
合酸化物(ニッケルの一部をコバルト等で置換したもの
を含む)との混合酸化物を用いる提案がある(特許第3
024636号)。この技術は、表面積又は粒径を特定
の条件に調節したリチウムニッケル複合酸化物とリチウ
ムマンガン複合酸化物とを混在させることにより、電解
液中の酸の生成を抑制し、リチウムマンガン複合酸化物
から電解液中に溶出するMn量及び酸素の離脱を低減さ
せ、その結果リチウムマンガン複合酸化物の構造劣化を
防止して、サイクル寿命及び容量保存特性、自己放電性
を向上させようとするものである。この場合一定の効果
は認められるが、リチウムニッケル複合酸化物とリチウ
ムマンガン複合酸化物とが単に混在しているだけなの
で、リチウムニッケル複合酸化物とリチウムマンガン複
合酸化物との相互影響による効果がそれほど期待できな
いという問題がある。
Further, as a positive electrode active material, LiMn 2 O 4
It has been proposed to use a mixed oxide of a lithium manganese composite oxide and a lithium nickel composite oxide (including those obtained by partially replacing nickel with cobalt or the like) (Patent No. 3)
024636). This technology suppresses the generation of acid in the electrolyte by mixing a lithium nickel composite oxide and a lithium manganese composite oxide whose surface area or particle size is adjusted to specific conditions. It is intended to reduce the amount of Mn eluted in the electrolytic solution and the release of oxygen, thereby preventing the structural deterioration of the lithium manganese composite oxide, and improving the cycle life, capacity storage characteristics, and self-discharge property. . In this case, a certain effect is recognized, but the effect of the interaction between the lithium nickel composite oxide and the lithium manganese composite oxide is not so large because the lithium nickel composite oxide and the lithium manganese composite oxide are simply mixed. There is a problem that cannot be expected.

【0010】[0010]

【発明が解決しようとする課題】本発明は、初期容量は
低いがサイクル特性、安全性に優れるマンガン酸リチウ
ム系材料と初期容量は高く、高温特性に優れるニッケル
コバルト酸リチウム系材料を混合することで、双方の欠
点を補い、高い初期容量を維持するとともに高温での劣
化を抑制し、良好なサイクル特性を有するリチウム二次
電池用正極材料及び該材料を用いたリチウム二次電池を
確立することである。具体的には、リチウム二次電池用
正極材料としてLi1+xMn2-x又はLi
1+xMn2-x-y(MはTi、Zr、Sn、
Al、Co、Ni、B、Mg及びZnから選択された元
素の少なくとも1成分、0≦x≦0.20、0≦y≦
0.20)の化学式で表されるスピネル構造のマンガン
酸リチウム系材料とLiNi1−a−b−c−dCo
1b2c3d(M、M 、MはTi、
Mg、B、Alのいずれかから選ばれる。ここで、1.
0≦z≦1.2、0.1≦a≦0.3、0.005≦b
≦0.1、0.005≦c≦0.1、0.005≦d≦
0.1、0.115≦a+b+c+d≦0.4を満足す
る。)で表される層状構造のニッケルコバルト酸リチウ
ム系材料を混合することを特徴とするリチウム二次電池
用正極材料及び該材料を用いたリチウム二次電池を確立
することである。
SUMMARY OF THE INVENTION According to the present invention, the initial capacity is
Lithium manganate which is low but excellent in cycle characteristics and safety
Nickel that has high initial capacity and excellent high temperature characteristics
By mixing lithium cobaltate-based material,
To maintain the high initial capacity,
Secondary with excellent cycle characteristics
Positive electrode material for battery and lithium secondary battery using the material
It is to establish. Specifically, for lithium secondary batteries
Li as cathode material1 + xMn2-xO4Or Li
1 + xMn2-xyMyO4(M is Ti, Zr, Sn,
An element selected from Al, Co, Ni, B, Mg and Zn
At least one element of element, 0 ≦ x ≦ 0.20, 0 ≦ y ≦
0.20) Manganese having a spinel structure represented by the chemical formula:
Lithium oxide-based materials and LizNi1-abcdCo
aM1bM2cM3dO2(M1, M 2, M3Is Ti,
It is selected from any of Mg, B, and Al. Here, 1.
0 ≦ z ≦ 1.2, 0.1 ≦ a ≦ 0.3, 0.005 ≦ b
≦ 0.1, 0.005 ≦ c ≦ 0.1, 0.005 ≦ d ≦
0.1, 0.115 ≦ a + b + c + d ≦ 0.4
You. Lithium nickel cobaltate having a layered structure represented by)
Lithium secondary battery characterized by mixing
Positive electrode material and lithium secondary battery using the material
It is to be.

【0011】[0011]

【課題を解決するための手段】本発明は、 1.初期容量100〜120mAh/gのマンガン酸リ
チウム系材料と初期容量170〜200mAh/gのニ
ッケルコバルト酸リチウム系材料を混合することを特徴
とするリチウム二次電池用正極材料及び該材料を用いた
リチウム二次電池 2.マンガン酸リチウム系材料がLi1+xMn2-x
又はLi1+xMn 2-x-y(MはTi、
Zr、Sn、Al、Co、Ni、B、Mg及びZnから
選択された元素の少なくとも1成分、0≦x≦0.2
0、0≦y≦0.20)の化学式で表される材料である
ことを特徴とする上記1記載のリチウム二次電池用正極
材料及び該材料を用いたリチウム二次電池 3.化学式Li1+xMn2-xで示されるマンガ
ン酸リチウム系材料が、メジアン径10μm以下の炭酸
マンガンを酸化処理した酸化マンガンとリチウム化合物
とを混合し、不活性雰囲気中若しくは大気中又は酸素雰
囲気中で焼成して得たスピネル構造のマンガン酸リチウ
ム系材料であることを特徴とする上記1又は2記載のリ
チウム二次電池用正極材料及び該材料を用いたリチウム
二次電池 4.化学式Li1+xMn2-x-y(MはT
i、Zr、Sn、Al、Co、Ni、B、Mg及びZn
から選択された元素の少なくとも1成分、0≦x≦0.
20、0≦y≦0.20)で示されるマンガン酸リチウ
ム系材料が、メジアン径10μm以下の炭酸マンガンを
酸化処理した酸化マンガンとリチウム化合物とを混合
し、不活性雰囲気中若しくは大気中又は酸素雰囲気中で
焼成して得たスピネル構造のマンガン酸リチウム系材料
を粉砕した後、該金属元素を含む化合物を混合し、熱処
理して得たスピネル構造のマンガン酸リチウム材料であ
ることを特徴とする上記1又は2記載のリチウム二次電
池用正極材料及び該材料を用いたリチウム二次電池 5.マンガン酸リチウム材料からなる粉末のタップ密度
が1.8g/cc以上であることを特徴とする上記1〜
4のそれぞれに記載のリチウム二次電池用正極材料及び
該材料を用いたリチウム二次電池 6.ニッケルコバルト酸リチウム系材料が一般式Li
Ni1−a−b−c−dCo1b2c3d
で表される層状化合物であり、ここでM、M、M
はTi、Mg、B、Alのいずれかから選ばれる材料で
あり、1.0≦z≦1.2、0.1≦a≦0.3、0.
005≦b≦0.1、0.005≦c≦0.1、0.0
05≦d≦0.1、0.115≦a+b+c+d≦0.
4を満足することを特徴とする上記1記載のリチウム二
次電池用正極材料及び該材料を用いたリチウム二次電池 7.ニッケルコバルト酸リチウム系材料が共沈法で作製
したNi1−a−b−c −dCo1b2c3d
(OH)とLi化合物とを混合して大気あるいは酸素
雰囲気下、480〜850°Cで焼成することを特徴と
する上記6に記載のリチウム二次電池用正極材料及び該
材料を用いたリチウム二次電池 8.ニッケルコバルト酸リチウム系材料が共沈法で作製
したNi1−a−b−c −dCo1b2c3d
(OH)とLi化合物とを混合して得た混合物を大気
あるいは酸素雰囲気下、480〜630°Cで15〜4
0時間焼成した後粉砕を行い、さらに同雰囲気下、70
0〜850°Cで3〜10時間焼成を行うことを特徴と
する上記6に記載のリチウム二次電池用正極材料及び該
材料を用いたリチウム二次電池 9.ニッケルコバルト酸リチウム系材料が一般式Li
Ni1−a−b−c−dCo1b2c3d
で表される層状化合物であり、ここでM、M、M
はTi、Mg、B、Alのいずれかから選ばれる材料で
あり、1.0≦z≦1.2、0.1≦a≦0.3、0.
005≦b≦0.1、0.005≦c≦0.1、0.0
05≦d≦0.1、0.115≦a+b+c+d≦0.
4を満足することを特徴とする上記2〜5のそれぞれに
記載のリチウム二次電池用正極材料及び該材料を用いた
リチウム二次電池 10.ニッケルコバルト酸リチウム系材料が共沈法で作
製したNi1−a−b− c−dCo1b2c
3d(OH)とLi化合物とを混合して大気あるいは
酸素雰囲気下、480〜850°Cで焼成することを特
徴とする上記9に記載のリチウム二次電池用正極材料及
び該材料を用いたリチウム二次電池 11.ニッケルコバルト酸リチウム系材料が共沈法で作
製したNi1−a−b− c−dCo1b2c
3d(OH)とLi化合物とを混合して得た混合物を
大気あるいは酸素雰囲気下、480〜630°Cで15
〜40時間焼成した後粉砕を行い、さらに同雰囲気下、
700〜850°Cで3〜10時間焼成を行うことを特
徴とする上記9に記載のリチウム二次電池用正極材料及
び該材料を用いたリチウム二次電池 を提供する。
The present invention provides: Manganese oxide with an initial capacity of 100 to 120 mAh / g
Titanium-based material and an initial capacity of 170 to 200 mAh / g
It is characterized by mixing lithium cobalt oxide-based material
Positive electrode material for a lithium secondary battery and the material using the same
1. Lithium secondary battery Lithium manganate-based material is Li1 + xMn2-x
O4Or Li1 + xMn 2-xyMyO4(M is Ti,
From Zr, Sn, Al, Co, Ni, B, Mg and Zn
At least one component of the selected element, 0 ≦ x ≦ 0.2
0, 0 ≦ y ≦ 0.20)
The positive electrode for a lithium secondary battery according to the above item 1, wherein
2. Material and lithium secondary battery using the material Chemical formula Li1 + xMn2-xO4Manga indicated by
Lithium acidate-based material has a median diameter of 10 μm or less
Manganese oxide and lithium compound obtained by oxidizing manganese
Are mixed in an inert atmosphere, air, or oxygen atmosphere.
Lithium manganate with spinel structure obtained by firing in an atmosphere
3. The resource according to item 1 or 2 above, wherein
Positive electrode material for lithium secondary battery and lithium using the material
Secondary battery 4. Chemical formula Li1 + xMn2-xyMyO4(M is T
i, Zr, Sn, Al, Co, Ni, B, Mg and Zn
At least one component selected from the group consisting of 0 ≦ x ≦ 0.
20, 0 ≦ y ≦ 0.20) Lithium manganate represented by the formula:
Manganese carbonate with a median diameter of 10 μm or less
Mixing oxidized manganese oxide and lithium compound
And in an inert atmosphere, air or oxygen atmosphere
Lithium manganate material with spinel structure obtained by firing
After pulverizing, the compound containing the metal element is mixed and heat-treated.
Lithium manganate material with spinel structure
3. The lithium secondary battery as described in 1 or 2 above,
4. Positive electrode material for pond and lithium secondary battery using the material Tap density of powder composed of lithium manganate material
Is 1.8 g / cc or more.
4. The positive electrode material for a lithium secondary battery according to each of 4.
5. Lithium secondary battery using this material The lithium nickel cobaltate-based material has the general formula Liz
Ni1-abcdCoaM1bM2cM3dO2
Is a layered compound represented by1, M2, M3
Is a material selected from any of Ti, Mg, B, and Al
Yes, 1.0 ≦ z ≦ 1.2, 0.1 ≦ a ≦ 0.3, 0.
005 ≦ b ≦ 0.1, 0.005 ≦ c ≦ 0.1, 0.0
05 ≦ d ≦ 0.1, 0.115 ≦ a + b + c + d ≦ 0.
4. The lithium secondary battery according to the above item 1, wherein
6. Positive electrode material for secondary battery and lithium secondary battery using the material Lithium nickel cobaltate-based material produced by co-precipitation method
Ni1-abc -DCoaM1bM2cM3d
(OH)2And Li compound mixed with air or oxygen
Firing at 480-850 ° C under an atmosphere
The positive electrode material for a lithium secondary battery according to 6 above,
7. Lithium secondary battery using material Lithium nickel cobaltate-based material produced by co-precipitation method
Ni1-abc -DCoaM1bM2cM3d
(OH)2The mixture obtained by mixing
Or 15 to 4 at 480 to 630 ° C. in an oxygen atmosphere.
After sintering for 0 hour, pulverization is performed.
Characterized in that firing is performed at 0 to 850 ° C. for 3 to 10 hours.
The positive electrode material for a lithium secondary battery according to 6 above,
8. Lithium secondary battery using material The lithium nickel cobaltate-based material has the general formula Liz
Ni1-abcdCoaM1bM2cM3dO2
Is a layered compound represented by1, M2, M3
Is a material selected from any of Ti, Mg, B, and Al
Yes, 1.0 ≦ z ≦ 1.2, 0.1 ≦ a ≦ 0.3, 0.
005 ≦ b ≦ 0.1, 0.005 ≦ c ≦ 0.1, 0.0
05 ≦ d ≦ 0.1, 0.115 ≦ a + b + c + d ≦ 0.
4 is satisfied.
The positive electrode material for a lithium secondary battery according to the above and the material was used.
Lithium secondary battery 10. Lithium nickel cobaltate-based material produced by coprecipitation method
Ni made1-ab- cdCoaM1bM2cM
3d(OH)2And Li compound mixed with air or
Firing at 480-850 ° C under oxygen atmosphere
10. The positive electrode material for a lithium secondary battery according to the above item 9, wherein
And a lithium secondary battery using the material 11. Lithium nickel cobaltate-based material produced by coprecipitation method
Ni made1-ab- cdCoaM1bM2cM
3d(OH)2And the mixture obtained by mixing the Li compound
15 at 480-630 ° C under air or oxygen atmosphere
After firing for ~ 40 hours, pulverization is performed, and under the same atmosphere,
The baking is performed at 700 to 850 ° C for 3 to 10 hours.
10. The positive electrode material for a lithium secondary battery according to the above item 9, wherein
And a lithium secondary battery using the material.

【0012】[0012]

【発明の実施の形態】現在、リチウム二次電池に用いら
れるLi1+x(Mn2-x)Oなる化学式のスピネ
ル構造を持つ化合物は実験室レベルの特殊なケースを除
き、実用的なレベルでは粉末冶金的な手法が用いられて
いる。すなわち、粉末状のリチウム化合物とマンガン化
合物を混合し、熱処理する固相反応法である。リチウム
化合物としては炭酸リチウム、マンガン化合物としては
酸化マンガンが一般的であるが、これに限定されるもの
ではない。固相反応法においては、相互拡散が理想的で
あるが、リチウム化合物が熱的に不安定であることか
ら、マンガン中にリチウムが拡散する形態で反応が進行
する。また、異種元素を導入し結晶構造を強固にする試
みもなされている。この場合、異種元素を含む化合物の
混合工程が問題となり、リチウム化合物、マンガン化合
物と同時に混合し焼成する方法と、リチウム化合物、マ
ンガン化合物からマンガン酸リチウムを焼成した後、こ
れを粉砕し、この粉砕した材料に異種元素を含む化合物
を混合し再焼成する方法とがある。前者は工程の簡略化
の点から経済性に優れているが、材料の均一性から後者
の方が特性的に優れており、より好ましい(特願平11
−226059)。
BEST MODE FOR CARRYING OUT THE INVENTION At present, a compound having a spinel structure of the formula Li 1 + x (Mn 2-x ) O 4 used in a lithium secondary battery has a practical level except for a special case at a laboratory level. Powder metallurgy techniques are used. That is, it is a solid phase reaction method in which a powdery lithium compound and a manganese compound are mixed and heat-treated. The lithium compound is generally lithium carbonate, and the manganese compound is generally manganese oxide, but is not limited thereto. In the solid-state reaction method, mutual diffusion is ideal, but the reaction proceeds in a form in which lithium diffuses into manganese because the lithium compound is thermally unstable. Attempts have also been made to introduce a different element to strengthen the crystal structure. In this case, the mixing step of the compound containing a different element becomes a problem, and a method of mixing and firing simultaneously with the lithium compound and the manganese compound, and firing the lithium manganate from the lithium compound and the manganese compound, pulverizing the lithium There is a method in which a compound containing a different element is mixed with the material thus obtained, and refired. The former is more economical in terms of simplification of the process, but the latter is more preferable in terms of characteristics from the uniformity of the material, and is more preferable (Japanese Patent Application No. Hei 11 (1999) -108).
-226059).

【0013】スピネル構造を持つマンガン酸リチウム系
材料の平均粒径(多くはメジアン径を用いる)はその出
発原料であるマンガン酸化物の粒径に依存するが、本発
明のマンガン酸リチウム系材料のメジアン径は5μm以
上、10μm以下の大きさに調整され、またタップ密度
が1.8g/cc以上、好ましくは2.0g/cc以上
であることが望ましい。メジアン径5μm未満では電解
液へのMn溶解の進行が速く、電池特性向上の効果が期
待できない。また、メジアン径10μmを超えると相対
的に粗粒が増え、塗布性や電池特性に問題を生じる。さ
らに、タップ密度が1.8g/cc未満では、電池作製
時のプレス作業時に粒子の破壊を生じ電池特性に悪影響
を与える。これらのマンガン酸リチウム系材料の出発原
料としては、市販の電解二酸化マンガンや化学合成二酸
化マンガンを用いても良いが、メジアン径10μm以下
の微粒炭酸マンガンを酸化して作製するのが好ましい
(特願平11−85106、特願2000−43588
参照)。これらの出発原料とリチウム塩(炭酸塩)を混
合し、不活性雰囲気中、大気中又は酸化雰囲気中で65
0〜900°Cの間で電気炉等の加熱装置を用いて熱処
理することによって、メジアン径10μm以下、タップ
密度が1.8g/cc以上のマンガン酸リチウム系材料
を得る。マンガン酸リチウム系材料の製造に際し、Mn
の置換材料としてTi、Zr、Sn、Al、Co、N
i、B、Mg及びZnから選択した元素の少なくとも1
成分を添加することができる。選択された元素を含む化
合物の混合方法として、(1)酸化マンガンに代表され
るマンガン化合物、炭酸リチウムに代表されるリチウム
化合物及び選択された元素を含む化合物を混合し、不活
性雰囲気中、大気中又は酸化雰囲気中で650〜900
°Cの間で電気炉等の加熱装置を用いて熱処理する方法
と、(2)酸化マンガンに代表されるマンガン化合物、
炭酸リチウムに代表されるリチウム化合物を混合し、不
活性雰囲気中、大気中又は酸化雰囲気中で650〜90
0°Cの間で電気炉等の加熱装置を用いて熱処理するこ
とでマンガン酸リチウムを作製した後、これを粉砕し、
粉砕した材料に選択された元素を含む化合物を再び混合
し、不活性雰囲気中、大気中又は酸化雰囲気中で650
〜900°Cの間で電気炉等の加熱装置を用いて再び熱
処理する方法とがある。前者は工程が少なく経済性が優
れているが、材料の均一性から後者の方が特性的に優れ
ており、好ましい。
The average particle size (often using the median diameter) of the lithium manganate-based material having a spinel structure depends on the particle size of the manganese oxide as the starting material. The median diameter is adjusted to a size of 5 μm or more and 10 μm or less, and the tap density is preferably 1.8 g / cc or more, preferably 2.0 g / cc or more. If the median diameter is less than 5 μm, the dissolution of Mn in the electrolytic solution progresses rapidly, and the effect of improving battery characteristics cannot be expected. On the other hand, if the median diameter exceeds 10 μm, coarse particles relatively increase, which causes problems in applicability and battery characteristics. Further, when the tap density is less than 1.8 g / cc, particles are broken at the time of a press operation at the time of producing a battery, which adversely affects battery characteristics. As a starting material of these lithium manganate-based materials, commercially available electrolytic manganese dioxide or chemically synthesized manganese dioxide may be used, but it is preferable to oxidize fine manganese carbonate having a median diameter of 10 μm or less (Japanese Patent Application Hei 11-85106, Japanese Patent Application 2000-43588
reference). These starting materials are mixed with a lithium salt (carbonate) and mixed in an inert atmosphere, air or an oxidizing atmosphere.
A lithium manganate-based material having a median diameter of 10 μm or less and a tap density of 1.8 g / cc or more is obtained by performing heat treatment using a heating device such as an electric furnace at 0 to 900 ° C. When producing lithium manganate-based materials, Mn
, Zr, Sn, Al, Co, N
at least one of the elements selected from i, B, Mg and Zn
Ingredients can be added. As a method of mixing the compound containing the selected element, (1) a manganese compound represented by manganese oxide, a lithium compound represented by lithium carbonate, and a compound containing the selected element are mixed, and the mixture is mixed in an inert atmosphere, in the atmosphere. 650-900 in medium or oxidizing atmosphere
And (2) a manganese compound represented by manganese oxide,
A lithium compound typified by lithium carbonate is mixed, and 650 to 90 in an inert atmosphere, air or an oxidizing atmosphere.
After producing lithium manganate by heat treatment using a heating device such as an electric furnace between 0 ° C., this is pulverized,
The compound containing the selected element is mixed again with the pulverized material and 650 in an inert atmosphere, air or an oxidizing atmosphere.
There is a method of performing heat treatment again using a heating device such as an electric furnace at a temperature of up to 900 ° C. The former has fewer steps and is more economical, but the latter is more preferable in terms of characteristics because of the uniformity of the material and is preferred.

【0014】上記のように、マンガン酸リチウム系正極
材における問題点の一つとして、高温での劣化が大きい
ことが挙げられる。これを改善する目的で、本発明で
は、マンガン酸リチウム系材料とニッケルコバルト酸リ
チウム系材料を混合して、リチウム二次電池用正極材料
を得る。マンガン酸リチウム系材料にニッケルコバルト
酸リチウム系材料を混合することで、電解液中の酸の生
成が抑制され、マンガン酸リチウム系材料からのMnの
溶出を抑制できることから高温での劣化に効果があるこ
とが知られている。混合に際しては、初期容量100〜
110mAh/gのマンガン酸リチウム系材料と初期容
量170〜200mAh/gのニッケルコバルト酸リチ
ウム系材料を混合することが好適である。さらに、ニッ
ケルコバルト酸リチウム系材料としては、LiNi
1−a−b −c−dCo1b2c3d(M
、M、MはTi、Mg、B、Alのいずれかから
選ばれる。ここで1.0≦z≦1.2、0.1≦a≦
0.3、0.005≦b≦0.1、0.005≦c≦
0.1、0.005≦d≦0.1、0.115≦a+b
+c+d≦0.4を満足する。)で表される層状構造の
ニッケルコバルト酸リチウム系材料とする。この材料は
ニッケルコバルト酸リチウムに3種以上の元素を添加す
ることで、従来のニッケルコバルト酸リチウムの問題点
である安全性、サイクル特性を改良するものである(特
願2000−364075参照)。
As described above, one of the problems with the lithium manganate-based cathode material is that deterioration at a high temperature is large. In order to improve this, in the present invention, a lithium manganate-based material and a lithium nickel cobaltate-based material are mixed to obtain a positive electrode material for a lithium secondary battery. By mixing the lithium nickel manganate-based material with the lithium nickel cobaltate-based material, the generation of acid in the electrolytic solution is suppressed, and the elution of Mn from the lithium manganate-based material can be suppressed, which is effective for deterioration at high temperatures. It is known that there is. Upon mixing, the initial volume is 100-
It is preferable to mix a lithium manganate-based material of 110 mAh / g and a lithium nickel cobaltate-based material having an initial capacity of 170 to 200 mAh / g. Moreover, as the nickel-cobalt lithium-based materials, Li z Ni
1-a-b -c-d Co a M 1b M 2c M 3d O 2 (M
1 , M 2 and M 3 are selected from any of Ti, Mg, B and Al. Where 1.0 ≦ z ≦ 1.2, 0.1 ≦ a ≦
0.3, 0.005 ≦ b ≦ 0.1, 0.005 ≦ c ≦
0.1, 0.005 ≦ d ≦ 0.1, 0.115 ≦ a + b
+ C + d ≦ 0.4 is satisfied. ) Is a layered structure of lithium nickel cobaltate-based material. This material improves safety and cycle characteristics, which are problems of the conventional lithium nickel cobaltate, by adding three or more elements to lithium nickel cobaltate (see Japanese Patent Application No. 2000-364075).

【0015】上記材料を製造するに当たっては、添加す
る元素を均一に混合する必要があり、このためには共沈
法が適当である。そして、この共沈法で作製したNi
1−a −b−c−dCo1b2c3d(OH)
とLi化合物とを混合し、大気あるいは酸素雰囲気
下、480−850°Cで焼成することによって、ニッ
ケルコバルト酸リチウム系材料を製造する。また、共沈
法で作製したNi1−a−b−c−dCo1b
2c3d(OH)とLi化合物とを混合して得た混
合物を大気あるいは酸素雰囲気下、480−630°C
で15−40時間焼成した後粉砕を行い、さらに同雰囲
気下、700−850°Cで3−10時間焼成を行うこ
とによって、安定した効果が得られる。
In producing the above materials, it is necessary to uniformly mix the elements to be added, and for this purpose, a coprecipitation method is appropriate. And, Ni produced by this coprecipitation method
1-a- bcd Co a M 1b M 2c M 3d (OH)
2 and a Li compound are mixed and fired at 480-850 ° C. in the air or oxygen atmosphere to produce a lithium nickel cobaltate-based material. In addition, Ni 1-a-b-c-d Co a M 1b M produced by the coprecipitation method
A mixture obtained by mixing 2c M 3d (OH) 2 and a Li compound is subjected to 480-630 ° C. under air or oxygen atmosphere.
After sintering for 15 to 40 hours, pulverization is performed, and further, sintering is performed at 700 to 850 ° C. for 3 to 10 hours under the same atmosphere, whereby a stable effect is obtained.

【0016】上記によって得たマンガン酸リチウム系材
料粉末とニッケルコバルト酸リチウム系材料粉末を既存
の混合装置を用いて混合し、リチウム二次電池用正極材
料を製造する。このようにして得たリチウム二次電池用
正極材料は、マンガン酸リチウム系材料及びニッケルコ
バルト酸リチウム系材料のもつそれぞれの欠点を補い、
初期容量を低下させずに、自己放電の低減、高サイクル
特性のリチウム二次電池用正極材料を得ることが可能に
なった。
The lithium manganate-based material powder and the lithium nickel cobaltate-based material powder obtained as described above are mixed using an existing mixing apparatus to produce a cathode material for a lithium secondary battery. The positive electrode material for a lithium secondary battery obtained in this way compensates for the respective disadvantages of the lithium manganate-based material and the lithium nickel cobaltate-based material,
It has become possible to obtain a positive electrode material for a lithium secondary battery with reduced self-discharge and high cycle characteristics without lowering the initial capacity.

【0017】[0017]

【実施例】以下、実施例に基づいて説明する。本実施例
は好適な1例にすぎず、本発明はこれらの実施例に限定
されるものではない。したがって、本発明の技術思想の
範囲で種々の変形や他の実施例及び態様を含むものであ
る。本発明の電池特性の評価は、実験室規模のコイン型
電池を用いて行った。すなわち、正極活物質、導電性カ
ーボン及び結着剤としてのポリフッ化ビニリデンにn−
メチルピロリドンを加えて混合し、ドクターブレード法
でアルミ箔上に製膜したものを正極に、金属リチウム板
をニッケルメッシュに圧着したものを負極とした。セパ
レーターはポリプロピレン製のものを、電解液はEC
(エチレンカーボネート)とDMC(ジメチルカーボネ
ート)を1対1に混合したものに支持塩として1MのLi
PFを加えて使用した。この電池の特性は、25°C
及び55°Cで、充放電電流密度0.2mA/cm
カットオフ電圧3.0−4.5Vとして測定した。
Embodiments will be described below with reference to embodiments. This embodiment is merely a preferred example, and the present invention is not limited to these embodiments. Therefore, various modifications and other embodiments and aspects are included within the technical idea of the present invention. Evaluation of the battery characteristics of the present invention was performed using a laboratory scale coin-type battery. That is, the cathode active material, conductive carbon and polyvinylidene fluoride as a binder were added to n-
Methylpyrrolidone was added and mixed, and a film formed on an aluminum foil by a doctor blade method was used as a positive electrode, and a metal lithium plate pressed on a nickel mesh was used as a negative electrode. The separator is made of polypropylene and the electrolyte is EC
(Ethylene carbonate) and DMC (dimethyl carbonate) in a one-to-one mixture, and 1M Li as a supporting salt
PF 6 was used. The characteristics of this battery are 25 ° C
And at 55 ° C., a charge / discharge current density of 0.2 mA / cm 2 ,
It measured as cut-off voltage 3.0-4.5V.

【0018】(実施例1)微細粒炭酸マンガンを酸化処
理し、メジアン径9μmの大きさに調整した酸化マンガ
ンを出発原料として、酸化マンガンと炭酸リチウムとを
Li:Mn:O=1.15:2:4(モル比、以下同
様。)となるように混合し、大気中750°Cで焼成
し、メジアン径9μm、タップ密度2.2g/ccのス
ピネル構造のマンガン酸リチウム粉末を得た。このよう
にして得たマンガン酸リチウムの電池特性を調べたとこ
ろ初期容量は105mAh/gであった。
Example 1 Manganese oxide and lithium carbonate were prepared by oxidizing fine-grained manganese carbonate and using manganese oxide adjusted to have a median diameter of 9 μm as a starting material. Li: Mn: O = 1.15: The mixture was mixed at a molar ratio of 2: 4 (the same applies hereinafter) and fired at 750 ° C. in the atmosphere to obtain lithium manganate powder having a spinel structure with a median diameter of 9 μm and a tap density of 2.2 g / cc. When the battery characteristics of the lithium manganate thus obtained were examined, the initial capacity was 105 mAh / g.

【0019】一方、次の工程によりニッケルコバルト酸
リチウム粉末を得た。まず、金属ニッケルと金属コバル
トをNi:Co=0.8:0.14となるように秤量し
て50重量%の硫酸溶液に溶解させた。次に、この溶液
に硝酸マグネシウム、塩化チタン、4ホウ酸アンモニウ
ムをNi:Co:Mg:Ti:B=0.8:0.14:
0.02:0.02:0.02となるように加え、ニッ
ケル、コバルト、マグネシウム、チタン、ホウ素の合計
が60g/lとなるように溶液濃度を調整した。これ
に、塩化アンモニウムを加えてpHを約5に調整した
後、6mol/lの水酸化ナトリウム溶液を添加して混
合水酸化物を共沈させた。共沈後の水酸化物は、数回水
洗した後乾燥させた。得られた粉体は球状で、針状の一
次粒子により形作られていた。この粉体にLiOH・H
OをLi:(Ni+Co+Mg+Ti+B)=1.
1:1となるように加えて混合し、750°C、10時
間大気中で焼成し、ニッケルコバルト酸リチウム得た。
このニッケルコバルト酸リチウムの電池特性を調べたと
ころ初期容量は180mAh/gであった。X線回折に
よる相同定の結果、得られた化合物は層状岩塩構造(六
方晶:R3m)で、他の相は検出されなかった。
On the other hand, lithium nickel cobaltate powder was obtained by the following steps. First, metallic nickel and metallic cobalt were weighed so that Ni: Co = 0.8: 0.14 and dissolved in a 50% by weight sulfuric acid solution. Next, magnesium nitrate, titanium chloride, and ammonium borate were added to this solution with Ni: Co: Mg: Ti: B = 0.8: 0.14:
The solution concentration was adjusted so that the total of nickel, cobalt, magnesium, titanium and boron was 60 g / l in addition to 0.02: 0.02: 0.02. After adding ammonium chloride to adjust the pH to about 5, a 6 mol / l sodium hydroxide solution was added to coprecipitate the mixed hydroxide. The hydroxide after co-precipitation was washed several times with water and then dried. The resulting powder was spherical and shaped by needle-like primary particles. LiOH · H
2 O to Li: (Ni + Co + Mg + Ti + B) = 1.
The mixture was added at a ratio of 1: 1 and mixed, and calcined in the air at 750 ° C. for 10 hours to obtain lithium nickel cobaltate.
When the battery characteristics of this lithium nickel cobaltate were examined, the initial capacity was 180 mAh / g. As a result of phase identification by X-ray diffraction, the obtained compound had a layered rock salt structure (hexagonal: R3m), and no other phase was detected.

【0020】次に、上記によって得たマンガン酸リチウ
ム粉末とニッケルコバルト酸リチウム粉末を90:10
となるように混合してコイン型電池を作製し電池特性を
評価した。サイクル特性の評価を表1に示す。サイクル
特性の評価は初期容量と50サイクル目の容量の比
(%)で行った。表1には初期容量と容量保持率(%)
を示す。サイクル劣化は非常に少なかった。比較例とし
てマンガン酸リチウムの結果を示す。
Next, the lithium manganate powder and the lithium nickel cobaltate powder obtained above were mixed with 90:10
Then, a coin-type battery was prepared by mixing to evaluate the battery characteristics. Table 1 shows the evaluation of the cycle characteristics. The cycle characteristics were evaluated by the ratio (%) between the initial capacity and the capacity at the 50th cycle. Table 1 shows the initial capacity and capacity retention (%).
Is shown. The cycle deterioration was very small. The results of lithium manganate are shown as comparative examples.

【0021】(実施例2)マンガン酸リチウム粉末につ
いては、実施例1と同様の粉末を使用した。ニッケルコ
バルト酸リチウム粉末については、実施例1のBの変わ
りにAlを用いて同様な実験を行った。Alの化合物と
しては硝酸アルミニウムを使用した。次に、上記によっ
て得たマンガン酸リチウム粉末とニッケルコバルト酸リ
チウムを90:10となるように混合してコイン型電池
を作製し電池特性を評価した。サイクル特性の評価を表
1に示す。サイクル劣化は非常に少なかった。
Example 2 The same powder as in Example 1 was used for lithium manganate powder. For lithium nickel cobaltate powder, a similar experiment was performed using Al instead of B in Example 1. Aluminum nitrate was used as the Al compound. Next, the lithium manganate powder obtained above and lithium nickel cobaltate were mixed at a ratio of 90:10 to produce a coin-type battery, and the battery characteristics were evaluated. Table 1 shows the evaluation of the cycle characteristics. The cycle deterioration was very small.

【0022】(実施例3)マンガン酸リチウム粉末につ
いては、実施例1と同様の粉末を使用した。ニッケルコ
バルト酸リチウム粉末については、実施例1で得た混合
水酸化物とLiOH・HOを同様の比で混合し、酸素
雰囲気下550°Cで、24時間焼成した後粉砕を行
い、さらに750°Cで5時間焼成をおこなった。次
に、上記によって得たマンガン酸リチウム粉末とニッケ
ルコバルト酸リチウムを90:10となるように混合し
てコイン型電池を作製し電池特性を評価した。サイクル
特性の評価を表1に示す。
Example 3 The same powder as in Example 1 was used for lithium manganate powder. For the lithium nickel cobaltate powder, the mixed hydroxide obtained in Example 1 and LiOH.H 2 O were mixed at the same ratio, and calcined at 550 ° C. for 24 hours in an oxygen atmosphere, followed by pulverization. The firing was performed at 750 ° C. for 5 hours. Next, the lithium manganate powder obtained above and lithium nickel cobaltate were mixed at a ratio of 90:10 to produce a coin-type battery, and the battery characteristics were evaluated. Table 1 shows the evaluation of the cycle characteristics.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すように実施例のマンガン酸リチ
ウム系材料とニッケルコバルト酸リチウム系材料を混合
したリチウム二次電池用正極材料材料は、マンガン酸リ
チウムのみと比べて高容量であり、かつ良好なサイクル
特性を示している。本発明により、初期容量を良好に維
持するとともに高温での劣化を抑制し、高充電率を維持
する良好な充電サイクル特性を有するリチウム二次電池
用正極材料が得られる。
As shown in Table 1, the positive electrode material for a lithium secondary battery obtained by mixing the lithium manganate-based material and the lithium nickel cobaltate-based material of the embodiment has a higher capacity than lithium manganate alone, and It shows good cycle characteristics. ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for lithium secondary batteries which has a favorable charge cycle characteristic which maintains the initial capacity satisfactorily, suppresses deterioration at high temperature, and maintains a high charge rate can be obtained.

【0025】[0025]

【発明の効果】初期容量を良好に維持するとともに、高
温におけるサイクル特性が良好でありかつ安全性に優れ
たリチウム二次電池用正極材料及び同正極材料を用いた
リチウム二次電池を得ることができるという優れた効果
を有する。
As described above, it is possible to obtain a positive electrode material for a lithium secondary battery and a lithium secondary battery using the same, which have good initial cycle capacity, good cycle characteristics at high temperatures and excellent safety. It has an excellent effect of being able to.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田崎 博 茨城県北茨城市華川町臼場187番地4 株 式会社日鉱マテリアルズ磯原工場内 (72)発明者 木下 剛 茨城県北茨城市華川町臼場187番地4 株 式会社日鉱マテリアルズ磯原工場内 Fターム(参考) 5H029 AJ05 AJ12 AK03 AL12 AM03 AM05 AM07 BJ03 CJ02 CJ08 CJ28 HJ02 HJ05 HJ14 HJ19 5H050 AA05 AA07 AA15 BA16 CA09 CB12 DA02 EA08 EA24 FA17 FA19 GA02 GA10 GA27 HA02 HA05 HA14 HA19  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Tazaki 187-4 Usuba, Hachikawa-cho, Kitaibaraki-city, Ibaraki Pref. Inside Nikko Materials Isohara Plant (72) Inventor Tsuyoshi Kinoshita Usui, Hachikawa-cho, Kitaibaraki-shi, Ibaraki 187-4, Nikko Materials Isohara Plant F term (reference) 5H029 AJ05 AJ12 AK03 AL12 AM03 AM05 AM07 BJ03 CJ02 CJ08 CJ28 HJ02 HJ05 HJ14 HJ19 5H050 AA05 AA07 AA15 BA16 CA09 CB12 DA02 EA08 GA10 HA05 HA14 HA19

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 初期容量100〜120mAh/gのマ
ンガン酸リチウム系材料と初期容量170〜200mA
h/gのニッケルコバルト酸リチウム系材料を混合する
ことを特徴とするリチウム二次電池用正極材料及び該材
料を用いたリチウム二次電池。
1. A lithium manganate-based material having an initial capacity of 100 to 120 mAh / g and an initial capacity of 170 to 200 mA.
A positive electrode material for a lithium secondary battery, characterized by mixing h / g lithium nickel cobaltate-based material, and a lithium secondary battery using the material.
【請求項2】 マンガン酸リチウム系材料がLi1+x
Mn2-x又はLi1+xMn2-x-y
(MはTi、Zr、Sn、Al、Co、Ni、B、M
g及びZnから選択された元素の少なくとも1成分、0
≦x≦0.20、0≦y≦0.20)の化学式で表され
る材料であることを特徴とする請求項1記載のリチウム
二次電池用正極材料及び該材料を用いたリチウム二次電
池。
2. The lithium manganate-based material is Li 1 + x
Mn 2-x O 4 or Li 1 + x Mn 2-x -y M y O
4 (M is Ti, Zr, Sn, Al, Co, Ni, B, M
at least one component of an element selected from g and Zn;
2. The positive electrode material for a lithium secondary battery according to claim 1, wherein the material is represented by a chemical formula of ≦ x ≦ 0.20, 0 ≦ y ≦ 0.20) and lithium secondary using the material. battery.
【請求項3】 化学式Li1+xMn2-xで示さ
れるマンガン酸リチウム系材料が、メジアン径10μm
以下の炭酸マンガンを酸化処理した酸化マンガンとリチ
ウム化合物とを混合し、不活性雰囲気中若しくは大気中
又は酸素雰囲気中で焼成して得たスピネル構造のマンガ
ン酸リチウム系材料であることを特徴とする請求項1又
は2記載のリチウム二次電池用正極材料及び該材料を用
いたリチウム二次電池。
3. The lithium manganate-based material represented by the chemical formula Li 1 + x Mn 2-x O 4 has a median diameter of 10 μm.
It is characterized by being a spinel-structured lithium manganate-based material obtained by mixing manganese oxide obtained by oxidizing manganese carbonate and a lithium compound and calcining the mixture in an inert atmosphere or the air or an oxygen atmosphere. A positive electrode material for a lithium secondary battery according to claim 1 or 2, and a lithium secondary battery using the material.
【請求項4】 化学式Li1+xMn2-x-y
(MはTi、Zr、Sn、Al、Co、Ni、B、Mg
及びZnから選択された元素の少なくとも1成分、0≦
x≦0.20、0≦y≦0.20)で示されるマンガン
酸リチウム系材料が、メジアン径10μm以下の炭酸マ
ンガンを酸化処理した酸化マンガンとリチウム化合物と
を混合し、不活性雰囲気中若しくは大気中又は酸素雰囲
気中で焼成して得たスピネル構造のマンガン酸リチウム
系材料を粉砕した後、該金属元素を含む化合物を混合
し、熱処理して得たスピネル構造のマンガン酸リチウム
材料であることを特徴とする請求項1又は2記載のリチ
ウム二次電池用正極材料及び該材料を用いたリチウム二
次電池。
4. The chemical formula Li 1 + x Mn 2- xy My O 4
(M is Ti, Zr, Sn, Al, Co, Ni, B, Mg
And at least one component of an element selected from Zn and 0 ≦
x ≦ 0.20, 0 ≦ y ≦ 0.20) is mixed with manganese oxide obtained by oxidizing manganese carbonate having a median diameter of 10 μm or less and a lithium compound, and the mixture is mixed in an inert atmosphere or A spinel-type lithium manganate material obtained by pulverizing a spinel-structured lithium manganate-based material obtained by firing in air or an oxygen atmosphere, mixing a compound containing the metal element, and heat-treating the mixture. The positive electrode material for a lithium secondary battery according to claim 1 or 2, and a lithium secondary battery using the material.
【請求項5】 マンガン酸リチウム材料からなる粉末の
タップ密度が1.8g/cc以上であることを特徴とす
る請求項1〜4のそれぞれに記載のリチウム二次電池用
正極材料及び該材料を用いたリチウム二次電池。
5. The positive electrode material for a lithium secondary battery according to claim 1, wherein the tap density of the powder made of the lithium manganate material is 1.8 g / cc or more. Used lithium secondary battery.
【請求項6】 ニッケルコバルト酸リチウム系材料が一
般式LiNi1− a−b−c−dCo1b2c
3dで表される層状化合物であり、ここでM
、MはTi、Mg、B、Alのいずれかから選ば
れる材料であり、1.0≦z≦1.2、0.1≦a≦
0.3、0.005≦b≦0.1、0.005≦c≦
0.1、0.005≦d≦0.1、0.115≦a+b
+c+d≦0.4を満足することを特徴とする請求項1
記載のリチウム二次電池用正極材料及び該材料を用いた
リチウム二次電池。
6. nickel cobaltate lithium-based material formula Li z Ni 1- a-b- c-d Co a M 1b M 2c
A layered compound represented by M 3d O 2 , wherein M 1 ,
M 2 and M 3 are materials selected from Ti, Mg, B and Al, and 1.0 ≦ z ≦ 1.2 and 0.1 ≦ a ≦
0.3, 0.005 ≦ b ≦ 0.1, 0.005 ≦ c ≦
0.1, 0.005 ≦ d ≦ 0.1, 0.115 ≦ a + b
2. The condition of + c + d ≦ 0.4 is satisfied.
A positive electrode material for a lithium secondary battery as described above, and a lithium secondary battery using the material.
【請求項7】 ニッケルコバルト酸リチウム系材料が共
沈法で作製したNi 1−a−b−c−dCo1b
2c3d(OH)とLi化合物とを混合して大気あ
るいは酸素雰囲気下、480〜850°Cで焼成するこ
とを特徴とする請求項6に記載のリチウム二次電池用正
極材料及び該材料を用いたリチウム二次電池。
7. The lithium nickel cobaltate-based material is commonly used.
Ni prepared by the precipitation method 1-abcdCoaM1bM
2cM3d(OH)2And a Li compound to mix
Or baking at 480-850 ° C under oxygen atmosphere
The positive electrode for a lithium secondary battery according to claim 6, wherein
An electrode material and a lithium secondary battery using the material.
【請求項8】 ニッケルコバルト酸リチウム系材料が共
沈法で作製したNi 1−a−b−c−dCo1b
2c3d(OH)とLi化合物とを混合して得た混
合物を大気あるいは酸素雰囲気下、480〜630°C
で15〜40時間焼成した後粉砕を行い、さらに同雰囲
気下、700〜850°Cで3〜10時間焼成を行うこ
とを特徴とする請求項6に記載のリチウム二次電池用正
極材料及び該材料を用いたリチウム二次電池。
8. The lithium nickel cobaltate-based material is commonly used.
Ni prepared by the precipitation method 1-abcdCoaM1bM
2cM3d(OH)2Mixture obtained by mixing
480-630 ° C under air or oxygen atmosphere
And then pulverize for 15 to 40 hours,
Baking at 700 to 850 ° C for 3 to 10 hours.
The positive electrode for a lithium secondary battery according to claim 6, wherein
An electrode material and a lithium secondary battery using the material.
【請求項9】 ニッケルコバルト酸リチウム系材料が一
般式LiNi1− a−b−c−dCo1b2c
3dで表される層状化合物であり、ここでM
、MはTi、Mg、B、Alのいずれかから選ば
れる材料であり、1.0≦z≦1.2、0.1≦a≦
0.3、0.005≦b≦0.1、0.005≦c≦
0.1、0.005≦d≦0.1、0.115≦a+b
+c+d≦0.4を満足することを特徴とする請求項2
〜5のそれぞれに記載のリチウム二次電池用正極材料及
び該材料を用いたリチウム二次電池。
9. nickel cobaltate lithium-based material formula Li z Ni 1- a-b- c-d Co a M 1b M 2c
A layered compound represented by M 3d O 2 , wherein M 1 ,
M 2 and M 3 are materials selected from Ti, Mg, B and Al, and 1.0 ≦ z ≦ 1.2 and 0.1 ≦ a ≦
0.3, 0.005 ≦ b ≦ 0.1, 0.005 ≦ c ≦
0.1, 0.005 ≦ d ≦ 0.1, 0.115 ≦ a + b
3. The condition of + c + d ≦ 0.4 is satisfied.
6. The positive electrode material for a lithium secondary battery according to any one of items 1 to 5, and a lithium secondary battery using the material.
【請求項10】 ニッケルコバルト酸リチウム系材料が
共沈法で作製したNi1−a−b−c−dCo1b
2c3d(OH)とLi化合物とを混合して大気
あるいは酸素雰囲気下、480〜850°Cで焼成する
ことを特徴とする請求項9に記載のリチウム二次電池用
正極材料及び該材料を用いたリチウム二次電池。
10. A Ni 1-a-b-c-d Co a M 1b made of a lithium nickel cobaltate-based material by a coprecipitation method.
The positive electrode material for a lithium secondary battery according to claim 9, wherein M 2c M 3d (OH) 2 and a Li compound are mixed and fired at 480 to 850 ° C in an air or oxygen atmosphere. Lithium secondary battery using materials.
【請求項11】 ニッケルコバルト酸リチウム系材料が
共沈法で作製したNi1−a−b−c−dCo1b
2c3d(OH)とLi化合物とを混合して得た
混合物を大気あるいは酸素雰囲気下、480〜630°
Cで15〜40時間焼成した後粉砕を行い、さらに同雰
囲気下、700〜850°Cで3〜10時間焼成を行う
ことを特徴とする請求項9に記載のリチウム二次電池用
正極材料及び該材料を用いたリチウム二次電池。
11. Ni 1-a-b-c-d Co a M 1b made of a lithium nickel cobaltate-based material by a coprecipitation method.
A mixture obtained by mixing M 2c M 3d (OH) 2 and a Li compound is subjected to 480 to 630 ° in the air or oxygen atmosphere.
The positive electrode material for a lithium secondary battery according to claim 9, wherein the powder is baked at 15 to 40 hours at C and then crushed, and further baked at 700 to 850 ° C for 3 to 10 hours under the same atmosphere. A lithium secondary battery using the material.
JP2001073900A 2001-03-15 2001-03-15 Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material Withdrawn JP2002279987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073900A JP2002279987A (en) 2001-03-15 2001-03-15 Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073900A JP2002279987A (en) 2001-03-15 2001-03-15 Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material

Publications (1)

Publication Number Publication Date
JP2002279987A true JP2002279987A (en) 2002-09-27

Family

ID=18931261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073900A Withdrawn JP2002279987A (en) 2001-03-15 2001-03-15 Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material

Country Status (1)

Country Link
JP (1) JP2002279987A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105162A1 (en) * 2003-05-26 2004-12-02 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2007165027A (en) * 2005-12-10 2007-06-28 Sakai Chem Ind Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery
JP2008063211A (en) * 2006-03-20 2008-03-21 National Institute Of Advanced Industrial & Technology Lithium manganese-based compound oxide and its manufacture method
JP2008071625A (en) * 2006-09-14 2008-03-27 Nec Tokin Corp Positive electrode active material for secondary battery, positive electrode for secondary battery using it, and secondary battery
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
JP2014523095A (en) * 2011-07-13 2014-09-08 エルジー・ケム・リミテッド High energy lithium secondary battery with improved energy density characteristics
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9203081B2 (en) 2011-05-23 2015-12-01 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
CN112151773A (en) * 2019-06-26 2020-12-29 中国科学院物理研究所 Positive active material, preparation method thereof and lithium battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105162A1 (en) * 2003-05-26 2004-12-02 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
US7556889B2 (en) 2003-05-26 2009-07-07 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP4742866B2 (en) * 2003-05-26 2011-08-10 日本電気株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
JP2007165027A (en) * 2005-12-10 2007-06-28 Sakai Chem Ind Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery
JP2008063211A (en) * 2006-03-20 2008-03-21 National Institute Of Advanced Industrial & Technology Lithium manganese-based compound oxide and its manufacture method
JP4691711B2 (en) * 2006-03-20 2011-06-01 独立行政法人産業技術総合研究所 Lithium manganese composite oxide and method for producing the same
US8021783B2 (en) 2006-03-20 2011-09-20 National Institute Of Advanced Industrial Science And Technology Lithium manganese-based composite oxide and method for preparing the same
JP2008071625A (en) * 2006-09-14 2008-03-27 Nec Tokin Corp Positive electrode active material for secondary battery, positive electrode for secondary battery using it, and secondary battery
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9203081B2 (en) 2011-05-23 2015-12-01 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
JP2014523095A (en) * 2011-07-13 2014-09-08 エルジー・ケム・リミテッド High energy lithium secondary battery with improved energy density characteristics
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
US10431821B2 (en) 2012-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system
CN112151773A (en) * 2019-06-26 2020-12-29 中国科学院物理研究所 Positive active material, preparation method thereof and lithium battery
CN112151773B (en) * 2019-06-26 2022-05-24 中国科学院物理研究所 Positive active material, preparation method thereof and lithium battery

Similar Documents

Publication Publication Date Title
JP4592931B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2018503238A (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
CN101997113A (en) Multicomponent material with multilayer coating structure for lithium ion battery and preparation method thereof
CN107359334A (en) Spherical or spherical anode material for lithium-ion batteries and lithium ion battery
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JPWO2002041419A1 (en) Non-aqueous electrolyte secondary battery and its positive electrode active material
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JPH11204110A (en) Manufacture of anode material for lithium ion battery
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
CN106602054A (en) Lithium ion battery positive electrode material and preparation method and application thereof
JP2002151071A (en) Positive electrode active material for nonaqueous system secondary battery and its manufacturing method, and nonaqueous system secondary battery using the same
JPH11219706A (en) Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP2002279987A (en) Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP3489771B2 (en) Lithium battery and method of manufacturing lithium battery
JP2001023641A (en) Positive electrode active material for lithium secondary battery and manufacture of the same
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
CN103413928B (en) High-capacity high-compaction metal oxide anode material and preparation method thereof
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JPH11121006A (en) Positive electrode active material for lithium secondary battery
JP2005268127A (en) Positive electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery using it
CN103594699B (en) Micron order monocrystalline Mn-based material, its preparation method and use its lithium ion battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603