JPH116025A - Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material - Google Patents

Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material

Info

Publication number
JPH116025A
JPH116025A JP10097297A JP9729798A JPH116025A JP H116025 A JPH116025 A JP H116025A JP 10097297 A JP10097297 A JP 10097297A JP 9729798 A JP9729798 A JP 9729798A JP H116025 A JPH116025 A JP H116025A
Authority
JP
Japan
Prior art keywords
group
cemented carbide
film
layer
coated hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10097297A
Other languages
Japanese (ja)
Inventor
Naoya Omori
直也 大森
Yasuhisa Hashimoto
泰久 橋本
Kazutaka Isobe
和孝 磯部
Nobuyuki Kitagawa
信行 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10097297A priority Critical patent/JPH116025A/en
Priority to IL12420798A priority patent/IL124207A/en
Priority to EP98303258A priority patent/EP0874063A1/en
Publication of JPH116025A publication Critical patent/JPH116025A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

PROBLEM TO BE SOLVED: To provide a new cemented carbide, excellent in corrosion resistance as well as having properties suited for a cutting tool, and also to provide a coated hard tool formed by using this cemented carbide as a base material, having a film formed on the surface of the cemented carbide, excellent in wear resistance and deposition resistance, and suitable for use in machining of a difficult-to-cut material. SOLUTION: This cemented carbide has a composition consisting of, by weight, 3 to 25% of Co and Ni, chromium carbide in an amount of 10 to 30% based on Co and Ni, and the balance tungsten carbide with inevitable impurities. The film has at least one layer composed of at least one compound selected from the group consisting of the nitrides, carbides, carbonitrides, and oxides containing at least one element selected from group IVa elements, group Va elements, Al, B, and Si.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は新規な超硬合金と、この
超硬合金を母材とする被覆硬質合金および工具に関する
ものである。本発明の超硬合金および被覆硬質合金は硬
度と耐蝕性に優れた切削加工工具をはじめとして、硬度
と耐蝕性が求められる任意の部品、例えば構造部品、機
械部品、装飾品等に好適に使用できる。本発明の超硬合
金を母材とする被覆硬質工具は、耐摩耗性および耐溶着
性に優れ、難切削材の切削加工に好適に使用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel hard metal and a coated hard alloy and a tool using the hard metal as a base material. The cemented carbide and the coated hard alloy of the present invention are suitably used for cutting parts having excellent hardness and corrosion resistance, as well as any parts requiring hardness and corrosion resistance, such as structural parts, machine parts, and decorative articles. it can. The coated hard tool using the cemented carbide of the present invention as a base material has excellent wear resistance and welding resistance and can be suitably used for cutting difficult-to-cut materials.

【0002】[0002]

【従来の技術】被削材の難削化、加工の高速化に伴い、
切削加工用工具の材料として用いられる超硬合金には高
強度、高硬度への不断の要求がある。例えば、切削工具
の用途ではフランク摩耗に対する耐摩耗性の向上に加え
て、被削材の表面(いわゆる黒皮)が接触して進行する
境界摩耗に対して強いことが特に求められる。また、す
くい面に発生し易いクレータ摩耗に対する耐性も求めら
れる。更に、最近では、Ni合金、Ti合金、高硬度鋼など
の難削材の切削でしばしば発生する被削材の工具への溶
着に対する耐性も求められる。この溶着は構成刃先とな
って工具のチッピング等の原因となり、工具寿命を著し
く短くする。
2. Description of the Related Art With difficult-to-cut materials and high-speed machining,
There is a constant demand for high-strength, high-hardness cemented carbide used as a material for cutting tools. For example, in the application of a cutting tool, in addition to the improvement of abrasion resistance against flank wear, it is particularly required that the surface of a work material (so-called black scale) is strong against boundary wear which progresses by contact. Further, resistance to crater wear, which easily occurs on the rake face, is also required. Further, recently, resistance to welding of a work material to a tool, which often occurs in cutting of a difficult-to-cut material such as a Ni alloy, a Ti alloy, and high-hardness steel, is also required. This welding becomes a component edge and causes chipping of the tool, etc., and significantly shortens the tool life.

【0003】特開昭61-12847号公報には上記の一連の要
求に対してV(ヴァナジウム)およびCr(クロム)の複
合添加によってWC(タングステンカーバイド)の粒成
長を抑制し、それによって耐蝕性を向上させられること
が記載されている。特公昭4-31012号公報と「粉体およ
び粉末冶金」31(1984)56には Cr(炭化クロ
ム)を添加することによって耐食性を向上させ得ること
が記載されている。
Japanese Unexamined Patent Publication (Kokai) No. 61-12847 discloses that, in response to the above series of requirements, the grain growth of WC (tungsten carbide) is suppressed by the combined addition of V (vanadium) and Cr (chromium), whereby the corrosion resistance is reduced. Is described. Japanese Patent Publication No. 4-31012 and "Powder and Powder Metallurgy" 31 (1984) 56 describe that the corrosion resistance can be improved by adding Cr 3 C 2 (chromium carbide).

【0004】このように、切削工具等の材料として用い
られる超硬合金では、主として硬度を上げるために微粒
のWC原料を使用し、粒成長抑制と境界摩耗およびクレ
ータ摩耗の抑制のためにCr を添加して耐食性を
向上させている。しかし、粒子を微細化した微粒の超硬
合金ではクラックの伝播抵抗が低下する場合がある。事
実、クラックの進行に対しては粗粒の方がエネルギーを
多く要するので、粗粒の方がクラック進行阻止には寄与
する。また、切削工具として使用した場合には、加工時
の高温によって結合相の硬質粒子のグリップ力が低下す
る傾向がある。そして、この場合、粗粒よりも微粒の方
が粒子脱落が起こり易く、擦過摩耗の進行が早くなる。
As described above, in a cemented carbide used as a material for a cutting tool or the like, fine WC raw materials are mainly used to increase hardness, and Cr 3 is used to suppress grain growth and boundary wear and crater wear. It was added to C 2 thereby improving the corrosion resistance. However, in the case of a fine-grained cemented carbide having fine particles, crack propagation resistance may decrease. In fact, coarse grains require more energy for the progress of cracks, so coarse grains contribute to the prevention of crack progress. When used as a cutting tool, the gripping force of the hard particles of the binder phase tends to decrease due to the high temperature during processing. In this case, fine particles are more likely to fall off than coarse particles, and the progress of abrasion wear is faster.

【0005】また、この種の超硬合金では不可避的不純
物の含有量が多いと、Cr の添加で合金中に脆化
相が形成され、その結果、超硬合金のクラック伝播抵抗
が著しく低下し、強度の劣化を招く。一方、超硬合金の
耐磨耗性を向上させるために超硬合金の表面に TiN等の
被覆層を形成する試みが行われているが、超硬合金母材
の磨耗が激しく、その効果は十分に発揮されていない。
[0005] In addition, if this type of cemented carbide has a large content of unavoidable impurities, an embrittled phase is formed in the alloy due to the addition of Cr 3 C 2 , and as a result, the crack propagation resistance of the cemented carbide is reduced. It decreases remarkably and causes deterioration of strength. On the other hand, attempts have been made to form a coating layer such as TiN on the surface of the cemented carbide in order to improve the wear resistance of the cemented carbide.However, the wear of the cemented carbide base material is severe. Not fully demonstrated.

【0006】[0006]

【発明が解決しようとする課題】本発明の第一の目的
は、上記従来法の問題点を解決して、切削工具等に好適
な特性を有し、しかも耐食性に優れた新規な超硬合金を
提供することにある。本発明の第二の目的は、上記の超
硬合金を母材とし、この超硬合金の表面に形成された皮
膜を有する耐摩耗性および耐溶着性に優れた、難切削材
の切削加工に適した被覆硬質合金および被覆硬質工具を
提供することにある。
SUMMARY OF THE INVENTION A first object of the present invention is to solve the above-mentioned problems of the conventional method and to provide a new cemented carbide having characteristics suitable for cutting tools and the like and excellent in corrosion resistance. Is to provide. A second object of the present invention is to use the above-mentioned cemented carbide as a base material and have excellent wear resistance and welding resistance having a film formed on the surface of the cemented carbide. It is to provide a suitable coated hard alloy and a coated hard tool.

【0007】[0007]

【課題を解決するための手段】本発明の対象は、3〜25
重量%のCoおよびNiの総量と、CoおよびNiに対してCrを
炭化クロム(Cr)換算で10〜30重量%含み、残部が
炭化タングステン (WC)および不可避不純物からなる
ことを特徴とする超硬合金にある。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
Characteristics and the total weight% of Co and Ni, the Cr with respect to Co and Ni comprises 10 to 30 weight percent chromium carbide (Cr 3 C 2) terms that the balance of tungsten carbide (WC) and inevitable impurities In the cemented carbide.

【0008】本発明の他の対象は、上記超硬合金を母材
とし、この超硬合金の表面に皮膜が形成された被覆硬質
合金、特に被覆硬質工具であって、この皮膜はIVa 族元
素、Va 族元素、Al、BおよびSiの中から選択される少
なくとも一つの元素を含む窒化物、炭化物、炭窒化物お
よび酸化物の中から選択される少なくとも一種の化合物
からなる層を少なくとも一層有することを特徴とする被
覆硬質合金、特に被覆硬質工具にある。
Another object of the present invention is a coated hard alloy having the above-mentioned cemented carbide as a base material and a coating formed on the surface of the cemented carbide, particularly a coated hard tool, wherein the coating is made of a group IVa element. , At least one layer comprising at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from the group consisting of Va group elements, Al, B and Si A coated hard alloy, particularly a coated hard tool.

【0009】[0009]

【実施の態様】本発明の超硬合金の好ましい実施例で
は、Niの比率はCoおよびNiの総量に対して 0.4〜80重量
%である。本発明の超硬合金の別の好まし実施例では炭
化タングステンの平均粒度は 0.3〜5μmである。本発
明の超硬合金のさらに別の実施例では炭化タングステン
は平均粒度が 0.3〜1.1 μmの微粒子群と、1.2 〜5μ
mの粗粒子群とからなり、炭化タングステン全体量に対
する粗粒子群炭化タングステン量の比が 0.1〜 0.9であ
る。
In a preferred embodiment of the cemented carbide according to the invention, the proportion of Ni is between 0.4 and 80% by weight, based on the total amount of Co and Ni. In another preferred embodiment of the cemented carbide according to the invention, the average grain size of the tungsten carbide is between 0.3 and 5 μm. In still another embodiment of the cemented carbide according to the present invention, the tungsten carbide comprises fine particles having an average particle size of 0.3 to 1.1 μm and 1.2 to 5 μm.
m, and the ratio of the amount of tungsten carbide in the coarse particle group to the total amount of tungsten carbide is 0.1 to 0.9.

【0010】本発明の超硬合金の超硬合金は従来のもの
に比べてクロム(主として炭化クロムの形)が格段に多
い点にその主要な特徴がある。すなわち、3〜25重量%
のCoおよびNiと、このCoおよびNiに対してCrを炭化クロ
ム(Cr)換算で10〜30重量%含み、残部が炭化タン
グステンと不可避不純物とからなる本発明の超硬合金
は、従来のWC−Co系超硬合金、WC−微量 Cr C
o系超硬合金、WC−微量 Cr−Co−微量Ni系超硬
合金に比べて、切削用途、特にインコネル、ナイモニッ
クなどのNi合金の切削で格段の寿命延長が可能になる。
なお、クロムはクロムの比率が炭化クロム換算で定義の
範囲内に入っていれば、炭化クロムの形で添加しても、
金属クロムやその他のクロム含有化合物の形で添加して
もよい。Niの比率がCoおよびNiに対して 0.4〜80重量%
である超硬合金はこの特性が一層向上する。
The cemented carbide of the cemented carbide of the present invention is a conventional cemented carbide.
Chromium (mainly in the form of chromium carbide) is much more
The main point is that it has a special feature. That is, 3 to 25% by weight
Co and Ni and Cr to this Co and Ni
(Cr3C210 to 30% by weight in conversion, with the balance being tan carbide
The cemented carbide of the present invention comprising gustene and unavoidable impurities
Is a conventional WC-Co cemented carbide, WC-Cr 3C2C
o system cemented carbide, WC-trace Cr3C2−Co− Trace Ni-based carbide
Compared to alloys, cutting applications, especially Inconel and Nimonix
By cutting Ni alloys such as steel, the service life can be extended significantly.
Chromium has a chromium ratio defined by chromium carbide conversion.
If it is within the range, even if it is added in the form of chromium carbide,
In the form of metallic chromium and other chromium-containing compounds
Is also good. 0.4-80% by weight of Ni to Co and Ni
The characteristics of the cemented carbide are further improved.

【0011】1) CoおよびNi量 CoおよびNiの含有量が3重量%未満になると靭性が著し
く低下するので好ましくない。一方、CoおよびNiの含有
量が25重量%を超えると耐塑性変形性および耐摩耗性が
低下するので好ましくない。従って、CoおよびNiの含有
量は3重量%以上、25重量%以下にする。 2) Cr クロムはCoおよびNiに対してCr (炭化クロム)
に換算した量が10重量%以下になると耐酸化性および耐
境界摩耗性が不十分になる。一方、30重量%を超えると
脆化相が析出し、靭性が激減する。従って、CoおよびNi
に対するクロムの重量比はCr換算で10重量%以上
且つ30重量%以下にするのが好ましい。
1)Co and Ni amount  When the content of Co and Ni is less than 3% by weight, the toughness becomes remarkable.
It is not preferable because it is lowered. On the other hand, the content of Co and Ni
If the amount exceeds 25% by weight, the plastic deformation resistance and wear resistance
It is not preferable because it lowers. Therefore, the content of Co and Ni
The amount is not less than 3% by weight and not more than 25% by weight. 2)Cr 3 C 2 amount  Chromium is Cr for Co and Ni3C2 (Chromium carbide)
When the amount converted to is less than 10% by weight, oxidation resistance and
Boundary wear becomes insufficient. On the other hand, if it exceeds 30% by weight,
An embrittlement phase precipitates and the toughness is drastically reduced. Therefore, Co and Ni
The weight ratio of chromium to3C210% by weight or more in conversion
In addition, the content is preferably 30% by weight or less.

【0012】3) Ni量 Niの量がCoおよびNiに対して 0.4重量%未満では所望の
耐摩耗性および耐境界摩耗性が発揮されない。一方、80
重量%を超えると焼結不足で靭性が低下するか高温で焼
結せざるを得ず、耐摩耗性が劣化する。 4) 炭化タングステンの平均粒度 炭化タングステンの平均粒度が 0.3μm未満では十分焼
結できず、強度不足になる。一方、5μmを超えると耐
摩耗性が不足する。 5) 炭化タングステン全体量に対する粗粒子群炭化タン
グステン量の比 炭化タングステン全体量に対する粗粒子群炭化タングス
テン量の比が 0.1未満では強度が不足し、 0.9を超える
と耐摩性が不足する。
3)Ni amount  If the amount of Ni is less than 0.4% by weight based on Co and Ni,
Abrasion resistance and boundary wear resistance are not exhibited. On the other hand, 80
If it exceeds 10% by weight, toughness will decrease due to insufficient sintering or
It must be tied, and the wear resistance deteriorates. Four) Average particle size of tungsten carbide  If the average particle size of tungsten carbide is less than 0.3 μm,
It cannot be tied, resulting in insufficient strength. On the other hand, when it exceeds 5 μm,
Insufficient wear. Five) Coarse-grained tan carbide to total tungsten carbide
Gusten ratio  Coarse-grained carbide tungsten with respect to the total amount of tungsten carbide
If the ratio of ten is less than 0.1, the strength is insufficient and it exceeds 0.9
And lack of abrasion resistance.

【0013】本発明の被覆硬質工具は上記超硬合金を母
材とし、この超硬合金の表面に耐摩耗性を向上させる皮
膜を有する。この皮膜はIVa 族元素、Va 族元素、Al、
BおよびSiの中から選択される少なくとも一つの元素を
含む窒化物、炭化物、炭窒化物および酸化物の中から選
択される少なくとも一種の化合物からなる層を少なくと
も一層有する。この皮膜を形成した被覆硬質工具は従来
法で作った被覆硬質工具に比べて寿命が飛躍的に向上す
る。
[0013] The coated hard tool of the present invention uses the above-mentioned cemented carbide as a base material, and has a coating on its surface to improve wear resistance. This film is made of group IVa element, group Va element, Al,
It has at least one layer made of at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from B and Si. The life of the coated hard tool formed with this coating is remarkably improved as compared with the coated hard tool manufactured by the conventional method.

【0014】本発明被覆硬質工具の好ましい実施例で
は、上記皮膜が少なくとも2つの単位層を交互に積層し
た多層膜を含む。この多層膜の各単位層は IVa族元素、
Va 族元素、Al、BおよびSiの中から選択される少なく
とも一つの元素を含む窒化物、炭化物、炭窒化物および
酸化物の中から選択される少なくとも一種の化合物から
なり、各単位層は膜厚が 0.2〜100 nmであり、多層膜
全体の膜厚は 0.5〜10μmである。
In a preferred embodiment of the coated hard tool according to the present invention, the coating comprises a multilayer film in which at least two unit layers are alternately laminated. Each unit layer of this multilayer film is composed of a group IVa element,
It is made of at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from Va group elements, Al, B and Si. The thickness is 0.2 to 100 nm, and the total thickness of the multilayer film is 0.5 to 10 μm.

【0015】各単位層の膜厚が 0.2nm未満では互いに
隣接する単位層の化合物が混ざり合ってしまうため、多
層膜にした効果が現れない。同様に、各単位層の膜厚が
100nmを超えた多層膜にも互いに隣接する単位層が影
響し合わないために、多層膜にした効果が現れない。多
層膜全体の膜厚が 0.5μm未満では被覆をした効果が認
められない。一方、多層膜全体の膜厚が10μmを越える
と、チッピングが起こり易くなり、好ましくない。少な
くとも一層の単位層にGe、SnおよびPbのの中から選択さ
れる少なくとも一つの元素を添加すると寿命はさらに向
上する。
If the thickness of each unit layer is less than 0.2 nm, the compounds of the unit layers adjacent to each other are mixed, and the effect of the multilayer film is not exhibited. Similarly, the thickness of each unit layer is
Since the unit layers adjacent to each other do not affect the multilayer film exceeding 100 nm, the effect of the multilayer film does not appear. If the thickness of the entire multilayer film is less than 0.5 μm, the effect of coating is not recognized. On the other hand, when the thickness of the entire multilayer film exceeds 10 μm, chipping is likely to occur, which is not preferable. If at least one element selected from Ge, Sn and Pb is added to at least one unit layer, the life is further improved.

【0016】本発明の被覆硬質工具の別の好ましい実施
例では、皮膜が上記の多層膜部分と積層構造を持たない
単一層部分とを交互に少なくとも5層形成したものから
成る。積層構造を持たない単一層部分はIVa 族元素、V
a 族元素、Al、BおよびSiの中から選択される少なくと
も一つの元素を含む窒化物、炭化物、炭窒化物および酸
化物の中から選択される少なくとも一種の化合物からな
り、その膜厚は 100〜5,000 nmで、皮膜全体の膜厚は
0.5〜10μmである。この構造にすることによって、皮
膜の応力が緩和され、皮膜がチッピングを起し難くな
り、結果的に工具寿命が大幅に延びる。なお、この実施
例では、多層膜部分と積層構造を持たない単一層部分と
を交互に少なくとも5層形成しないと、応力緩和の効果
は現れない。
In another preferred embodiment of the coated hard tool according to the present invention, the coating comprises at least five layers of the above-mentioned multilayer part and a single-layer part having no laminated structure alternately formed. The single layer portion having no laminated structure is composed of a group IVa element, V
It is composed of at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from group a elements, Al, B and Si. ~ 5,000 nm, the overall film thickness is
It is 0.5 to 10 μm. By adopting this structure, the stress of the coating is relieved, the coating is less likely to cause chipping, and as a result, the tool life is greatly extended. In this embodiment, the effect of stress relaxation does not appear unless at least five layers are alternately formed with the multilayer film portion and the single layer portion having no laminated structure.

【0017】本発明の被覆硬質工具の皮膜は、膜厚が0.
02〜2μmのTiN からなる最下層を有するのが好まし
い。なお、この膜厚が0.02μm未満では被覆層としての
効果が得られず、逆に、膜厚が2μmを越えると耐磨耗
性が低下する傾向があり、好ましくない。
The coating of the coated hard tool of the present invention has a thickness of 0.
It is preferred to have a lowermost layer of 02-2 μm TiN. If the thickness is less than 0.02 μm, the effect as a coating layer cannot be obtained, and if the thickness exceeds 2 μm, abrasion resistance tends to decrease, which is not preferable.

【0018】また、本発明の被覆硬質工具では、皮膜の
最外層の表面粗度がRaで0.18μm以下であるのが好ま
しい。そうすることによって切り屑の流れが良くなり、
溶着が防止され、被加工物の表面が非常に良好に保たれ
ると同時に溶着部からのチッピング、欠損が防止され
て、結果的に工具寿命が大幅に延びる。逆に、Raが0.
18μmを越えると、溶着を起こし易くなる。以下、本発
明の実施例を説明するが、以下の開示は本発明の特殊な
実施例に過ぎず、本発明の技術的範囲を何等限定するも
のではない。
In the coated hard tool of the present invention, the outermost layer of the coating preferably has a surface roughness Ra of 0.18 μm or less. Doing so improves the flow of the chips,
Welding is prevented, the surface of the workpiece is very well maintained, and at the same time chipping and chipping from the welded part are prevented, resulting in a significant increase in tool life. Conversely, Ra is 0.
If it exceeds 18 μm, welding tends to occur. Hereinafter, embodiments of the present invention will be described. However, the following disclosure is merely a special embodiment of the present invention, and does not limit the technical scope of the present invention.

【0019】[0019]

【実施例】実施例1 下記成分を湿式混合して原料粉末1を調製した: 平均粒径が2μmのWC粉末 : 28 重量% 平均粒径が0.7 μmのWC粉末 : 65.7 重量% 平均粒径が2μmの Cr 粉末: 0.8 重量% 平均粒径が 1.5μmの Ni 粉末 : 0.5 重量% 平均粒径が 1.5μmの Co 粉末 : 5 重量% この原料粉末1を型押し成形した後、10−2Torrの真空
中で1,400 ℃で真空焼結して試料1とした。この試料1
でのCoおよびNiに対する Cr の比率は14.5重量%
であり、CoおよびNiに対するNiの比率は 9.1重量%であ
る。また、WC全体の平均粒径は1μmであり、全WC
量に対する平均粒径2μmのWCの粗粒子群の比は 0.3
である。
【Example】Example 1  Raw material powder 1 was prepared by wet mixing the following components: WC powder having an average particle size of 2 μm: 28% by weight WC powder having an average particle size of 0.7 μm: 65.7% by weight Cr having an average particle size of 2 μm3C2 Powder: 0.8% by weight Ni powder with an average particle size of 1.5 μm: 0.5% by weight Co powder with an average particle size of 1.5 μm: 5% by weight-2Torr vacuum
Sample 1 was obtained by vacuum sintering at 1,400 ° C. This sample 1
For Co and Ni at high pressure3C2 Is 14.5% by weight
And the ratio of Ni to Co and Ni is 9.1% by weight.
You. The average particle size of the whole WC is 1 μm,
The ratio of WC coarse particles having an average particle size of 2 μm to the amount was 0.3
It is.

【0020】次に、下記成分を湿式混合して原料粉末2
を調製した: 平均粒径が1μmのWC粉末 : 89 重量% 平均粒径が2μmの Cr 粉末: 2 重量% 平均粒径が 1.5μmのNi粉末 : 3 重量% 平均粒径が 1.5μmのCo粉末 : 6 重量% この原料粉末2を型押し成形した後、10−2Torrの真空
中で1400℃で真空焼結して試料2とした。この試料2で
のCoおよびNiに対する Cr の量は22.2重量%であ
り、CoおよびNiに対するNiの量は33.3重量%である。
Next, the following components are wet-mixed to obtain raw material powder 2
Was prepared: WC powder having an average particle diameter of 1 μm: 89% by weight Cr 3 C 2 powder having an average particle diameter of 2 μm: 2% by weight Ni powder having an average particle diameter of 1.5 μm: 3% by weight Average particle diameter of 1.5 μm Co powder: 6% by weight This raw material powder 2 was embossed, and then vacuum-sintered at 1400 ° C. in a vacuum of 10 −2 Torr to obtain a sample 2. In Sample 2, the amount of Cr 3 C 2 with respect to Co and Ni was 22.2% by weight, and the amount of Ni with respect to Co and Ni was 33.3% by weight.

【0021】比較のために、本発明の範囲外の組成を有
する原料粉末3を調製した。すなわち、Cr 粉末
を 0.3重量%とし、Co粉末を 5.5重量%としたこと以外
は試料1と同じ配合比で原料粉末3を調製し、試料1と
同じ条件で成形および焼結して試料3を作製した。この
試料3でのCoおよびNiに対する Cr の量は5重量
%であり、CoおよびNiに対するNiの量は 8.3重量%であ
る。
For comparison, a raw material powder 3 having a composition outside the range of the present invention was prepared. That is, the raw material powder 3 was prepared at the same compounding ratio as that of the sample 1 except that the Cr 3 C 2 powder was 0.3% by weight and the Co powder was 5.5% by weight, and molded and sintered under the same conditions as the sample 1. Sample 3 was prepared. In Sample 3, the amount of Cr 3 C 2 with respect to Co and Ni was 5% by weight, and the amount of Ni with respect to Co and Ni was 8.3% by weight.

【0022】各試料1〜3の機械特性および耐食性を評
価した結果は〔表1〕にまとめて示してある。〔表1〕
において腐蝕減量は36%HCl中で50℃で8時間放置した
時の条件で評価した。また、酸化増量は大気中、1000℃
×30分の条件で評価した。
The results of evaluating the mechanical properties and corrosion resistance of each of the samples 1 to 3 are summarized in Table 1. [Table 1]
In the test, the weight loss of corrosion was evaluated under the condition of standing at 50 ° C. for 8 hours in 36% HCl. In addition, oxidation increase is 1000 ℃ in air.
Evaluation was performed under the condition of × 30 minutes.

【0023】[0023]

【表1】 [Table 1]

【0024】〔表1〕の結果から分かるように、本発明
の試料1および試料2はCr含有量が多いので抗折
力がやや低いが、腐食減量、酸化増量という耐食性では
比較例の試料3よりもはるかに向上している。また、本
発明範囲内でもCr含有量の多い試料2の方が耐食
性の面では優れている。
As can be seen from the results shown in Table 1, Samples 1 and 2 of the present invention have a slightly low transverse rupture strength due to the large content of Cr 3 C 2, but are comparative examples in terms of corrosion resistance such as corrosion weight loss and oxidation weight gain. It is much higher than that of Sample 3. Also, within the scope of the present invention, Sample 2 having a higher Cr 3 C 2 content is superior in terms of corrosion resistance.

【0025】実施例2 実施例1で作製した試料1〜3を用いて切削工具を作
り、〔表2〕に示す条件で実際に切削加工を行ってその
性能を評価した。
[0025]Example 2  A cutting tool was made using Samples 1 to 3 prepared in Example 1.
The actual cutting was performed under the conditions shown in [Table 2].
The performance was evaluated.

【0026】[0026]

【表2】 [Table 2]

【0027】切削条件1は最大摩耗幅で品質を評価し、
切削条件2は20個の切刃で発生した欠損切刃数で品質を
評価し、切削条件3は平均摩耗幅で品質を評価するもの
である。評価結果は〔表3〕にまとめて示してある。
The cutting condition 1 evaluates the quality by the maximum wear width,
Cutting condition 2 evaluates quality by the number of missing cutting edges generated by 20 cutting edges, and cutting condition 3 evaluates quality by average wear width. The evaluation results are summarized in [Table 3].

【0028】[0028]

【表3】 [Table 3]

【0029】〔表3〕から分かるように、本発明の超硬
合金を用いた切削工具は耐摩耗性と耐欠損性において著
しく高い性能を示す。なお、切削特性については試料1
は試料2よりも優れた特性を示している。
As can be seen from Table 3, the cutting tool using the cemented carbide of the present invention shows remarkably high performance in wear resistance and fracture resistance. For cutting characteristics, see Sample 1
Shows characteristics superior to that of Sample 2.

【0030】実施例3 〔表4〕に示す組成を有する試料4〜14を作製した。試
料12〜14は比較例である。
[0030]Example 3  Samples 4 to 14 having the compositions shown in Table 4 were prepared. Trial
Materials 12 to 14 are comparative examples.

【0031】[0031]

【表4】 [Table 4]

【0032】各試料について特性を測定した結果は〔表
5〕にまとめて示してある。なお、〔表5〕に示す酸化
増加量は実施例1と同じ方法で評価した。また、切削条
件3は実施例2と同じ方法で評価した。
The results of measuring the characteristics of each sample are summarized in Table 5 below. The oxidation increase shown in [Table 5] was evaluated in the same manner as in Example 1. Cutting condition 3 was evaluated in the same manner as in Example 2.

【0033】[0033]

【表5】 [Table 5]

【0034】実施例4 実施例1〜3の超硬合金を母材 (母材試料1〜3)と
し、この超硬合金の表面に下記皮膜A〜Nを形成した被
覆硬質工具を作成して、その性能を評価した。
[0034]Example 4  The cemented carbide of Examples 1 to 3 was used as a base material (base material samples 1 to 3).
Then, the following coatings A to N were formed on the surface of the cemented carbide.
A hard-coated tool was prepared and its performance was evaluated.

【0035】A= ZrNを2μm被覆した試料 B= HfNを10μm被覆した試料 C= VCNを8μm被覆した試料 D= TiAlNを10μm被覆した試料 E= BN を2μm被覆した試料 F= Si を1%含むAlO3を5μm被覆した試料 G= 0.2nmのTiN 層と、0.5 nmのAlN 層とを交互に
5,000 層積層した全体の厚さが 3.5μmの被覆層を有す
る試料 H=2nmのTiN 層と、5nmのAlN 層とを交互に 500
層積層した全体の厚さが 3.5μmの被覆層を有する試料 I=80nmの AlO3層と、100 nmのHfC 層とを交互
に50層積層した全体の厚さが9μmの被覆層を有する試
料 J=2nmのTiN 層と、 Si を1%含む5nmのAlN層
とを交互に 500層積層した全体の厚さが 3.5μmの被覆
層を有する試料
A = sample coated with 2 μm of ZrN B = sample coated with 10 μm of HfN C = sample coated with 8 μm of VCN D = sample coated with 10 μm of TiAlN E = sample coated with 2 μm of BN F = containing 1% of Si Sample coated with 5 μm of Al 2 O 3 G = 0.2 nm TiN layer and 0.5 nm AlN layer alternately
A sample having a coating layer having a total thickness of 3.5 μm and having a total thickness of 5,000 layers H = 2 nm TiN layers and 5 nm AlN layers alternately 500
A sample having a coating layer having a total thickness of 3.5 μm and a coating layer having a total thickness of 9 μm in which 50 layers of an Al 2 O 3 layer of 80 nm and an HfC layer of 100 nm were alternately laminated. Sample having J = 2 nm TiN layer and 5 nm AlN layer containing 1% of Si alternately 500 layers were laminated alternately, and a sample having a coating layer with a total thickness of 3.5 μm was formed.

【0036】K=2nmのTiN 層と、5nmのAlN4層と
を交互に30層積層した多層膜部分と、TiCNを 0.2μm形
成した単一層部分とを交互に5回づつ積層した全体の厚
さが2.05μmの被覆層を有する試料 L=母材との境界に 0.02 μmのTiN 層を形成し、その
上に2nmのTiN 層と、5nmのAlN 層とを交互に 500
層積層した全体の厚さが 3.52 μmの被覆層を有する試
料 M=母材との境界に 0.01 μmのTiN 層を形成し、その
上に2nmのTiN 層と、5nmのAlN 層とを交互に 500
層積層した全体の厚さが 3.51 μmの被覆層を有する試
料 N=母材との境界に11μmのTiN 層を形成し、その上に
2nmのTiN 層と、5nmのAlN 層とを交互に 500層積
層した全体の厚さが14.5μmの被覆層を有する試料 切削性能は実施例2の切削条件3で評価した。用いた皮
膜は〔表6〕〜〔表8〕に、また、切削結果は〔表1
0〕にまとめて示してある。
The total thickness of a multilayer film portion in which 30 alternately laminated TiN layers of K = 2 nm and an AlN4 layer of 5 nm, and a single layer portion in which TiCN is formed 0.2 μm are alternately laminated 5 times. Has a coating layer of 2.05 μm L = a 0.02 μm TiN layer is formed at the boundary with the base material, and a 2 nm TiN layer and a 5 nm AlN layer are alternately formed on the
Sample M having a coating layer with a total thickness of 3.52 μm. M = A 0.01 μm TiN layer was formed at the boundary with the base material, and a 2 nm TiN layer and a 5 nm AlN layer were alternately formed thereon. 500
A sample having a coating layer having a total thickness of 3.51 μm and having a total thickness of 3.51 μm. N = A 11 μm TiN layer was formed at the boundary with the base material, and a 2 nm TiN layer and a 5 nm AlN layer were alternately formed thereon. A sample having a coating layer having a total thickness of 14.5 μm in which the layers were laminated was evaluated under the cutting conditions 3 in Example 2. The coatings used are shown in [Table 6] to [Table 8], and the cutting results are shown in [Table 1].
0].

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【表7】 [Table 7]

【0039】[0039]

【表8】 [Table 8]

【0040】[0040]

【表9】 [Table 9]

【0041】[0041]

【表10】 [Table 10]

【0042】実施例5 表面粗さの効果を確認するために、実施例1の試料1に
〔表11〕に記載の表面粗さ(Ra)のTiAlN 皮膜を形
成した試料を作成し、実施例4と同じ切削評価を行っ
て、〔表11〕に記載の結果を得た。
Example 5 In order to confirm the effect of the surface roughness, a sample was prepared by forming a TiAlN film having the surface roughness (Ra) described in [Table 11] on the sample 1 of Example 1. The same cutting evaluation as in Example 4 was performed, and the results described in [Table 11] were obtained.

【0043】[0043]

【表11】 表面粗さが小さくなる程溶着が発生しにくくなり、良好
な切削性能が得られることが分かる。
[Table 11] It can be seen that welding is less likely to occur as the surface roughness becomes smaller, and good cutting performance is obtained.

【0044】[0044]

【発明の効果】以上説明した通り、本発明の超硬合金は
耐食性において優れた特性を示し、従って、単なる切削
工具材料としての用途に止まらず、各種工具や耐食性の
求められる分野、特に高硬度鋼、Ni基合金、Co基合金、
Ti基合金などの難削材切削の加工分野、例えば熱間圧延
ロール、時計枠、海水用ポンプスリーブやネカニカルシ
ール、強腐食性高圧バルブシートやボール、硬質装飾品
等で極めて信頼性の高い超硬合金材料として使用するこ
とができる。
As described above, the cemented carbide of the present invention exhibits excellent characteristics in corrosion resistance. Therefore, it is not limited to use as a mere cutting tool material, but in various tools and fields where corrosion resistance is required, especially in high hardness. Steel, Ni-based alloy, Co-based alloy,
Extremely reliable in the processing field of difficult-to-cut materials such as Ti-based alloys, such as hot rolling rolls, watch frames, seawater pump sleeves and necanical seals, highly corrosive high-pressure valve seats and balls, and hard decorative products Can be used as a cemented carbide material.

フロントページの続き (72)発明者 北川 信行 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内Continuation of the front page (72) Inventor Nobuyuki Kitagawa 1-1-1, Kunyokita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 3〜25重量%のCoおよびNiの総量と、Co
およびNiに対してCrを炭化クロム換算で10〜30重量%含
み、残部が炭化タングステンおよび不可避不純物からな
る超硬合金。
1. The method according to claim 1, wherein the total amount of 3 to 25% by weight of Co and Ni is
A cemented carbide containing 10 to 30% by weight of Cr in terms of chromium carbide with respect to Ni and Ni, with the balance being tungsten carbide and unavoidable impurities.
【請求項2】 Niの比率がCoとNiの総量に対して 0.4〜
80重量%である請求項1に記載の超硬合金。
2. The composition according to claim 1, wherein the ratio of Ni is 0.4 to the total amount of Co and Ni.
The cemented carbide according to claim 1, which is 80% by weight.
【請求項3】 炭化タングステンの平均粒度が 0.3〜5
μmである請求項1または2に記載の超硬合金。
3. The tungsten carbide has an average particle size of 0.3-5.
The cemented carbide according to claim 1 or 2, which has a diameter of μm.
【請求項4】 炭化タングステンが、平均粒度が 0.3〜
1.1μmの微粒子群と1.2 〜5μmの粗粒子群とからな
り、炭化タングステンの全体量に対する粗粒子群炭化タ
ングステン量の比が 0.1〜 0.9である請求項1〜3のい
ずれか一項に記載の超硬合金。
4. The tungsten carbide having an average particle size of 0.3 to
The fine particle group of 1.1 μm and the coarse particle group of 1.2 to 5 μm, wherein the ratio of the amount of tungsten carbide in the coarse particle group to the total amount of tungsten carbide is 0.1 to 0.9. Cemented carbide.
【請求項5】 請求項1〜4のいずれか一項に記載の超
硬合金を母材とし、この超硬合金の表面に形成された皮
膜を有することを特徴とする被覆超硬合金。
5. A coated cemented carbide comprising the cemented carbide according to claim 1 as a base material and a coating formed on the surface of the cemented carbide.
【請求項6】 上記皮膜がIVa 族元素、Va 族元素、A
l、BおよびSiの中から選択される少なくとも一つの元
素を含む窒化物、炭化物、炭窒化物および酸化物の中か
ら選択される少なくとも一種の化合物からなる層を少な
くとも一つ有する請求項第5に記載の被覆硬質合金。
6. The film according to claim 1, wherein the film is a group IVa element, a group Va element,
6. The semiconductor device according to claim 5, further comprising at least one layer made of at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from l, B and Si. 2. The coated hard alloy according to item 1.
【請求項7】 上記皮膜が少なくとも2つの単位層を交
互に積層した多層膜を含み、この多層膜の各単位層は I
Va族元素、Va 族元素、Al、BおよびSiの中から選択さ
れる少なくとも一つの元素を含む窒化物、炭化物、炭窒
化物および酸化物の中から選択される少なくとも一種の
化合物からなり、各単位層は膜厚が 0.2〜100 nmであ
り、多層膜全体の膜厚は 0.5〜10μmである請求項5ま
たは6に記載の被覆硬質合金。
7. The film includes a multilayer film in which at least two unit layers are alternately laminated, and each unit layer of the multilayer film has an I layer.
Each of at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from the group consisting of Va group elements, Va group elements, Al, B and Si, 7. The coated hard alloy according to claim 5, wherein the unit layer has a thickness of 0.2 to 100 nm, and the entire multilayer film has a thickness of 0.5 to 10 [mu] m.
【請求項8】 少なくとも一層の単位層がGe、Snおよび
Pbのの中から選択される少なくとも一つの元素を含む請
求項7に記載の被覆硬質合金。
8. At least one unit layer is composed of Ge, Sn and
The coated hard alloy according to claim 7, comprising at least one element selected from Pb.
【請求項9】 上記皮膜が上記の多層膜部分と、積層構
造を持たない単一層部分とを交互に少なくとも5層形成
したものから成り、積層構造を持たない単一層部分はIV
a 族元素、Va 族元素、Al、BおよびSiの中から選択さ
れる少なくとも一つの元素を含む窒化物、炭化物、炭窒
化物および酸化物の中から選択される少なくとも一種の
化合物からなり、その膜厚は 100〜5,000 nmであり、
皮膜全体の膜厚は 0.5〜10μmである請求項7または8
に記載の被覆硬質合金。
9. The coating comprises at least five layers alternately formed of the above-mentioned multilayer film portion and a single layer portion having no laminated structure, wherein the single layer portion having no laminated structure is IV
a group a element, a group Va element, at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from the group consisting of Al, B and Si; The film thickness is 100 to 5,000 nm,
The film thickness of the entire film is 0.5 to 10 µm.
2. The coated hard alloy according to item 1.
【請求項10】 請求項1〜4のいずれか一項に記載の
超硬合金を母材とし、この超硬合金の表面に形成された
皮膜を有する被覆硬質工具であって、この皮膜がIVa 族
元素、Va 族元素、Al、BおよびSiの中から選択される
少なくとも一つの元素を含む窒化物、炭化物、炭窒化物
および酸化物の中から選択される少なくとも一種の化合
物からなる層を少なくとも一つ有することを特徴とする
被覆硬質工具。
10. A coated hard tool comprising the cemented carbide according to claim 1 as a base material and a coating formed on the surface of the cemented carbide, wherein the coating is IVa A layer comprising at least one compound selected from the group consisting of nitrides, carbides, carbonitrides and oxides containing at least one element selected from the group consisting of group elements, Va group elements, Al, B and Si. A coated hard tool characterized by having one.
【請求項11】 上記皮膜が少なくとも2つの単位層を
交互に積層した多層膜を含み、この多層膜の各単位層は
IVa族元素、Va 族元素、Al、BおよびSiの中から選択
される少なくとも一つの元素を含む窒化物、炭化物、炭
窒化物および酸化物の中から選択される少なくとも一種
の化合物からなり、各単位層は 0.2〜100 nmの膜厚を
有し、多層膜全体の膜厚は 0.5〜10μmである請求項1
0に記載の被覆硬質工具。
11. The film includes a multilayer film in which at least two unit layers are alternately laminated, and each unit layer of the multilayer film is
It is made of at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from the group consisting of group IVa elements, group Va elements, Al, B and Si. The unit layer has a thickness of 0.2 to 100 nm, and the total thickness of the multilayer film is 0.5 to 10 µm.
The coated hard tool according to 0.
【請求項12】 少なくとも一層の単位層がGe、Snおよ
びPbのの中から選択される少なくとも一つの元素を含む
請求項11に記載の被覆硬質工具。
12. The coated hard tool according to claim 11, wherein at least one unit layer contains at least one element selected from Ge, Sn and Pb.
【請求項13】 上記皮膜が上記の多層膜部分と、積層
構造を持たない単一層部分とを交互に少なくとも5層形
成したものから成り、積層構造を持たない単一層部分は
IVa 族元素、Va 族元素、Al、BおよびSiの中から選択
される少なくとも一つの元素を含む窒化物、炭化物、炭
窒化物および酸化物の中から選択される少なくとも一種
の化合物からなり、その膜厚は 100〜5,000 nmであ
り、皮膜全体の膜厚は 0.5〜10μmである請求項11ま
たは12に記載の被覆硬質工具。
13. The film according to claim 1, wherein the film is formed by alternately forming at least five layers of the above-mentioned multilayer film portion and a single-layer portion having no laminated structure.
It comprises at least one compound selected from nitrides, carbides, carbonitrides and oxides containing at least one element selected from the group consisting of group IVa elements, group Va elements, Al, B and Si. The coated hard tool according to claim 11, wherein the film thickness is 100 to 5,000 nm, and the total film thickness is 0.5 to 10 μm.
【請求項14】 皮膜が、膜厚が0.02〜2μmのTiN か
らなる最下層を有する請求項10〜13のいずれか一項
に記載の被覆硬質工具。
14. The coated hard tool according to claim 10, wherein the coating has a lowermost layer made of TiN having a thickness of 0.02 to 2 μm.
【請求項15】 皮膜の最外層の表面粗度がRaで0.18
μm以下である請求項10〜14のいずれか一項に記載
の被覆硬質工具。
15. The outermost layer of the coating has a surface roughness Ra of 0.18.
The coated hard tool according to any one of claims 10 to 14, which has a diameter of not more than μm.
JP10097297A 1997-04-25 1998-04-09 Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material Pending JPH116025A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10097297A JPH116025A (en) 1997-04-25 1998-04-09 Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material
IL12420798A IL124207A (en) 1997-04-25 1998-04-23 Cemented carbide coated articles having the cemented carbide as base in particular coated hard tools
EP98303258A EP0874063A1 (en) 1997-04-25 1998-04-27 Cemented carbide, coated articles having the cemented carbide as base, in particular coated hard tools

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-123321 1997-04-25
JP12332197 1997-04-25
JP10097297A JPH116025A (en) 1997-04-25 1998-04-09 Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material

Publications (1)

Publication Number Publication Date
JPH116025A true JPH116025A (en) 1999-01-12

Family

ID=26438480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10097297A Pending JPH116025A (en) 1997-04-25 1998-04-09 Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material

Country Status (3)

Country Link
EP (1) EP0874063A1 (en)
JP (1) JPH116025A (en)
IL (1) IL124207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146515A (en) * 2000-11-14 2002-05-22 Toshiba Tungaloy Co Ltd Hard film superior in slidableness and its coating tool
JP2002155336A (en) * 2000-11-15 2002-05-31 Fuji Dies Kk Grooving roll for strip for manufacture of heat transfer tube
JP2008138242A (en) * 2006-11-30 2008-06-19 General Electric Co <Ge> Wear resistant coating, and article having the wear resistant coating
JP2016087726A (en) * 2014-10-31 2016-05-23 三菱マテリアル株式会社 Diamond coated hard metal cutting tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL140024A0 (en) 1999-12-03 2002-02-10 Sumitomo Electric Industries Coated pcbn cutting tools
CN114700656B (en) * 2022-04-20 2024-04-02 广东省科学院中乌焊接研究所 Preparation method of nickel-based flux-cored wire suitable for additive manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031049A (en) * 1973-06-04 1975-03-27
JPH0297640A (en) * 1988-10-03 1990-04-10 Toshiba Tungaloy Co Ltd Sintered hard alloy for precision mold and coated sintered hard alloy for precision mold
JPH03146668A (en) * 1989-10-30 1991-06-21 Toshiba Tungaloy Co Ltd Coated sintered hard alloy having controlled surface roughness and its production
JPH07252579A (en) * 1994-03-11 1995-10-03 Sumitomo Electric Ind Ltd Coated cemented carbide for cutting tool
JPH08337838A (en) * 1995-06-09 1996-12-24 Toshiba Tungaloy Co Ltd Cemented carbide for metal plastic working tool
JPH093585A (en) * 1995-06-22 1997-01-07 Toshiba Tungaloy Co Ltd Cemented carbide for cutting hard roll material and coated cemented carbide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112847A (en) * 1984-06-26 1986-01-21 Mitsubishi Metal Corp Sintered hard alloy containing fine tungsten carbide particles
US5624766A (en) * 1993-08-16 1997-04-29 Sumitomo Electric Industries, Ltd. Cemented carbide and coated cemented carbide for cutting tool
JPH08319532A (en) * 1995-05-19 1996-12-03 Toshiba Tungaloy Co Ltd Sintered hard alloy for punching tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031049A (en) * 1973-06-04 1975-03-27
JPH0297640A (en) * 1988-10-03 1990-04-10 Toshiba Tungaloy Co Ltd Sintered hard alloy for precision mold and coated sintered hard alloy for precision mold
JPH03146668A (en) * 1989-10-30 1991-06-21 Toshiba Tungaloy Co Ltd Coated sintered hard alloy having controlled surface roughness and its production
JPH07252579A (en) * 1994-03-11 1995-10-03 Sumitomo Electric Ind Ltd Coated cemented carbide for cutting tool
JPH08337838A (en) * 1995-06-09 1996-12-24 Toshiba Tungaloy Co Ltd Cemented carbide for metal plastic working tool
JPH093585A (en) * 1995-06-22 1997-01-07 Toshiba Tungaloy Co Ltd Cemented carbide for cutting hard roll material and coated cemented carbide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146515A (en) * 2000-11-14 2002-05-22 Toshiba Tungaloy Co Ltd Hard film superior in slidableness and its coating tool
JP2002155336A (en) * 2000-11-15 2002-05-31 Fuji Dies Kk Grooving roll for strip for manufacture of heat transfer tube
JP2008138242A (en) * 2006-11-30 2008-06-19 General Electric Co <Ge> Wear resistant coating, and article having the wear resistant coating
JP2016087726A (en) * 2014-10-31 2016-05-23 三菱マテリアル株式会社 Diamond coated hard metal cutting tool

Also Published As

Publication number Publication date
IL124207A (en) 2001-03-19
EP0874063A1 (en) 1998-10-28

Similar Documents

Publication Publication Date Title
JP5308426B2 (en) Cemented carbide and cutting tools
KR960006053B1 (en) Coated cemented carbide member and the method of manufacturing the same
KR101326325B1 (en) A cutting tool milling insert, method of making a cutting tool milling insert and method of using an insert
USRE39814E1 (en) Cemented carbide insert and method of making same
EP1616976A2 (en) Coated insert
US20050014030A1 (en) Cemented carbide and cutting tool
EP1021580A1 (en) A CUTTING INSERT OF A CERMET HAVING A Co-Ni-Fe-BINDER
JP5010707B2 (en) Hard coating for cutting tools
KR101133476B1 (en) ??? coated cutting tool insert
JP5450400B2 (en) Al-Ti-Ru-N-C hard material coating
KR20090028444A (en) Coated cutting insert for milling applications
JPH116025A (en) Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material
JP4393650B2 (en) Wear-resistant coated tool
JPH10298698A (en) Cemented carbide
JP2002166307A (en) Cutting tool
JPH10298699A (en) Cemented carbide
US6872234B2 (en) Cutting member
JP4863071B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JPH10298700A (en) Cemented carbide
JP2004136430A (en) Coated tool
JP2005272877A (en) Ti BASED CERMET, ITS PRODUCTION METHOD AND CUTTING TOOL
EP1222316B1 (en) Coated cemented carbide insert
JP3235259B2 (en) Coated cemented carbide member and method of manufacturing the same
JP2801484B2 (en) Cemented carbide for cutting tools
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304