JPH10298700A - Cemented carbide - Google Patents

Cemented carbide

Info

Publication number
JPH10298700A
JPH10298700A JP12332497A JP12332497A JPH10298700A JP H10298700 A JPH10298700 A JP H10298700A JP 12332497 A JP12332497 A JP 12332497A JP 12332497 A JP12332497 A JP 12332497A JP H10298700 A JPH10298700 A JP H10298700A
Authority
JP
Japan
Prior art keywords
carbide
amount
weight
tungsten carbide
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12332497A
Other languages
Japanese (ja)
Inventor
Kazutaka Isobe
和孝 磯部
Nobuyuki Kitagawa
信行 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12332497A priority Critical patent/JPH10298700A/en
Publication of JPH10298700A publication Critical patent/JPH10298700A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cemented carbide having properties suitable for use in a cutting tool, etc., and excellent in corrosion resistance by incorporating specific amounts of Ni, Co, chromium carbide, and tungsten carbide. SOLUTION: This cemented carbide has a composition which consists of, by weight, 20-25% of Co and Ni, chromium carbide in an amount of 0.1-30% based on Co and Ni, and the balance essentially tungsten carbide and in which the amount of Ni is regulated to 0.4-80% based on the total amount of Co and Ni. Tungsten carbide has a grain size ranging from 0.3 to 5 μm. The grain size of tungsten carbide consists of a group of fine grains of 0.3-1.1 μm and a group of coarse grains of 1.2-5 μm, and the preferred ratio of the amount of tungsten carbide in the coarse grain group to the total amount of tungsten carbide is 0.1-0.9. The wear resistance to machining can be improved to a greater extent by coating the cemented carbide with a Ti compound, such as TiCN, TiC, and TiN, or an oxide, such as alumina, by means of CVD, PVD, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超硬合金に関するもので
あり、特に硬度と耐蝕性に優れた切削加工工具をはじめ
として硬度と耐蝕性が求められる任意の部品、例えば構
造部品、機械部品、装飾品等に好適に使用できる新規な
超硬合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide, and more particularly to a cutting tool having excellent hardness and corrosion resistance, and any part requiring hardness and corrosion resistance, such as a structural part, a machine part, and the like. The present invention relates to a novel cemented carbide that can be suitably used for decorative articles and the like.

【0002】[0002]

【従来の技術】被削材の難削化、加工の高速化に伴い、
切削加工用工具の材料として用いられる超硬合金には高
強度、高硬度への不断の要求がある。例えば、切削工具
の用途ではフランク摩耗に対する耐摩耗性の向上に加え
て、被削材の表面(いわゆる黒皮)が接触して進行する
境界摩耗に対して強いことが特に求められる。また、す
くい面に発生し易いクレータ摩耗に対する耐性も求めら
れる。更に、最近では、Ni合金、Ti合金、高硬度鋼など
の難削材の切削でしばしば発生する被削材の工具への溶
着に対する耐性も求められる。この溶着は構成刃先とな
って工具のチッピング等の原因となり、工具寿命を著し
く短くする。
2. Description of the Related Art With difficult-to-cut materials and high-speed machining,
There is a constant demand for high-strength, high-hardness cemented carbide used as a material for cutting tools. For example, in the application of a cutting tool, in addition to the improvement of abrasion resistance against flank wear, it is particularly required that the surface of a work material (so-called black scale) is strong against boundary wear which progresses by contact. Further, resistance to crater wear, which easily occurs on the rake face, is also required. Further, recently, resistance to welding of a work material to a tool, which often occurs in cutting of a difficult-to-cut material such as a Ni alloy, a Ti alloy, and high-hardness steel, is also required. This welding becomes a component edge and causes chipping of the tool, etc., and significantly shortens the tool life.

【0003】特開昭61-12847号公報には、上記の一連の
要求に対して、V(ヴァナジウム)およびCr(クロム)
の複合添加によってWC(タングステンカーバイド)の
粒成長を抑制し、それによって耐蝕性を向上させられる
ことが記載されている。また特公昭4-31012号公報と
「粉体および粉末冶金」31(1984)56には、 Cr3
2(炭化クロム)を添加することによって耐食性を向上
させ得ることが記載されている。
[0003] Japanese Patent Application Laid-Open No. 61-12847 discloses that V (vanadium) and Cr (chromium) meet the above series of requirements.
It is described that grain growth of WC (tungsten carbide) can be suppressed by composite addition of WC, thereby improving corrosion resistance. Japanese Patent Publication No. 4-31012 and “Powder and Powder Metallurgy” 31 (1984) 56 describe Cr 3 C
It is described that corrosion resistance can be improved by adding 2 (chromium carbide).

【0004】このように、切削工具等の材料として用い
られる超硬合金では、主として硬度を上げるために微粒
のWC原料を使用し、粒成長抑制と境界摩耗およびクレ
ータ摩耗の抑制のために Cr32 を添加して耐食性を向
上させている。
As described above, in a cemented carbide used as a material for a cutting tool or the like, a fine WC raw material is mainly used for increasing hardness, and Cr 3 is used for suppressing grain growth and boundary wear and crater wear. It was added to C 2 thereby improving the corrosion resistance.

【0005】しかし、粒子を微細化した微粒の超硬合金
ではクラックの伝播抵抗が低下する場合がある。事実、
クラックの進行に対しては粗粒の方がエネルギーを多く
要するので、粗粒の方がクラック進行阻止には寄与す
る。
[0005] However, in the case of a fine-grained cemented carbide having fine particles, crack propagation resistance may decrease. fact,
Since coarse grains require more energy for the progress of cracks, coarse grains contribute to the prevention of crack progress.

【0006】また、切削工具として使用した場合には、
加工時の高温によって結合相の硬質粒子のグリップ力が
低下する傾向がある。そして、この場合、粗粒よりも微
粒の方が粒子脱落が起こり易く、擦過摩耗の進行が早く
なる。
When used as a cutting tool,
The gripping force of the hard particles of the binder phase tends to decrease due to the high temperature during processing. In this case, fine particles are more likely to fall off than coarse particles, and the progress of abrasion wear is faster.

【0007】また、この種の超硬合金では不可避的不純
物の含有量が多いと、 Cr32 の添加で合金中に脆化相
が形成され、その結果、超硬合金のクラック伝播抵抗が
著しく低下し、強度の劣化を招く。
In addition, if the content of unavoidable impurities is large in this type of cemented carbide, the addition of Cr 3 C 2 forms an embrittlement phase in the alloy, and as a result, the crack propagation resistance of the cemented carbide decreases. It decreases remarkably and causes deterioration of strength.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
従来法の問題点を解決して、切削工具等に好適な特性を
有し、しかも耐食性に優れた新規な超硬合金を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional method and to provide a new cemented carbide having characteristics suitable for a cutting tool and the like and excellent in corrosion resistance. It is in.

【0009】[0009]

【課題を解決するための手段】本発明は20〜25重量%の
CoおよびNiと、CoおよびNiに対して 0.1〜30 重量%の
炭化クロムとを含み、残部が炭化タングステンおよび不
可避不純物からなる超硬合金を提供する。
According to the present invention, there is provided a method for producing a composition comprising 20 to 25% by weight.
Provided is a cemented carbide containing Co and Ni and 0.1 to 30% by weight of chromium carbide with respect to Co and Ni, with the balance being tungsten carbide and unavoidable impurities.

【0010】[0010]

【実施の態様】本発明の好ましい実施例では、Niの比率
はCoおよびNiの総量に対して 0.4〜80重量%である。本
発明の別の好まし実施例では、炭化タングステンの平均
粒度は 0.3〜5μmである。本発明のさらに別の実施例
では、炭化タングステンは平均粒度が 0.3〜1.1 μmの
微粒子群と、1.2 〜5μmの粗粒子群とからなり、炭化
タングステン全体量に対する粗粒子群炭化タングステン
量の比が 0.1〜 0.9である。
In a preferred embodiment of the invention, the proportion of Ni is between 0.4 and 80% by weight, based on the total amount of Co and Ni. In another preferred embodiment of the present invention, the average particle size of the tungsten carbide is 0.3-5 μm. In still another embodiment of the present invention, the tungsten carbide is composed of a fine particle group having an average particle size of 0.3 to 1.1 μm and a coarse particle group having a mean particle size of 1.2 to 5 μm. 0.1 to 0.9.

【0011】本発明の超硬合金は従来の超硬合金に比べ
て結合相の量を増やすとともに Cr32(炭化クロム)を
多くした領域で特定の結合相量と Cr32 とを含有させ
る点にその主要な特徴がある。すなわち、20〜25重量%
のCoおよびNiと、このCoおよびNiに対して 0.1〜30重量
%の炭化クロムとを含み、残部が炭化タングステンと不
可避不純物とからなる本発明の超硬合金は、従来のWC
−Co系超硬合金、WC−微量 Cr32-Co系超硬合金、W
C−微量 Cr32-Co−微量Ni系超硬合金に比べて、切削
用途、特にインコネル、ナイモニックなどのNi合金の切
削で格段の寿命延長が可能になる。Niの比率がCoおよび
Niに対して 0.4〜80重量%である超硬合金はこの特性が
一層向上する。
The cemented carbide of the present invention increases the amount of the binder phase as compared with the conventional cemented carbide, and reduces the amount of the specific binder phase and Cr 3 C 2 in a region where Cr 3 C 2 (chromium carbide) is increased. The main feature is that it is contained. That is, 20-25% by weight
Co and Ni, and 0.1 to 30% by weight of chromium carbide with respect to the Co and Ni, with the balance being tungsten carbide and unavoidable impurities, according to the conventional WC
-Co based cemented carbide, WC- Trace Cr 3 C 2 -Co based cemented carbide, W
Compared with the C-trace Cr 3 C 2 -Co-trace Ni-based cemented carbide, the service life can be significantly extended in cutting applications, particularly in cutting Ni alloys such as Inconel and Nimonic. When the ratio of Ni is Co and
Cemented carbides having a content of 0.4 to 80% by weight with respect to Ni further improve this property.

【0012】1) CoおよびNi量 CoおよびNiの含有量が20重量以下になると靭性が著しく
低下するので好ましくない。一方、CoおよびNiの含有量
が25重量%を超えると耐塑性変形性および耐摩耗性が低
下するので好ましくない。従って、CoおよびNiの含有量
は20重量%を超え、25重量%以下にする。 2) Cr3 2 Cr3 2 がCoおよびNiに対して 0.1重量%以下になる
と耐酸化性および耐境界摩耗性が不十分になる。一方、
30重量%を超えると脆化相が析出し、靭性が激減する。
CoおよびNiに対する炭化クロム(Cr32)の重量比は10重
量%を越えるのが好ましい。 3) Ni量 Niの量がCoおよびNiに対して 0.4重量%未満では所望の
耐摩耗性および耐境界摩耗性が発揮されない。一方、80
重量%を超えると焼結不足で靭性が低下するか高温で焼
結せざるを得ず、耐摩耗性が劣化する。 4) 炭化タングステンの平均粒度 炭化タングステンの平均粒度が 0.3μm未満では十分焼
結できず、強度不足になる。一方、5μmを超えると耐
摩耗性が不足する。 5) 炭化タングステン全体量に対する粗粒子群炭化タン
グステン量の比 炭化タングステン全体量に対する粗粒子群炭化タングス
テン量の比が 0.1未満では強度が不足し、 0.9を超える
と耐摩性が不足する。
1) Co and Ni content If the content of Co and Ni is less than 20% by weight, it is not preferable because the toughness is remarkably reduced. On the other hand, if the content of Co and Ni exceeds 25% by weight, the plastic deformation resistance and the wear resistance are undesirably reduced. Therefore, the content of Co and Ni is more than 20% by weight and 25% by weight or less. 2) Cr 3 C 2 amount When the Cr 3 C 2 amount is 0.1% by weight or less based on Co and Ni, the oxidation resistance and the boundary wear resistance become insufficient. on the other hand,
If it exceeds 30% by weight, an embrittlement phase is precipitated, and the toughness is drastically reduced.
The weight ratio of chromium carbide (Cr 3 C 2 ) to Co and Ni preferably exceeds 10% by weight. 3) Ni amount If the amount of Ni is less than 0.4% by weight with respect to Co and Ni, desired wear resistance and boundary wear resistance are not exhibited. On the other hand, 80
If the content exceeds 10% by weight, the toughness is reduced due to insufficient sintering or sintering must be performed at a high temperature, and the wear resistance deteriorates. 4) Average particle size of tungsten carbide If the average particle size of tungsten carbide is less than 0.3 μm, sintering cannot be performed sufficiently, resulting in insufficient strength. On the other hand, if it exceeds 5 μm, wear resistance will be insufficient. 5) Coarse-particle tan carbide with respect to the total amount of tungsten carbide
If the ratio of the amount of gustene to the total amount of tungsten carbide relative to the total amount of tungsten carbide is less than 0.1, the strength is insufficient, and if it exceeds 0.9, the wear resistance is insufficient.

【0013】切削の耐摩耗性を向上させるために、本発
明の超硬合金上にCVD、PVD等を用いてTiCN、Ti
C、TiN等のTi化合物やアルミナ等の酸化物を被覆して
もよい。以下、本発明の実施例を説明するが、以下の開
示は本発明の特殊な実施例に過ぎず、本発明の技術的範
囲を何等限定するものではない。
[0013] In order to improve the wear resistance of cutting, TiCN, TiN is formed on the cemented carbide of the present invention by using CVD, PVD or the like.
It may be coated with a Ti compound such as C or TiN or an oxide such as alumina. Hereinafter, embodiments of the present invention will be described. However, the following disclosure is merely a special embodiment of the present invention, and does not limit the technical scope of the present invention.

【0014】[0014]

【実施例】実施例1 下記成分を湿式混合して原料粉末1を調製した: 平均粒径が2μmのWC粉末 : 38 重量% 平均粒径が0.7 μmのWC粉末 : 36.7 重量% 平均粒径が2μmの Cr32 粉末: 3.3 重量% 平均粒径が 1.5μmの Ni 粉末 : 7 重量% 平均粒径が 1.5μmの Co 粉末 : 15 重量% この原料粉末1を型押し成形した後、10-2Torrの真空中
で1,400 ℃で真空焼結して試料1とした。この試料1で
のCoおよびNiに対する Cr32 の比率は15.0重量%であ
り、CoおよびNiに対するNiの比率は31.8重量%である。
また、WC全体の平均粒径は 1.4μmであり、全WC量
に対する平均粒径2μmのWCの粗粒子群の比は0.49で
ある。
EXAMPLE 1 Raw material powder 1 was prepared by wet mixing the following components: WC powder having an average particle size of 2 μm: 38% by weight WC powder having an average particle size of 0.7 μm: 36.7% by weight 2μm Cr 3 C 2 powder: 3.3 wt% average particle diameter of 1.5μm of Ni powder: 7 wt% average particle diameter of 1.5μm of Co powder: 15 wt% after the raw material powder 1 was embossing molding, 10 - Sample 1 was obtained by vacuum sintering at 1,400 ° C. in a vacuum of 2 Torr. In this sample 1, the ratio of Cr 3 C 2 to Co and Ni was 15.0% by weight, and the ratio of Ni to Co and Ni was 31.8% by weight.
The average particle size of the whole WC is 1.4 μm, and the ratio of the coarse particles of WC having an average particle size of 2 μm to the total WC amount is 0.49.

【0015】次に、下記成分を湿式混合して原料粉末2
を調製した: 平均粒径が1μmのWC粉末 : 75.5 重量% 平均粒径が2μmの Cr32 粉末: 1.2 重量% 平均粒径が 1.5μmのNi粉末 : 4.5 重量% 平均粒径が 1.5μmのCo粉末 : 18.8 重量% この原料粉末2を型押し成形した後、10-2Torrの真空中
で1400℃で真空焼結して試料2とした。この試料2での
CoおよびNiに対する Cr32 の量は 5.2重量%であり、
CoおよびNiに対するNiの量は19.3重量%である。
Next, the following components are wet-mixed to obtain raw material powder 2
Was prepared: WC powder having an average particle size of 1 μm: 75.5% by weight Cr 3 C 2 powder having an average particle size of 2 μm: 1.2% by weight Ni powder having an average particle size of 1.5 μm: 4.5% by weight An average particle size of 1.5 μm Co powder: 18.8% by weight This raw material powder 2 was stamped and formed into a sample 2 by vacuum sintering at 1400 ° C. in a vacuum of 10 −2 Torr. In this sample 2,
The amount of Cr 3 C 2 with respect to Co and Ni was 5.2% by weight,
The amount of Ni relative to Co and Ni is 19.3% by weight.

【0016】比較のために、本発明の範囲外の組成を有
する原料粉末3を調製した。すなわち、Cr3 2 粉末を
43重量%とし、Ni粉末を 3重量%とし、Co粉末を10重量
%としたこと以外は試料1と同じ配合比で原料粉末3を
調製し、試料1と同じ条件で成形および焼結して試料3
を作製した。この試料3でのCoおよびNiに対する Cr3
2 の量は 7.7重量%であり、CoおよびNiに対するNiの量
は23.1重量%である。また、WC全体の平均粒径は 1.3
5 μmであり、全WC量に対する平均粒径2μmのWC
の粗粒子群の比は0.5 である。
For comparison, a raw material powder 3 having a composition outside the range of the present invention was prepared. That is, Cr 3 C 2 powder
Raw material powder 3 was prepared in the same blending ratio as sample 1 except that the amount was 43% by weight, the amount of Ni powder was 3% by weight, and the amount of Co powder was 10% by weight. Sample 3
Was prepared. Cr 3 C for Co and Ni in Sample 3
The amount of 2 is 7.7% by weight and the amount of Ni with respect to Co and Ni is 23.1% by weight. The average particle size of the whole WC is 1.3
5 μm, WC having an average particle size of 2 μm based on the total WC amount
Is 0.5.

【0017】各試料1〜3の機械特性および耐食性を評
価した結果は〔表1〕にまとめて示してある。〔表1〕
において腐蝕減量は36%HCl中で50℃で8時間放置した
時の条件で評価した。また、酸化増量は大気中、1000℃
×30分の条件で評価した。
The results of evaluating the mechanical properties and corrosion resistance of each of the samples 1 to 3 are summarized in [Table 1]. [Table 1]
In the test, the weight loss of corrosion was evaluated under the condition of standing at 50 ° C. for 8 hours in 36% HCl. In addition, oxidation increase is 1000 ℃ in air.
Evaluation was performed under the condition of × 30 minutes.

【0018】[0018]

【表1】 (* :本発明範囲外)[Table 1] (*: Outside the scope of the present invention)

【0019】〔表1〕の結果から分かるように、本発明
の試料1、2は、比較例の試料3よりCoが多いため抗折
力がやや高く、しかも、腐食減量、酸化増量という耐食
性の面では比較例の試料3に比べて格段に向上してい
る。本発明の試料の中でも Cr32 の成分が多い試料1
の方が耐食性の観点ではやや優れている。
As can be seen from the results shown in Table 1, Samples 1 and 2 of the present invention have a slightly higher transverse rupture strength due to a higher amount of Co than Sample 3 of the Comparative Example, and also have a high corrosion resistance such as reduced corrosion and increased oxidation. In terms of surface, it is significantly improved as compared with the sample 3 of the comparative example. Sample 1 containing a large amount of Cr 3 C 2 among the samples of the present invention
Is slightly better in terms of corrosion resistance.

【0020】実施例2 実施例1で作製した試料1〜3を用いて切削工具を作
り、〔表2〕に示す条件で実際に切削加工を行ってその
性能を評価した。
Example 2 A cutting tool was prepared using the samples 1 to 3 prepared in Example 1, and actual cutting was performed under the conditions shown in Table 2 to evaluate its performance.

【0021】各試料1〜3を第2表の切削条件1〜3で
実施し、併記した判定による結果を第3表に示す。
Each of the samples 1 to 3 was cut under the cutting conditions 1 to 3 shown in Table 2 and the results of the judgments shown in Table 3 are shown in Table 3.

【表2】 [Table 2]

【0022】上記切削条件で、切削条件1では最大摩耗
幅で品質を評価し、切削条件2では20個の切刃で発生し
た欠損切刃数で評価し、切削条件3では平均摩耗幅で評
価した。評価結果は〔表3〕にまとめて示してある。
In the above cutting conditions, the quality is evaluated by the maximum wear width under the cutting condition 1, the evaluation is made by the number of cut edges generated by 20 cutting edges under the cutting condition 2, and the average wear width is evaluated under the cutting condition 3. did. The evaluation results are summarized in [Table 3].

【0023】[0023]

【表3】 [Table 3]

【0024】〔表3〕から分かるように、本発明の超硬
合金を用いた切削工具は特に耐欠損性において著しく高
い性能を示す。
As can be seen from Table 3, the cutting tool using the cemented carbide of the present invention exhibits remarkably high performance especially in chipping resistance.

【0025】実施例3 〔表4〕に示す組成を有する試料4〜14を作製した。 Example 3 Samples 4 to 14 having the compositions shown in Table 4 were prepared.

【0026】[0026]

【表4】 [Table 4]

【0027】各試料について特性を測定した結果は〔表
5〕にまとめて示してある。なお、〔表5〕に示す酸化
増加量は実施例1と同じ方法で評価した。また、切削条
件3は実施例2と同じ方法で評価した。
The results of measuring the characteristics of each sample are summarized in Table 5 below. The oxidation increase shown in [Table 5] was evaluated in the same manner as in Example 1. Cutting condition 3 was evaluated in the same manner as in Example 2.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【発明の効果】以上説明した通り、本発明の超硬合金は
耐食性において優れた特性を示し、従って、単なる切削
工具材料としての用途に止まらず、各種工具や耐食性の
求められる分野、特に高硬度鋼、Ni基合金、Co基合金、
Ti基合金などの難削材切削の加工分野で極めて信頼性の
高い超硬合金材料として使用することができる。
As described above, the cemented carbide of the present invention exhibits excellent characteristics in corrosion resistance. Therefore, it is not limited to use as a mere cutting tool material, but in various tools and fields where corrosion resistance is required, especially in high hardness. Steel, Ni-based alloy, Co-based alloy,
It can be used as a highly reliable cemented carbide material in the field of cutting difficult-to-cut materials such as Ti-based alloys.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 20〜25重量%のCoおよびNiと、Coおよび
Niに対して 0.1〜30重量%の炭化クロムとを含み、残部
が炭化タングステンおよび不可避不純物からなる超硬合
金。
1. A method according to claim 1, wherein said Co and Ni are present in an amount of from 20 to 25% by weight.
A cemented carbide containing 0.1 to 30% by weight of chromium carbide with respect to Ni, with the balance being tungsten carbide and unavoidable impurities.
【請求項2】 Niの比率がCoとNiの総量に対してて 0.4
〜80重量%である請求項1に記載の超硬合金。
2. The ratio of Ni is 0.4 to the total amount of Co and Ni.
The cemented carbide according to claim 1, wherein the amount is from about 80% by weight.
【請求項3】 炭化タングステンの平均粒度が 0.3〜5
μmである請求項1または2に記載の超硬合金。
3. The tungsten carbide has an average particle size of 0.3-5.
The cemented carbide according to claim 1 or 2, which has a diameter of μm.
【請求項4】 炭化タングステンが、平均粒度が 0.3〜
1.1μmの微粒子群と1.2 〜5μmの粗粒子群とからな
り、炭化タングステンの全体量に対する粗粒子群炭化タ
ングステン量の比が 0.1〜 0.9である請求項1〜3のい
ずれか一項に記載の超硬合金。
4. The tungsten carbide having an average particle size of 0.3 to
The fine particle group of 1.1 μm and the coarse particle group of 1.2 to 5 μm, wherein the ratio of the amount of tungsten carbide in the coarse particle group to the total amount of tungsten carbide is 0.1 to 0.9. Cemented carbide.
JP12332497A 1997-04-25 1997-04-25 Cemented carbide Withdrawn JPH10298700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12332497A JPH10298700A (en) 1997-04-25 1997-04-25 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12332497A JPH10298700A (en) 1997-04-25 1997-04-25 Cemented carbide

Publications (1)

Publication Number Publication Date
JPH10298700A true JPH10298700A (en) 1998-11-10

Family

ID=14857747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12332497A Withdrawn JPH10298700A (en) 1997-04-25 1997-04-25 Cemented carbide

Country Status (1)

Country Link
JP (1) JPH10298700A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155336A (en) * 2000-11-15 2002-05-31 Fuji Dies Kk Grooving roll for strip for manufacture of heat transfer tube
JP2013032559A (en) * 2011-08-01 2013-02-14 Mts:Kk High-strength cemented carbide and coated cemented carbide
US9394592B2 (en) 2009-02-27 2016-07-19 Element Six Gmbh Hard-metal body
CN111961939A (en) * 2020-08-17 2020-11-20 苏州用朴精密科技有限公司 Preparation method of hard alloy material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155336A (en) * 2000-11-15 2002-05-31 Fuji Dies Kk Grooving roll for strip for manufacture of heat transfer tube
US9394592B2 (en) 2009-02-27 2016-07-19 Element Six Gmbh Hard-metal body
JP2013032559A (en) * 2011-08-01 2013-02-14 Mts:Kk High-strength cemented carbide and coated cemented carbide
CN111961939A (en) * 2020-08-17 2020-11-20 苏州用朴精密科技有限公司 Preparation method of hard alloy material

Similar Documents

Publication Publication Date Title
KR960006053B1 (en) Coated cemented carbide member and the method of manufacturing the same
EP0380096B1 (en) Cemented carbide drill
EP0417302A1 (en) Nitrogen-containing cermet
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JPH10298698A (en) Cemented carbide
JPH10298699A (en) Cemented carbide
JP2002166307A (en) Cutting tool
JPH10298700A (en) Cemented carbide
KR101302374B1 (en) Cemented carbide having good wear resistance and chipping resistance
JPH116025A (en) Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP2801484B2 (en) Cemented carbide for cutting tools
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
WO2023188875A1 (en) Sintered body and cutting tool
JP3878334B2 (en) Cemented carbide and coated cemented carbide
JP4853188B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP7008249B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2666338B2 (en) Tungsten carbide based cemented carbide end mill
KR100497850B1 (en) sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same
JPH07136826A (en) Cutting device for milling
JPH05239587A (en) Ticn-based cermet alloy
JPS60149775A (en) Surface coated cermet member for cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706