JPH0297640A - Sintered hard alloy for precision mold and coated sintered hard alloy for precision mold - Google Patents

Sintered hard alloy for precision mold and coated sintered hard alloy for precision mold

Info

Publication number
JPH0297640A
JPH0297640A JP24964088A JP24964088A JPH0297640A JP H0297640 A JPH0297640 A JP H0297640A JP 24964088 A JP24964088 A JP 24964088A JP 24964088 A JP24964088 A JP 24964088A JP H0297640 A JPH0297640 A JP H0297640A
Authority
JP
Japan
Prior art keywords
cemented carbide
carbide
hard alloy
sintered hard
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24964088A
Other languages
Japanese (ja)
Other versions
JPH0635638B2 (en
Inventor
Takeshi Saito
斉藤 豪
Shunji Ozoe
尾添 俊二
Mitsuo Ueki
植木 光生
Keiichi Kobori
小堀 景一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP63249640A priority Critical patent/JPH0635638B2/en
Publication of JPH0297640A publication Critical patent/JPH0297640A/en
Publication of JPH0635638B2 publication Critical patent/JPH0635638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To manufacture the title alloy having excellent mirror face characteristics, corrosion resistance and chipping resistance by preparing a sintered hard alloy contg. a bonding phase constituted of specific ratios of Co, Ni and Cr3C2 and the balance WC of specific grain size. CONSTITUTION:A sintered hard alloy contg. a bonding phase constituted of, by weight, 3 to 20% Co and/or Ni and Cr3C2, 3 to 10%, for the amounts of the above Co and/or Ni and the balance WC of <=0.8mu average grain size with inevitable impurities is prepd. At this time, the grating constant of the bonding phase by X-ray diffraction is regulated to the range of 3.558 to 3.569Angstrom because of the control of the alloy carbon content to a low-carbon side in the area of a sound phase. Furthermore, in the inevitable impurities, each content of Ca, S, Si, Al and Mg is regulated to <=0.001%. In this way, the sintered hard alloy for a precision mold useful for molding of glass and plastics can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主としてガラスやプラスチックを被加工材料
とする精密金型用超硬合金に関し、具体的には、例えば
光学機器、映像機器、音響機器及び事務機器分野で用い
られているレンズ、特に非球面レンズ用の金型、コンパ
クトディスク(CD)やピディオディスク(VD)など
のディスク用の金型、プリズム用の金型などに適する精
密金型用超硬合金及び精密金ヘリ用被覆超硬合金に関す
るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a cemented carbide for precision molds mainly used as work materials such as glass and plastics, and specifically for use in optical equipment, video equipment, audio equipment, etc. Precision molds suitable for lenses used in the equipment and office equipment fields, especially molds for aspheric lenses, molds for disks such as compact discs (CDs) and video discs (VDs), molds for prisms, etc. This invention relates to cemented carbide for molds and coated cemented carbide for precision metal edges.

(従来の技術) 般に、精密金型用材料は、研磨仕トした時の鏡面性、被
加工材料に対する耐食性、耐摩耗性、熱伝導性及び耐欠
損性などの特性にすぐれていることが必要である。この
精密金1〒1用材料は。
(Prior Art) In general, materials for precision molds are known to have excellent properties such as specularity when polished, corrosion resistance to workpiece materials, abrasion resistance, thermal conductivity, and fracture resistance. is necessary. The material for this precision gold 1〒1 is.

ガラスな被加■゛材料とする場合と、プラスチックを披
加C材料とする場合では、その必要とする2特性が少し
異なるけれども、一般にはガラス成形にすぐれたf+’
l密合堅川材料用プラスチック成形にも充分にすぐれて
いるものである。
Although the required two properties are slightly different when using glass as a material to be added and when using plastic as a material to be added, in general, f+', which is excellent in glass molding,
It is also excellent enough for plastic molding of tightly packed materials.

従来、精密金型用材料としては、13クロム鋼などのス
テンレス鋼系の材料が使用されてきたが、被加工材料の
高品質化、成形加T速度の高速化又は成形加「温度の高
温化などが図られるようになる番こ従い、金型の鏡面性
、被加−L材料との離型性、金型自体の耐酸化性、 i
、+摩耗性などが問題とされている。このような問題点
を解決しようとして提案されている代表的なものとして
、特開昭608604)す公・服及び特開昭60−13
5502号公報がある。
Conventionally, stainless steel materials such as 13 chromium steel have been used as materials for precision molds, but improvements in the quality of the workpiece material, faster forming T speed, or higher forming temperatures have been used. The specularity of the mold, the releasability from the applied material, the oxidation resistance of the mold itself, i.
, abrasion, etc. are considered to be problems. Typical proposals that have been made to solve these problems include JP-A-608-604) and JP-A-60-13.
There is a publication No. 5502.

(発明が解決しようとする問題点) 特開昭60−8604)号公報には、タンゲスデンカ−
バイトが80宵L%以計−の主成分であることを特徴と
する光学ガラスレンズの直接プレス成形用IQI材料が
示されている。この特開昭60− 8604)号公報の
発明は、タングステンカーバイドが80wL%以1・含
イfしていると光字ガラスレンズ成形用型材料としてす
ぐれているというものであるけれども、例えば、従来か
ら金型などの耐摩耗工具用超硬合金として天川化されて
いる4〜20wL%Co −80〜g5wし%WC組成
の超硬合金を光学ガラスレンズ成形用型材料として用い
ても2鏡而性、耐食性及び離型性からステンレス鋼系の
材料と同程度の効果しか期待できないという問題がある
6 特開昭60−135502号公報には、WC,’riC
(Problems to be solved by the invention) Japanese Patent Application Laid-Open No. 60-8604 describes
An IQI material for direct press molding of an optical glass lens is disclosed, which is characterized in that the main component is 80 L% or more of byte. The invention of JP-A-60-8604) is that if the tungsten carbide content is 80 wL% or more, it is excellent as a mold material for molding optical glass lenses. Even if a cemented carbide with a composition of 4~20wL%Co-80~g5w%WC, which has been manufactured by Tenkawa as a cemented carbide for wear-resistant tools such as molds, is used as a mold material for molding optical glass lenses, it will not be possible to produce 2 mirrors. There is a problem in that it can only be expected to have the same effect as stainless steel materials in terms of corrosion resistance, corrosion resistance, and mold releasability6.
.

CrJC,、TaC,ZrC,VC,MoaC,NbC
,Tie、 TaN。
CrJC, TaC, ZrC, VC, MoaC, NbC
, Tie, TaN.

ZrN、VNのうちの少なくとも1種を含む粉末80〜
95 f(j Iij%にバインダーとしてN1及び/
又はlli+cr5〜20%を含み、焼結後、高温静水
圧処理(IIIP処理)を施してなるガラスレンズ成形
のための金1%fj材が示されている。この特開昭60
−13550235502号公報WCを含む炭化物、窒
化物とN1又はNi+Crの結合相とからなるガラス成
形用金型材であって、iM宋の’ftc−Co系超硬合
金に比べて−・1食性、1M ’Tri性及び被加Y二
物であるレンズの表面精度がすぐれ−Cいるというもの
であるけれども1例えばWC−Ni合金の場合(ま耐食
性及び耐離塑性から満足できる効果を発揮できなく 、
 WC−Ni −Cr合金の場合は製造時にM7C3(
Mは合金中の金属元素)を炭化物などの脆性な異相が生
じやすくて工業化し難いという問題がある。
Powder containing at least one of ZrN and VN 80~
95 f(j Iij% with N1 and/or as a binder
A 1% gold fj material for forming glass lenses is shown, which contains 5 to 20% of lli+cr and is subjected to high temperature isostatic pressure treatment (IIIP treatment) after sintering. This JP-A-60
-13550235502 Publication A mold material for glass molding consisting of carbide or nitride containing WC and a binder phase of N1 or Ni+Cr, which has a - monocorrosive property, 1M compared to the 'ftc-Co type cemented carbide of the iM Song Dynasty. For example, in the case of a WC-Ni alloy (although it is said that the surface precision of the lens, which is a two-material material to be applied), is excellent, it cannot exhibit satisfactory effects in terms of corrosion resistance and de-plasticity resistance.
In the case of WC-Ni-Cr alloy, M7C3 (
M (metallic element in the alloy) tends to form brittle foreign phases such as carbides, making it difficult to industrialize.

本発明は、l、述のような問題点を解決したもので、具
体的には、 Co及び/又はN1の晴に対する炭化クロ
ムの晴を調整してなる結合相と微粒の炭化タングステン
とからなる鏡面性、耐食性及び耐欠損性のすぐれたF1
’! ’、’!金型用超硬合金、及びその合金の表面に
金属、合金、ダイヤモンド及び各種のセラミックスの中
の少なくとも1種の被膜を形成した精密金望用被葭超硬
合金の提供を[1的とするものである。
The present invention solves the problems mentioned above. Specifically, the present invention consists of a binder phase made by adjusting the ratio of chromium carbide to that of Co and/or N1, and fine tungsten carbide. F1 with excellent specularity, corrosion resistance and chipping resistance
'! ','! [1] To provide a cemented carbide for molds, and a cemented carbide for use in precision molding, in which a coating of at least one of metals, alloys, diamonds, and various ceramics is formed on the surface of the alloy. It is something.

(問題点を解決するための手段) 本発明者らは、ガラスやプラスチックを成形して、例え
ば非球面レンズやCDなどを得るための1l11密金J
ジノ料として最適な超硬合金について検、i−j L。
(Means for Solving the Problems) The present inventors have developed a method for molding glass or plastic to obtain, for example, aspherical lenses, CDs, etc.
Inspection of the most suitable cemented carbide as a material, i-j L.

でいた所、 まず、精密金型材としては、高温トでガラスやプラスチ
ックの被加圧材との耐溶着性にすぐれていること、被加
圧材に対]”る化学的安定性及び血・)食性にすぐれて
いること、鏡面むらのない鏡面性1性にすぐれているこ
と、並びに強度及び硬度が高くて耐酸化性にすぐれてい
るはど精密金型材に適するという第1の知見を得たもの
である。
First of all, as a precision mold material, it has excellent welding resistance with pressurized materials such as glass and plastic at high temperatures, and has excellent chemical stability and resistance to blood and pressure materials. ) The first finding was that it is suitable for precision mold materials because it has excellent edibility, excellent specularity with no specular unevenness, high strength and hardness, and excellent oxidation resistance. It is something that

次に、超硬合金中に生じる欠陥は、鏡面むらや強度低下
の原因になるもので、この欠陥の内、粗粉炭化物、炭化
物凝集体又は結合相ブールでなる欠陥は、微細VC粒で
なる超硬合金中には発生し難いものである。微細VC粒
でなる超硬合金を作製する場合には、焼結nηの混合粉
末の状態で粗粒WCを極力少なくすることが必要である
が、そのような場合でも焼結工程中のWC粒子の結合相
中への溶解、析出による粒成長が起り、結果的に異常成
長したWC粒子が生じ易い。そのため粒成長抑制剤の添
加が必要不可欠であり、一般に微粒超硬合金に対しては
炭化バナジウムの単独添加、炭化クロムと炭化タンタル
の複合添加などが行われているにのような超硬合金を精
密金型に応用することが有利とまず考えられる。そこで
粒成長抑制効果。
Next, defects that occur in cemented carbide cause mirror surface unevenness and a decrease in strength. Among these defects, defects that are caused by coarse carbides, carbide aggregates, or binder phase boule are caused by fine VC grains. It is difficult to occur in cemented carbide. When producing a cemented carbide made of fine VC grains, it is necessary to minimize the amount of coarse WC in the mixed powder of sintered nη, but even in such a case, the WC particles during the sintering process Grain growth occurs due to dissolution and precipitation in the binder phase, and as a result, abnormally grown WC particles are likely to occur. Therefore, it is essential to add a grain growth inhibitor, and generally vanadium carbide is added alone or a combination of chromium carbide and tantalum carbide is added to fine-grained cemented carbide. It is thought that it is advantageous to apply it to precision molds. Therefore, grain growth suppressing effect.

合金の耐欠損性の観点から上記粒成長抑制剤を単独又は
複合添加した場合の合金特性を詳細に調べた結果、耐食
効果にすぐれる炭化クロムを一定量単独で添加し、しか
も添加した炭化クロムをすべて結合相に固溶させた合金
は1粒成長が十分に抑制され、耐欠損性を表わす尺度で
ある破壊靭性値にもすぐれるという第2の知見を得たも
のである。
From the viewpoint of chipping resistance of the alloy, we investigated in detail the properties of the alloy when the above grain growth inhibitors were added alone or in combination, and found that chromium carbide, which has excellent corrosion resistance, was added alone in a certain amount, and chromium carbide was added. The second finding is that an alloy in which all of the above are dissolved in the binder phase has sufficient suppression of single grain growth and has an excellent fracture toughness value, which is a measure of fracture resistance.

また、Co及び/又は旧に炭化クロムを一定量単独で添
加し、しかも添加した炭化クロムをすべて結合相に固溶
させてなる炭化タングステン−結合相超硬合金は、ガラ
スやプラスチックとの耐溶着性にすぐれており、ガラス
やプラスチックに対する化学的安定性及び耐食性にもす
ぐれているという第3の知見を得たものである。
In addition, tungsten carbide-bond phase cemented carbide, which is made by adding a certain amount of Co and/or chromium carbide alone and all of the added chromium carbide is dissolved in the binder phase, is resistant to welding with glass and plastics. The third finding is that it has excellent chemical stability and corrosion resistance against glass and plastics.

さらに、耐食性、耐欠損性、耐溶着性にすぐれていて、
しかも鏡面むらの著しく少ない超硬合金の表面に金属1
合金、ダイヤモンド又は各種のセラミックスの被膜を形
成してなる被覆超硬合金は、超硬合金の表面状態が被膜
に転写されるような状態になるためにすぐれた被膜表面
状態になること、及び超硬合金と被膜との相剰効果でも
って精密金型用材料として適しているという第4の知見
を得たものである。
Furthermore, it has excellent corrosion resistance, chipping resistance, and welding resistance.
Moreover, metal 1
Coated cemented carbide formed by forming a coating of alloy, diamond, or various ceramics has an excellent coating surface condition because the surface condition of the cemented carbide is transferred to the coating. The fourth finding is that due to the mutual effect of the hard alloy and the coating, it is suitable as a material for precision molds.

以上、第1.2.3及び4の知見に基づいて本発明を完
成するに至ったものである。
The present invention has been completed based on the findings in Sections 1.2.3 and 4 above.

すなわち、本発明の精密金型用超硬合金は、3〜20w
L%のCo及び/又はNiと該Co及び/又はN1の量
に対し3〜lOwL%の炭化クロムとでなる結合相と、
残り乎均粒径0.8μm以下の炭化タングステンと不可
避不純物とでなることを特徴とするものである。
That is, the cemented carbide for precision molds of the present invention has a power of 3 to 20 w.
A binder phase consisting of L% of Co and/or Ni and 3 to 1OwL% of chromium carbide relative to the amount of Co and/or N1;
It is characterized in that the remainder consists of tungsten carbide with an average grain size of 0.8 μm or less and unavoidable impurities.

本発明のy11密金型金型硬合金における結合相は、C
o−Cr−C、N1−Cr−C又はCo −Ni −C
r −Cからなっており、実質的には炭化タングステン
が微晴結合相中に溶解してCo −Cr−■−C,Ni
−Cr−■−C又はCo −Ni −Cr −■−Cか
らなっているもので、この結合相の主成分であるCo及
び/又はNiが3wL%未満になると、緻密化が不充分
になり、靭性が不足し、耐欠損性を劣化させる。逆に、
Co及び/又はN1が20Wシ%を超えて多くなると、
硬さが低下し、耐摩耗性が劣下する。従って、Co及び
/又は旧は、3wL%以−Eから20wL%以下と定め
たものである。
The binder phase in the y11 dense mold hard alloy of the present invention is C
o-Cr-C, N1-Cr-C or Co-Ni-C
r -C, and essentially tungsten carbide is dissolved in the finely divided binder phase to form Co -Cr-■-C,Ni
-Cr-■-C or Co -Ni -Cr -■-C, and if the main components of this binder phase, Co and/or Ni, are less than 3wL%, densification will be insufficient. , the toughness is insufficient and the fracture resistance deteriorates. vice versa,
When Co and/or N1 increases beyond 20W%,
Hardness decreases and wear resistance deteriorates. Therefore, Co and/or old is determined to be from 3wL% or more to E to 20wL% or less.

また、結合相中の炭化クロムがCo及び/又はNiの1
に対し3wL%未満では、■C粒成長抑制効果の低下に
より、粗粒肛が生成し、研磨加工後の鏡面性が劣化する
。逆に、炭化クロムがCo及び/又はNiの晴に対しl
0wt%を超えて多くなると、Co及び/又はNi中に
固溶しきれな(なり、炭化クロム又はM、Ca(Mは合
金中の金属元素)F!!の炭化物が析出し2鏡面性及び
耐欠損性を低下させる。従って、炭化クロム…はCo及
び/又はN i itに対して3〜10wt%と定めた
ものである。
In addition, chromium carbide in the binder phase is 1 of Co and/or Ni.
On the other hand, if it is less than 3 wL%, the effect of inhibiting the growth of ■C grains decreases, resulting in the formation of coarse grain holes and deterioration of the specularity after polishing. Conversely, chromium carbide
When the amount exceeds 0 wt%, carbides of chromium carbide or M, Ca (M is a metal element in the alloy) F!!, which cannot be completely dissolved in Co and/or Ni, precipitate, resulting in specularity and It lowers fracture resistance.Therefore, chromium carbide is set at 3 to 10 wt% relative to Co and/or Ni it.

本発明の精密金型用超硬合金は、合金にすぐれた鏡面性
及び耐欠損性を付!テするために、炭化クロムを結合相
中に固溶させるのであるが、この時合金炭素量は、超硬
合金中に遊離成木又はCoaWiCで表わされるη相な
どが出現しない健全相領域内の炭Zmに制御しなければ
ならないことはもとより、さらに合金中の炭素量が健全
相領域内であっても、高炭素側に偏ると、炭化クロムの
結合相中への固溶が抑制されるので1合金炭素用は健全
相領域内の低炭素側に制御することが好ましい。すなわ
ち、低炭素合金の目安として、X線回折による結合相の
格子定数が3.558Å以上から3.569Å以下にあ
ることが好ましいことである。−層好ましいのは、 C
o及び/又はN i ldに対する炭化クロム9が3w
t%のときはX 線回折による結合相の格子定数が3,
561Å〜3.569人にあり、Co及び/又はN i
 Blに対する炭化クロム量がlowL%のときはX線
回折による結合相の格子定数が3.558  Å〜35
61 人にあることである。これらのことを縦軸が結合
相格子定数、横軸がCo及び/又はNi晴に対1−る炭
化クロム量で表わした第1図を用いて、さらに具体的に
説明すると、第1図中の Δ(3wt% Cr3C−、3,569人)1:’:(
3wt% Cr3ら、 3.554 人)F [l0w
t% Cr、C2,3,555人)D (IOwL%C
rzCa、 3.561 人)の各点で囲まれたΔ、 
 [:、、 l’、 I)の範囲が本発明の範囲におけ
る健全相領域を示し、この範囲の内、点Δ。
The cemented carbide for precision molds of the present invention has excellent specularity and fracture resistance! In order to achieve this, chromium carbide is dissolved as a solid solution in the binder phase. At this time, the amount of alloy carbon is within the healthy phase region where free mature wood or η phase represented by CoaWiC does not appear in the cemented carbide. In addition to the need to control the carbon Zm, even if the carbon content in the alloy is within the healthy phase range, if it leans towards the high carbon side, solid solution of chromium carbide into the binder phase will be suppressed. For carbon alloy No. 1, it is preferable to control the carbon to the low carbon side within the healthy phase region. That is, as a guideline for a low carbon alloy, it is preferable that the lattice constant of the bonded phase determined by X-ray diffraction is from 3.558 Å to 3.569 Å. - The layer is preferably C
Chromium carbide 9 for o and/or N i ld is 3w
When t%, the lattice constant of the bonded phase by X-ray diffraction is 3,
561 Å to 3.569 Å, Co and/or Ni
When the amount of chromium carbide relative to Bl is low L%, the lattice constant of the bonded phase by X-ray diffraction is 3.558 Å to 35
61 This is true for people. To explain these things more specifically using Figure 1, in which the vertical axis represents the bond phase lattice constant and the horizontal axis represents the amount of chromium carbide relative to Co and/or Ni, Δ(3wt% Cr3C-, 3,569 people) 1:':(
3wt% Cr3 et al., 3.554 people) F [l0w
t% Cr, C2, 3,555 people) D (IOwL%C
Δ surrounded by each point of rzCa, 3.561 people),
The range [:,, l', I) indicates the healthy phase region within the scope of the present invention, and within this range, the point Δ.

[3(3wL% Cr=C,、3,561人)C(1o
st%Crsら、 3.558人)、I)の各点で囲ま
れたΔ、B、C,Dの斜線を施した範囲が一層好ましい
領域を示しているものである。
[3(3wL% Cr=C,, 3,561 people)C(1o
The diagonally shaded ranges Δ, B, C, and D surrounded by the points in I) indicate more preferable regions.

また粗粒■Cの生成を制御し鏡面性を高めるという炭化
クロム添加の効果を最大限に発揮させるためには1合金
中における不可避不純物量なり1@する必要がある。合
金中の不可避不純物は、出発原料中に金石しているか又
は製造り作中に混入してくるものであるが、主として出
発原料中に含有している不可避不純物にCa、S、 S
i、Al及びMgなどがある。これらのCa、 S、 
Si、A℃及びMgの不可避不純物は、焼結−L作中で
酸化物や硫化物を形成して、鏡面性及びi−1欠損性を
低下させる原因になる。そこで、これらのCa、 S、
 Si、^β及びMgは合金中にそれぞれ0.001 
wt%以下に押えることが好ましいことである。
In addition, in order to maximize the effect of adding chromium carbide to control the formation of coarse grains C and improve specularity, it is necessary to reduce the amount of unavoidable impurities in one alloy to 1@. Unavoidable impurities in the alloy are those contained in the starting raw materials or mixed in during the manufacturing process, but the unavoidable impurities contained in the starting raw materials mainly include Ca, S, and S.
i, Al, Mg, etc. These Ca, S,
Unavoidable impurities such as Si, A° C., and Mg form oxides and sulfides during the sintering-L process, causing deterioration of specularity and i-1 deficiency. Therefore, these Ca, S,
Si, ^β and Mg are each 0.001 in the alloy
It is preferable to keep it below wt%.

本発明の精密金型用超硬合金は、次のようなh法により
製造することができる。まず、出発原料としてのWCは
、甲・均粒度が1.0μm以ドのできるだけ均粒・微細
な粉末を用いるのが粗粒WCを発生させないために好ま
しいものである。
The cemented carbide for precision molds of the present invention can be manufactured by the following h method. First, as for WC as a starting material, it is preferable to use a powder as uniform and fine as possible with an average particle size of 1.0 μm or less in order to avoid generation of coarse WC.

これらのWC粉末と他の出発原料粉末を用いて。Using these WC powders and other starting material powders.

湿式混合・粉砕、乾燥、成形、焼結などを行う−「稈は
、従来の方法で良いが、焼結後超硬合金中に残存する微
小ボアを消滅させるために、111P処理を行うことは
必要不6I欠である。
Perform wet mixing/grinding, drying, molding, sintering, etc. - "Culms can be prepared using conventional methods, but 111P treatment is not recommended in order to eliminate micro-bores remaining in the cemented carbide after sintering. Necessity 6I is lacking.

以l二に説明した本発明の超硬合金の表面に、例λば従
来から行われているような物理蒸着法1PVD法)や化
″′?蒸着法fcVIl法)でもって、被膜を形成して
f+″l密金型出金型用被覆超硬合金ことは層好ましい
ことである。
A film is formed on the surface of the cemented carbide of the present invention as described below by, for example, the conventional physical vapor deposition method (PVD method) or chemical vapor deposition method (fcVII method). It is preferable to use a coated cemented carbide for f + "l dense mold dispensing mold.

本発明の精密金型用被覆超硬合金における被膜は1例え
ば周期律表4afTi、 7r、IIf)5a tL 
Nb、 Ta) 、 5a ICr、 lJo、 WC
の金属及びRu。
The coating in the coated cemented carbide for precision molds of the present invention is 1, for example, 4afTi, 7r, IIf) 5a tL of the periodic table.
Nb, Ta), 5a ICr, lJo, WC
metal and Ru.

Os  Rh、  Ir、 Pd、 PC,ASH,A
uなとの金属。
Os Rh, Ir, Pd, PC, ASH, A
Metal with u.

V −Cr、  W−Cr、  Mo  Crなどの合
金、ダイヤモンド、ダイヤモンド状カーボン、8r方品
窒化ホウム、硬質窒化ホウ奏、窒化ケイ素、炭化ケイふ
Alloys such as V-Cr, W-Cr, MoCr, diamond, diamond-like carbon, 8R boron nitride, hard boron nitride, silicon nitride, silicon carbide.

酸化アルミニウム、窒化アルミニウム、酸窒化アルミニ
ウム、周期(7表4a、 5a、 6a族金属の炭化物
Aluminum oxide, aluminum nitride, aluminum oxynitride, periodic (7 Tables 4a, 5a, 6a group metal carbides.

窒化物、酸化物、ホウ化物、硫化物及びこれらの相l′
L固溶体の中の少なくとも1種の単層又は多重層でなる
ものである。この被膜厚さは、被加丁材料を含めた使用
条件と被膜の材質により選定する必要があり、例えば金
属や合金の場合には0.571 m〜50μmの厚さ、
ダイヤモンド、ダイヤモンド状カーボンやセラミックス
の場合又はこれらを含んだ多in層でなる場合には0.
1 μm−20μmの厚さが好ましいものである。
nitrides, oxides, borides, sulfides and their phases l'
It consists of a single layer or multiple layers of at least one type of L solid solution. The thickness of this coating needs to be selected depending on the usage conditions including the material to be cut and the material of the coating. For example, in the case of metals and alloys, the thickness is 0.571 m to 50 μm,
In the case of diamond, diamond-like carbon or ceramics, or in the case of multilayers containing these, the value is 0.
A thickness of 1 μm to 20 μm is preferred.

(作用) 本発明の精密金型用超硬合金は、炭化タングステンの硬
質相と、炭化クロムを固溶してなるC。
(Function) The cemented carbide for precision molds of the present invention is formed by solid solution of tungsten carbide hard phase and chromium carbide.

及び/又はNiの結合相とからなるもので、結合相中に
固溶している炭化クロムが焼結工程中での炭化タングス
テンの粒成長を抑制する作用をし、鏡面性を高めるとと
もに、11食性を向上させ、さらに焼結後結合相を強化
して耐欠損性を高めるなど聞出金型に適した特性な超硬
合金に付与する作用をしているものである。
Chromium carbide dissolved in the binder phase acts to suppress grain growth of tungsten carbide during the sintering process, improves specularity, and improves specularity. It has the effect of imparting properties to the cemented carbide that are suitable for molding, such as improving the eating ability and further strengthening the binder phase after sintering to increase chipping resistance.

また1本発明の精密金型用被覆超硬合金は、鏡面性にす
ぐれた超硬合金の表面状態がそのまま被膜表面状態とし
て転写されるために、被覆超硬合金の表面の鏡面性を高
める作用をしているものである。
In addition, the coated cemented carbide for precision molds of the present invention has the effect of increasing the specularity of the surface of the coated cemented carbide because the surface condition of the cemented carbide, which has excellent specularity, is directly transferred as the coating surface condition. This is what we do.

(実施例) 実施例1 ・V均粒径0.5μmのy+c粉末、 ’p−均粒径 
1.4μmのCo粉末、平均粒径2.5μmのNi扮末
、平均粒径2.4umのVC粉末、¥均粒径1.2gm
のTaC粉末及び平均粒径2.5μmのCraC諺粉末
を出発原料として用い第曹表に示す組成に各試料を配合
した。このとき用いた出発原料粉末の内、本発明品には
WC中のCa、 S、^β、Si、 Mgの含有量がそ
れぞれ1Oppn+以下に調整した粉末を用い、比較品
には従来の市販品の粉末を用いた。これらの各試料それ
ぞれをアセトンと超硬合金製ボールの入った容器中で7
2時間混合後、乾燥して得られた混合粉末を所定の形状
にプレスし、粉末成形体を得た。次いで、 1380℃
、1時間保持にて焼結した後、アルゴン雰囲気中、 1
350℃、 1000気圧の条件で旧P処理した。こう
して得た各試料の抗折強度、硬さ。
(Example) Example 1 y+c powder with V average particle size of 0.5 μm, 'p- average particle size
1.4μm Co powder, average particle size 2.5μm Ni powder, average particle size 2.4um VC powder, average particle size 1.2gm
Each sample was blended into the composition shown in Table 1 using TaC powder and CraC powder with an average particle size of 2.5 μm as starting materials. Among the starting raw material powders used at this time, powders in which the contents of Ca, S, ^β, Si, and Mg in WC were adjusted to 1 Oppn+ or less were used for the products of the present invention, and conventional commercially available products were used for comparison products. powder was used. Each of these samples was placed in a container containing acetone and a cemented carbide ball.
After mixing for 2 hours, the mixed powder obtained by drying was pressed into a predetermined shape to obtain a powder compact. Then 1380℃
, in an argon atmosphere after sintering for 1 hour.
Old P treatment was performed at 350°C and 1000 atm. The bending strength and hardness of each sample thus obtained.

結合相の格子定数及び破壊靭性値(Keelを求めて、
その結果を第2表に示した。結合相の格子定数は、超硬
合金の表面に存在する炭化タングステンを溶解除去後、
Xa回折により求めた。また、K+cはビッカース圧痕
周辺に生じるクラック長さと硬さの関係からW出した。
Determine the lattice constant and fracture toughness value (Keel) of the binder phase,
The results are shown in Table 2. The lattice constant of the bonding phase is determined by dissolving and removing the tungsten carbide present on the surface of the cemented carbide.
It was determined by Xa diffraction. Further, K+c was determined by W based on the relationship between the length of cracks generated around the Vickers indentation and the hardness.

更に、第2表で示したそれぞれの試料の不純物量を蛍光
X線分析により測定したところ1本発明品はCa、 S
、 Si、 AIl、 Mgがそれぞれ0.001 w
L%以下であったのに対し、比較品は、Ca、  S、
  Si。
Furthermore, when the amount of impurities in each sample shown in Table 2 was measured by fluorescent X-ray analysis, the product of the present invention contained Ca, S.
, Si, AIl, Mg are each 0.001 w
Whereas the comparative product had Ca, S,
Si.

AΩ、 Mgが(1,OQl wL%を超えて多く含有
していることが確認できた。
It was confirmed that AΩ, Mg was contained in a large amount exceeding (1, OQl wL%).

以下余白 実施例2 実施例1で得た第1人の試料の内、本発明品2.4.8
.9と比較品1.3と、さらに市販のWC−10%Cn
合金を比較品6として加えて、これらの試料をそれぞれ
鏡面l111磨した。この本発明品二2.4.8.9及
び比較品!、コ3.6のそれぞれ(7)鏡面研磨面に市
販の鉛ガラス、ホウ酸ガラス及びIテリメチルメタクリ
レート樹脂のそれぞれを約4x4X4mmに成形して設
置した。このガラス又(,1樹脂が鏡面研磨面に設置さ
れてなるそれぞれの1試料を真空炉中で加熱するという
簡易試験を行っj、・。試験条件は、真空炉をI X 
10−”mm11gの真空にjた後、アルゴンガスな流
入して鉛ガラスの場合;ま 700℃、1時間保持、ホ
ウ酸ガラスの場合は1300℃、1時間保持、ポリメチ
ルメタクリレート樹脂の場合は 100℃、1時間保持
でもって処理し、試験完了後、それぞれの合金とガラス
又は樹脂とのγ;にれfLl、合金の鏡面ft1f磨而
の腐食の状態及び合金の鏡面研磨面トのガラス又は樹脂
の泡のはを調べて、これらの結果を第2表に示した。
The following margin is Example 2 Among the samples obtained from the first person obtained in Example 1, the present invention product 2.4.8
.. 9, comparative product 1.3, and commercially available WC-10%Cn
Alloy was added as Comparative 6 and each of these samples was mirror polished. This invention product 2.4.8.9 and comparative product! (7) Each of commercially available lead glass, boric acid glass, and I-terimethyl methacrylate resin was molded into a size of about 4 x 4 x 4 mm and placed on the mirror-polished surface. A simple test was conducted in which one sample of each of these glass resins was placed on a mirror-polished surface and heated in a vacuum furnace.The test conditions were as follows:
After applying a vacuum of 10 mm and 11 g, inject argon gas and hold at 700°C for 1 hour for lead glass; hold at 1300°C for 1 hour for boric acid glass; hold at 1300°C for 1 hour for polymethyl methacrylate resin. Treatment was carried out at 100°C for 1 hour, and after completion of the test, the γ of each alloy and glass or resin; The foam formation of the resin was investigated and the results are shown in Table 2.

(発明の効果) 以lの結果5本発明の精密金型用超硬合金lま、 Cr
1C,−VCの複合添加又け、Cr、Cz  TaCの
複合添加した合金に比べて、欠陥の大きさの尺度となる
抗+1[強度が約20〜50%増加し、耐欠損性の尺度
となる破壊靭性値も高いという効果がある。
(Effects of the Invention) Results 5: Cemented carbide for precision molds of the present invention, Cr
Compared to alloys with composite additions of 1C, -VC, Cr, and Cz TaC, the strength increases by about 20 to 50%, which is a measure of defect size, and It also has the effect of having a high fracture toughness value.

さらに、本発明のTi7密金型川超用合金は、WCCo
合金、 WC−Cr、Cz −VC−Co合金又は本発
明の合金から外れたWCCrtea合金と比較して、ガ
ラスやプリスヂックに対する儒れfrIが大きく、ガラ
スやプラスチ・・lり中に′1ソする気泡が少なく、し
かもガラスやプラスチックに対する耐腐食性にすぐれて
いることから1例えば光ピツクアップレンズなどに用い
られているJl″球而レ面ズなどの成形用金型材どり、
て使用すると、成形されたレンズの面の精度が著しくす
ぐれたものになると共に、成形後における金Jv!自体
の成形面の損(3,1も非常に少なくなることから苦し
く長寿命になるという効果がある。
Furthermore, the Ti7 dense mold river superalloy of the present invention is WCCo
Compared to alloys such as WC-Cr, Cz-VC-Co alloys, or WCCrtea alloys, which are out of the alloys of the present invention, the deformation frI against glass and plastics is greater, and it is less likely that glass and plastics will break during immersion. Because it has few air bubbles and has excellent corrosion resistance against glass and plastics, it is used as a molding material such as Jl'' ball recessed surface, which is used in optical pickup lenses.
When used as a molded lens, the precision of the surface of the molded lens becomes extremely high, and the gold Jv! Since the loss (3,1) on the molding surface itself is greatly reduced, it has the effect of lengthening the life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、超硬合金中のCo及び/叉はN1:、目こ対
する炭化クロムIdと超硬合金の結合相格子定数との関
係図である。 第1図中、A(:3wt%Cr1Cz、 3.569人
)Bf3vL% Cr、ら、 3.561  人)C(
1ost% Cr、C7,3,558人)D I l0
wt% Cr−Cz、 3.561 人)F、(3wL
%CrJCz、3.554人)ト’(lOwt%Cra
C,1,3,555人)を示ず。特に、△、I3.C,
Dの斜線の範囲は。 好ましい領域を表t)す。
FIG. 1 is a diagram showing the relationship between Co and/or N1 in a cemented carbide, chromium carbide Id, and the bond phase lattice constant of the cemented carbide. In Figure 1, A(:3wt%Cr1Cz, 3.569 people)Bf3vL%Cr, et al., 3.561 people)C(
1ost% Cr, C7, 3,558 people) D I l0
wt% Cr-Cz, 3.561 people)F, (3wL
%CrJCz, 3.554 people)to'(lOwt%Cra
C, 1,3,555 people). In particular, △, I3. C,
The shaded area in D is. t) represents the preferred area.

Claims (6)

【特許請求の範囲】[Claims] (1)3〜20wt%のCo及び/又はNiと該Co及
び/又はNiの量に対し3〜10wt%の炭化クロムと
でなる結合相と、残り平均粒径0.8μm以下の炭化タ
ングステンと不可避不純物とでなることを特徴とする精
密金型用超硬合金。
(1) A binder phase consisting of 3 to 20 wt% of Co and/or Ni and 3 to 10 wt% of chromium carbide based on the amount of Co and/or Ni, and the remaining tungsten carbide with an average particle size of 0.8 μm or less. A cemented carbide for precision molds that is free from unavoidable impurities.
(2)上記結合相は、X線回折による格子定数が3.5
58Å〜3.569Åであることを特徴とする特許請求
の範囲第1項記載の精密金型用超硬合金。
(2) The bonded phase has a lattice constant of 3.5 according to X-ray diffraction.
The cemented carbide for precision molds according to claim 1, wherein the cemented carbide has a thickness of 58 Å to 3.569 Å.
(3)上記不可避不純物は、Ca、S、Si、Al及び
Mgのそれぞれが0.001wt%以下であることを特
徴とする特許請求の範囲第1項又は第2項記載の精密金
型用超硬合金。
(3) The above-mentioned unavoidable impurities include Ca, S, Si, Al, and Mg, each of which is 0.001 wt% or less. Hard metal.
(4)3〜20wt%のCo及び/又はNiと該Co及
び/又はNiの量に対し3〜10wt%の炭化クロムと
でなる結合相と、残り平均粒径0.8μm以下の炭化タ
ングステンと不可避不純物とでなる超硬合金の表面に金
属、合金、ダイヤモンド及びセラミックスの中の少なく
とも1種でなる単層又は多重層の被膜を形成してなる精
密金型用被覆超硬合金。
(4) A binder phase consisting of 3 to 20 wt% of Co and/or Ni and 3 to 10 wt% of chromium carbide based on the amount of Co and/or Ni, and the remaining tungsten carbide with an average particle size of 0.8 μm or less. A coated cemented carbide for precision molds, which is formed by forming a single layer or multilayer coating made of at least one of metals, alloys, diamonds, and ceramics on the surface of the cemented carbide, which contains unavoidable impurities.
(5)上記結合相は、X線回折による格子定数が3.5
58Å〜3.569Åであることを特徴とする特許請求
の範囲第4項記載の精密金型用被覆超硬合金。
(5) The bonded phase has a lattice constant of 3.5 according to X-ray diffraction.
The coated cemented carbide for precision molds according to claim 4, characterized in that the coating has a thickness of 58 Å to 3.569 Å.
(6)上記不可避不純物は、Ca、S、Si、Al及び
Mgのそれぞれが0.001wt%以下であることを特
徴とする特許請求の範囲第4項又は第5項記載の精密金
型用被覆超硬合金。
(6) The precision mold coating according to claim 4 or 5, wherein each of the unavoidable impurities is 0.001 wt% or less of Ca, S, Si, Al, and Mg. Cemented carbide.
JP63249640A 1988-10-03 1988-10-03 Cemented carbide for precision dies and coated cemented carbide for precision dies Expired - Lifetime JPH0635638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249640A JPH0635638B2 (en) 1988-10-03 1988-10-03 Cemented carbide for precision dies and coated cemented carbide for precision dies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249640A JPH0635638B2 (en) 1988-10-03 1988-10-03 Cemented carbide for precision dies and coated cemented carbide for precision dies

Publications (2)

Publication Number Publication Date
JPH0297640A true JPH0297640A (en) 1990-04-10
JPH0635638B2 JPH0635638B2 (en) 1994-05-11

Family

ID=17196027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249640A Expired - Lifetime JPH0635638B2 (en) 1988-10-03 1988-10-03 Cemented carbide for precision dies and coated cemented carbide for precision dies

Country Status (1)

Country Link
JP (1) JPH0635638B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272815A (en) * 1990-02-27 1991-12-04 Nippon Tungsten Co Ltd Mold for molding resin material
JPH05320913A (en) * 1992-05-25 1993-12-07 Mitsubishi Materials Corp Surface coating cutting tool
JPH10298699A (en) * 1997-04-25 1998-11-10 Sumitomo Electric Ind Ltd Cemented carbide
JPH10298698A (en) * 1997-04-25 1998-11-10 Sumitomo Electric Ind Ltd Cemented carbide
EP0878291A1 (en) * 1997-05-14 1998-11-18 Eastman Kodak Company Method for fabricating tools for molding diffractive surfaces on optical lenses
JPH116025A (en) * 1997-04-25 1999-01-12 Sumitomo Electric Ind Ltd Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material
JP2001115229A (en) * 1999-10-18 2001-04-24 Hitachi Tool Engineering Ltd Tough superfine cemented carbide
CN115261697A (en) * 2022-08-09 2022-11-01 成都广大精微新材料有限公司 High-performance wedge-shaped cleaver for wire bonding and manufacturing method thereof
CN116397189A (en) * 2023-06-06 2023-07-07 四川苏克流体控制设备股份有限公司 DLC-based high-wear-resistance low-friction coating material for hard seal ball valve and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135502A (en) * 1983-12-26 1985-07-18 Hoya Corp Die material for molding glass lens
JPS62227060A (en) * 1986-03-28 1987-10-06 Mitsubishi Metal Corp Ultra-high-toughness tungsten carbide-base sintered hard alloy wire rod capable of bending into circular shape
JPS63216942A (en) * 1987-03-05 1988-09-09 Sumitomo Electric Ind Ltd Tool for warm and hot forgings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135502A (en) * 1983-12-26 1985-07-18 Hoya Corp Die material for molding glass lens
JPS62227060A (en) * 1986-03-28 1987-10-06 Mitsubishi Metal Corp Ultra-high-toughness tungsten carbide-base sintered hard alloy wire rod capable of bending into circular shape
JPS63216942A (en) * 1987-03-05 1988-09-09 Sumitomo Electric Ind Ltd Tool for warm and hot forgings

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272815A (en) * 1990-02-27 1991-12-04 Nippon Tungsten Co Ltd Mold for molding resin material
JPH05320913A (en) * 1992-05-25 1993-12-07 Mitsubishi Materials Corp Surface coating cutting tool
JPH10298699A (en) * 1997-04-25 1998-11-10 Sumitomo Electric Ind Ltd Cemented carbide
JPH10298698A (en) * 1997-04-25 1998-11-10 Sumitomo Electric Ind Ltd Cemented carbide
JPH116025A (en) * 1997-04-25 1999-01-12 Sumitomo Electric Ind Ltd Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material
EP0878291A1 (en) * 1997-05-14 1998-11-18 Eastman Kodak Company Method for fabricating tools for molding diffractive surfaces on optical lenses
JP2001115229A (en) * 1999-10-18 2001-04-24 Hitachi Tool Engineering Ltd Tough superfine cemented carbide
CN115261697A (en) * 2022-08-09 2022-11-01 成都广大精微新材料有限公司 High-performance wedge-shaped cleaver for wire bonding and manufacturing method thereof
CN116397189A (en) * 2023-06-06 2023-07-07 四川苏克流体控制设备股份有限公司 DLC-based high-wear-resistance low-friction coating material for hard seal ball valve and preparation method thereof
CN116397189B (en) * 2023-06-06 2023-08-15 四川苏克流体控制设备股份有限公司 DLC-based high-wear-resistance low-friction coating material for hard seal ball valve and preparation method thereof

Also Published As

Publication number Publication date
JPH0635638B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
FR2900417A1 (en) Amorphous carbon based hard multilayer film for hard surface component such as sliding component of machine, has base layer containing nitride, compositional gradient layer and surface layer, sequentially formed on substrate
JPH0297640A (en) Sintered hard alloy for precision mold and coated sintered hard alloy for precision mold
JP2002302732A (en) Ultrafine grained cubic bn sintered compact
JPH01246361A (en) Diamond-coated sintered alloy having excellent release resistance and its production
JP4731645B2 (en) Cemented carbide and coated cemented carbide and method for producing the same
JP3878232B2 (en) Coated cemented carbide
JPH0711051B2 (en) Cemented carbide and coated cemented carbide formed by forming a coating on the surface of the alloy
JP3630375B2 (en) Mold for glass molding
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
JPH0383824A (en) Complex mold for molding of optical member
JPH0316923A (en) Composite mold for forming optical part and production thereof
JP2005248309A (en) Cemented carbide and coated cemented carbide
JPH0332502A (en) Cermet tool
JP7351582B1 (en) Sintered alloy and mold
JPS62132734A (en) Mold for forming optical element
JPS5916945A (en) Outer part of watch
JPH0524865A (en) Mold for forming optical glass element
JP2003055729A (en) Sintered alloy material with excellent corrosion resistance and wear resistance, its manufacturing method, and member for machine structure using them
JPH107425A (en) Material suitable for forming material requiring high accuracy
JPH01286964A (en) Mold for optical element
JPS597341B2 (en) Hard sintered alloy with excellent corrosion resistance
JPH10147831A (en) Cermet tool with hard nitrided layer, and its production
JPH06329427A (en) Mold material for forming optical element composed of cemented carbide consisting essentially of wc
JPH0578145A (en) Fusing preventing coating film
JPH0492827A (en) Mold for molding optical element