JPH11335159A - High-strength, high-hardness alumina ceramics and its production - Google Patents

High-strength, high-hardness alumina ceramics and its production

Info

Publication number
JPH11335159A
JPH11335159A JP10143031A JP14303198A JPH11335159A JP H11335159 A JPH11335159 A JP H11335159A JP 10143031 A JP10143031 A JP 10143031A JP 14303198 A JP14303198 A JP 14303198A JP H11335159 A JPH11335159 A JP H11335159A
Authority
JP
Japan
Prior art keywords
alumina
particles
yag
strength
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10143031A
Other languages
Japanese (ja)
Other versions
JP4605829B2 (en
Inventor
Takashi Maeda
岳志 前田
Daiki Miyamoto
大樹 宮本
Isamu Inamura
偉 稲村
Hideki Kume
秀樹 久米
Yoshito Nishikawa
義人 西川
Taizo Kato
泰三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUMURA RUTSUBO SEIZOSHO KK
Kyocera Corp
Osaka Prefecture
Original Assignee
OKUMURA RUTSUBO SEIZOSHO KK
Kyocera Corp
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUMURA RUTSUBO SEIZOSHO KK, Kyocera Corp, Osaka Prefecture filed Critical OKUMURA RUTSUBO SEIZOSHO KK
Priority to JP14303198A priority Critical patent/JP4605829B2/en
Publication of JPH11335159A publication Critical patent/JPH11335159A/en
Application granted granted Critical
Publication of JP4605829B2 publication Critical patent/JP4605829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide an alumina ceramic having both of high strength and high hardness. SOLUTION: This alumina ceramic comprises 0.5-12 wt.% of YAG particles and the balance of substantially alumina. The average crystal particle size of the YAG particles is adjusted to 0.05-1.5 μm, while the average particle size of the alumina is controlled to 0.5-5.0 μm and the YAG grains are dispersed both on the grain boundaries in the sintered product and in the alumina particles whereby the objective alumina ceramic is constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度と高硬度を
兼ね備えたアルミナセラミックスとその製造方法に関す
るものである。
The present invention relates to an alumina ceramic having both high strength and high hardness, and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
セラミック部材の中でも耐摩耗性、耐熱性、耐薬品性等
の点で優れた特性を有するとともに、圧倒的に安価でか
つ工業的に有用な材料としてアルミナセラミックスが使
用されており、例えば、ディスクバルブ、ベーンポンプ
のベーン、プランジャーポンプのプランジャーロッド等
の摺動部材や各種粉砕部材、さらには切削、研磨工具な
ど様々な用途で使用されている。
2. Description of the Related Art
Among ceramic members, while having excellent properties such as wear resistance, heat resistance, chemical resistance, etc., alumina ceramic is used as an overwhelmingly inexpensive and industrially useful material, for example, a disk valve It is used in various applications such as sliding members such as vanes of vane pumps and plunger rods of plunger pumps and various crushing members, and cutting and polishing tools.

【0003】しかしながら、アルミナセラミックスは上
述のような優れた特性を有する反面ジルコニアセラミッ
クスや窒化珪素質セラミックスなどの他のセラミックス
に比べて抗折強度が低いことから、高い応力のかかる部
分に安定して使用することができなかった。
[0003] However, alumina ceramics have the above-mentioned excellent properties, but have a lower bending strength than other ceramics such as zirconia ceramics and silicon nitride ceramics, so that they can be stably applied to parts where high stress is applied. Could not be used.

【0004】そこで、近年、アルミナセラミックスの抗
折強度を向上させるために、例えば、炭化珪素やジルコ
ニアなどのアルミナとは異種の粒子をアルミナ粒子内お
よび粒界に分散させたアルミナセラミックスが提案され
ている(特公昭59−24751号、特公昭59−25
748号公報参照)。
Therefore, in recent years, alumina ceramics in which particles different from alumina, such as silicon carbide and zirconia, are dispersed in the alumina particles and at the grain boundaries have been proposed in order to improve the bending strength of the alumina ceramics. (JP-B-59-24475, JP-B-59-25)
No. 748).

【0005】この種のアルミナセラミックスは、主体を
なすアルミナ粉末に、分散させる炭化珪素粉末やジルコ
ニア粉末を添加して混練乾燥させることにより造粒体を
作製し、該造粒体を所定形状に形成したあと1400〜
1750℃の温度で焼成することにより形成したもので
あり、炭化珪素やジルコニアがアルミナ粒子内および粒
界に介在したものであった。
Alumina ceramics of this type are prepared by adding a silicon carbide powder or zirconia powder to be dispersed to a main alumina powder and kneading and drying the granulated material to form the granulated material into a predetermined shape. After 1400
It was formed by firing at a temperature of 1750 ° C., in which silicon carbide and zirconia were present in the alumina particles and at the grain boundaries.

【0006】このように炭化珪素やジルコニアを含有さ
せることにより強度が向上する理由としては、粒子内に
存在している炭化珪素が内部応力によりクラックの進展
を偏向させたり、粒界に存在している炭化珪素が粒界の
進展を直接阻止したり、あるいは、ジルコニア粒子の応
力誘起変態によりクラックの進展エネルギーが吸収され
るためであると考えられている。
[0006] The reason why the strength is improved by containing silicon carbide or zirconia as described above is that silicon carbide existing in the grains deflects the progress of cracks due to internal stress, or exists in the grain boundaries. This is considered to be because the silicon carbide directly inhibits the growth of the grain boundary or the crack-producing energy is absorbed by stress-induced transformation of the zirconia particles.

【0007】ところが、ジルコニア原料はアルミナ原料
に比べて高価な原料であり、前述したアルミナセラミッ
クスのように、ジルコニアを焼結体の粒界やアルミナ粒
子内に介在させたものでは、アルミナセラミックスの強
度および硬度を高めるために添加するジルコニア量が多
くなり、高価な材料となってしまうといった課題があっ
た。また、炭化珪素を分散粒子としたアルミナセラミッ
クスはホットプレスなどの加圧焼結でないと緻密化しな
いため、常圧焼結で高強度、高硬度を有するアルミナセ
ラミックスを製作することは困難であった。
However, the zirconia raw material is a more expensive raw material than the alumina raw material. In the case where the zirconia is interposed between the grain boundaries of the sintered body and the alumina particles as in the above-mentioned alumina ceramic, the strength of the alumina ceramic is high. In addition, there has been a problem that the amount of zirconia added to increase the hardness increases, resulting in an expensive material. In addition, since alumina ceramics containing silicon carbide dispersed particles do not densify unless subjected to pressure sintering such as hot pressing, it has been difficult to produce alumina ceramics having high strength and high hardness by normal pressure sintering. .

【0008】このように、ジルコニアに代わる安価な分
散粒子ならびに、高強度、高硬度を維持しつつ分散量を
減少させることができる製法が望まれていた。
[0008] Thus, there has been a demand for inexpensive dispersed particles that can replace zirconia and a production method that can reduce the amount of dispersion while maintaining high strength and high hardness.

【0009】[0009]

【発明の目的】本発明は分散粒子をYAG粒子とし、少
量の添加で高硬度でかつ高強度を兼ね備えたアルミナセ
ラミックスとその製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an alumina ceramic having high hardness and high strength by adding a small amount of YAG particles as a dispersion particle, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】そこで、本件発明者らは
種々研究を重ねたところ、AlイオンとYイオンとを原
子レベルで均一に混合した溶液にアルミナ粉末を添加し
てAl−Y系水酸化物とアルミナからなる混合粉体を得
たあと、該混合粉体を仮焼きすることでYAG粒子が分
散したアルミナ粉体を作製し、このアルミナ粉体を通常
のセラミック製造方法でもって製造することによりYA
G粒子の含有量を少なくしてもアルミナセラミックスの
硬度と強度を向上させることができることを見出したも
のである。
The inventors of the present invention have conducted various studies, and found that alumina powder was added to a solution in which Al ions and Y ions were uniformly mixed at the atomic level, and Al-Y water was added. After obtaining a mixed powder composed of an oxide and alumina, the mixed powder is calcined to produce an alumina powder in which YAG particles are dispersed, and this alumina powder is manufactured by a normal ceramic manufacturing method. YA
It has been found that the hardness and strength of alumina ceramics can be improved even if the content of G particles is reduced.

【0011】即ち、本発明は上記課題に鑑み、YAG粒
子を0.5〜12重量%含有し、残部が実質的にアルミ
ナからなり、上記YAG粒子の平均結晶粒子径を0.0
5〜1.5μmでかつアルミナの平均結晶粒子径を0.
5〜5.0μmとするとともに、上記YAG粒子を焼結
体中の粒界及びアルミナ粒子内の双方に分散させて高強
度、高硬度を有するアルミナセラミックスを構成したも
のである。
That is, in view of the above problems, the present invention contains 0.5 to 12% by weight of YAG particles, the balance being substantially composed of alumina, and reducing the average crystal particle diameter of the YAG particles by 0.0%.
5 to 1.5 μm, and the average crystal particle diameter of alumina is 0.1 μm.
The alumina ceramics having high strength and high hardness are formed by dispersing the YAG particles at both the grain boundaries in the sintered body and in the alumina particles while having a particle size of 5 to 5.0 μm.

【0012】また、本発明は上記高強度、高硬度を有す
るアルミナセラミックスを得るために、Alイオン及び
Yイオンを原子レベルで均一に混合した溶液を作製する
工程と、該溶液にアルミナの粉末を添加して中和反応に
よりAl−Y系水酸化物とアルミナからなる混合粉体を
作製し、該混合粉体を300〜1000℃で仮焼きする
ことでYAG粒子が分散したアルミナ粉体を得る工程
と、このアルミナ粉体に溶媒とバインダーを添加して造
粒体を作製し、所定形状に成形したあと、1450〜1
700℃の温度で焼成する工程とから製造したものであ
る。
The present invention also provides a step of preparing a solution in which Al ions and Y ions are uniformly mixed at the atomic level in order to obtain the alumina ceramic having high strength and high hardness, and adding alumina powder to the solution. A mixed powder composed of an Al-Y-based hydroxide and alumina is prepared by the addition and neutralization reaction, and the mixed powder is calcined at 300 to 1000 ° C. to obtain an alumina powder in which YAG particles are dispersed. A process, and adding a solvent and a binder to the alumina powder to produce a granulated body, and forming the granulated body into a predetermined shape.
Baking at a temperature of 700 ° C.

【0013】[0013]

【発明の実施の形態】本発明のアルミナセラミックス
は、図1に組織構造を示す如く、安価でかつ微細なYA
G粒子をアルミナセラミックスの粒界だけでなくアルミ
ナ粒子内にも分散させたことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Alumina ceramics of the present invention are inexpensive and fine YA, as shown in FIG.
It is characterized in that G particles are dispersed not only in the grain boundaries of alumina ceramics but also in alumina particles.

【0014】即ち、セラミックスの破壊に伴う、クラッ
クの進展を粒界に存在するYAG粒子により阻止すると
ともに、アルミナ粒子内に存在するYAG粒子によりク
ラックの進展を偏向させることができる。しかも、後述
する如くYAG原料を溶液状態でマトリックスのアルミ
ナ粉末と混合するため、微細かつ均一な分散が可能とな
り、YAG粒子の分散量を少量としても、クラックの進
展を阻止する効果を十分に発揮させることができる。ま
た、YAG粒子は焼成時におけるアルミナの粒成長を抑
する作用があることから緻密化することができ、高強度
でかつ高硬度を有する安価なアルミナセラミクスを得る
ことができる。
That is, the crack growth accompanying the fracture of the ceramic can be prevented by the YAG particles existing in the grain boundaries, and the crack growth can be deflected by the YAG particles existing in the alumina particles. Moreover, since the YAG raw material is mixed with the alumina powder of the matrix in a solution state as described later, fine and uniform dispersion becomes possible, and even if the dispersion amount of the YAG particles is small, the effect of preventing the crack from developing is sufficiently exerted. Can be done. In addition, since the YAG particles have an effect of suppressing the growth of alumina grains during firing, they can be densified, and inexpensive alumina ceramics having high strength and high hardness can be obtained.

【0015】このようなアルミナセラミックスを構成す
るには、焼結体の粒界及びアルミナ粒子内に分散させる
YAG粒子の平均粒子径を0.05〜1.5μmとする
とともに、アルミナの平均結晶粒子径を0.5〜5.0
μmとすることが必要である。
In order to form such an alumina ceramic, the average particle diameter of the YAG particles dispersed in the grain boundaries of the sintered body and the alumina particles is set to 0.05 to 1.5 μm, and the average crystal particles of the alumina are formed. 0.5-5.0 diameter
μm is required.

【0016】これはYAG粒子の平均粒子径が1.5μ
mより大きくなるとアルミナの結晶粒子径に対する割合
が大きくなり過ぎるためにアルミナそのものの特性を劣
化させ、アルミナセラミックスの強度及び硬度を大幅に
低下させてしまうからであり、逆にYAG粒子の平均粒
子径が0.05μm未満とすることは製造上難しいから
である。
This is because the average particle diameter of the YAG particles is 1.5 μm.
When the diameter is larger than m, the ratio of alumina to the crystal particle diameter becomes too large, which degrades the characteristics of alumina itself and greatly lowers the strength and hardness of alumina ceramics. Conversely, the average particle diameter of YAG particles Is less than 0.05 μm in terms of manufacturing.

【0017】また、アルミナの平均結晶粒子径が5.0
μmより大きくなると焼結体中に微細なボイドが多数介
在することになるために強度及び硬度を向上させること
ができず、逆に、YAG粒子を分散させたアルミナの平
均結晶粒子径を0.5μm未満とすることは製造上難し
いからである。
The average crystal particle diameter of alumina is 5.0.
If it is larger than μm, a large number of fine voids are interposed in the sintered body, so that strength and hardness cannot be improved. Conversely, the average crystal particle diameter of alumina in which YAG particles are dispersed is set to 0.1. This is because it is difficult to reduce the thickness to less than 5 μm.

【0018】なお、より好ましいYAG粒子の平均粒子
径としては0.05〜0.5μmが良く、また、アルミ
ナの平均結晶粒子径としては0.5〜3.0μmが良
い。
The average particle size of the YAG particles is more preferably 0.05 to 0.5 μm, and the average crystal particle size of alumina is preferably 0.5 to 3.0 μm.

【0019】さらに、アルミナセラミックスの強度及び
硬度を向上させるためにはYAG粒子の含有量も重要な
要件となる。
Further, in order to improve the strength and hardness of the alumina ceramic, the content of YAG particles is also an important requirement.

【0020】即ち、YAG粒子の含有量が0.5重量%
未満では焼結時におけるアルミナ粒子の粒成長を充分に
抑制することができないために強度及び硬度を向上させ
ることができず、YAG粒子の含有量が12重量%より
多くなるとアルミナ粒子内に多量のYAG粒子が分散す
ることになるため、アルミナそのものの特性を劣化さ
せ、アルミナセラミックスの強度及び硬度を低下させて
しまうからである。
That is, the content of the YAG particles is 0.5% by weight.
If it is less than 10%, the grain growth of alumina particles during sintering cannot be sufficiently suppressed, so that strength and hardness cannot be improved. If the content of YAG particles is more than 12% by weight, a large amount of This is because the YAG particles are dispersed, so that the characteristics of the alumina itself are deteriorated and the strength and hardness of the alumina ceramics are reduced.

【0021】その為、アルミナセラミックスに含有させ
るYAG粒子の含有量は0.5〜12重量%の範囲が良
く、好ましくは3〜10重量%の範囲で含有させ、残部
は実質的にアルミナからなるものが良い。
Therefore, the content of the YAG particles contained in the alumina ceramic is preferably in the range of 0.5 to 12% by weight, more preferably in the range of 3 to 10% by weight, and the balance substantially consists of alumina. Things are good.

【0022】なお、残部が実質的にアルミナからなると
は、YAG以外は殆どがアルミナから構成されるいるこ
とを指し、アルミナセラミックスの焼結性を助けるため
にMgO、CaO、SiO2 等の焼結助剤を若干含有し
ていても良いが、これらの焼結助剤は多くとも1重量%
以下である。
The fact that the remainder substantially consists of alumina means that most of the ceramics other than YAG are made of alumina. In order to assist the sinterability of alumina ceramics, the sintering of MgO, CaO, SiO 2 or the like is performed. Some sintering aids may be contained, but at most 1% by weight.
It is as follows.

【0023】かくして、本発明に係るアルミナセラミッ
クスはビッカース硬度(Hv1.0)が1700kg/mm2
以上と、本発明のアルミナセラミックスと同程度のアル
ミナ含有量を有する従来のアルミナセラミックスに比べ
て硬度を高めることができるとともに、抗折強度が50
kg/mm2 以上と高い機械的強度を兼ね備えたものと
することができる。
Thus, the alumina ceramic according to the present invention has a Vickers hardness (Hv1.0) of 1700 kg / mm 2.
As described above, the hardness can be increased as compared with the conventional alumina ceramics having the same alumina content as the alumina ceramics of the present invention, and the transverse rupture strength is 50%.
kg / mm 2 or more and high mechanical strength.

【0024】次に、本発明に係るアルミナセラミックス
の製造方法について説明する。
Next, a method for producing alumina ceramics according to the present invention will be described.

【0025】図2は本発明に係るアルミナセラミックス
の製造プロセスを示すフローチャート図である。まず、
AlイオンとYイオンを原子レベルで均一に混合した溶
液を作製する。そして、この溶液にアルミナ粉末を添加
して中和反応させることによりAl−Y系水酸化物とア
ルミナからなる混合粉体を得たあと、この混合粉体を3
00〜1000℃で仮焼きすることによりYAG粒子を
分散させたアルミナ粉体を製作する。
FIG. 2 is a flow chart showing a process for producing alumina ceramics according to the present invention. First,
A solution is prepared by uniformly mixing Al ions and Y ions at the atomic level. Then, after adding alumina powder to this solution and performing a neutralization reaction, a mixed powder composed of an Al-Y-based hydroxide and alumina is obtained.
By calcining at 00 to 1000 ° C., an alumina powder in which YAG particles are dispersed is produced.

【0026】具体的には水溶性のアルミニウム塩とイッ
トリウム塩とを水に溶解させて溶液を作製し、この溶液
にアルミナ粉末を添加してアンモニアでもって中和反応
させることにより、Al−Y系水酸化物とアルミナから
なる混合粉体を作製し、これを300〜1000℃で仮
焼きすることによりYAG粒子が分散したアルミナ粉体
を形成し、1.5μm以下に粉砕する。
Specifically, a water-soluble aluminum salt and a yttrium salt are dissolved in water to prepare a solution, and an alumina powder is added to the solution, and the solution is neutralized with ammonia to form an Al—Y-based solution. A mixed powder composed of hydroxide and alumina is prepared, and calcined at 300 to 1000 ° C. to form an alumina powder in which YAG particles are dispersed, and pulverized to 1.5 μm or less.

【0027】ここで、アルミナ粉体中にYAG粒子を分
散させることができるのは、図3にアルミナ−イットリ
ア系の平衡状態図を示すように、室温では3Y2 3
5Al2 3 (YAG:イットリウム・アルミニウム・
ガーネット)と2Y2 3 ・Al2 3 の2種類の化合
物が存在し、3Y2 3 ・5Al2 3 (YAG)はア
ルミナとイットリアのモル比がAl2 3 /Y2 3
62.5/37.5である時、2Y2 3 ・Al2 3
はアルミナとイットリアのモル比がAl2 3/Y2
3 =33.3/66.7である時に析出する。
[0027] Here, be able to disperse the YAG particles in the alumina powder, alumina 3 - to indicate the equilibrium of yttria-based view, 3Y 2 O 3 · at room temperature
5Al 2 O 3 (YAG: yttrium aluminum
Two compounds of the garnet) and 2Y 2 O 3 · Al 2 O 3 is present, 3Y 2 O 3 · 5Al 2 O 3 (YAG) is the molar ratio of alumina and yttria Al 2 O 3 / Y 2 O 3 =
When 62.5 / 37.5, 2Y 2 O 3 .Al 2 O 3
Means that the molar ratio of alumina to yttria is Al 2 O 3 / Y 2 O
It precipitates when 3 = 33.3 / 66.7.

【0028】そして、本発明の製法によれば、Alイオ
ンとYイオンを原子レベルで均一に混合した溶液にさら
にアルミナ粉末を添加してあることからアルミナ量が多
くなり、アルミナ粒子に分散する化合物が3Y2 3
5Al2 3 (YAG)として析出するためと考えられ
る。
According to the production method of the present invention, since alumina powder is further added to a solution in which Al ions and Y ions are uniformly mixed at the atomic level, the amount of alumina increases, and the compound dispersed in the alumina particles is increased. Is 3Y 2 O 3
This is presumed to be due to precipitation as 5Al 2 O 3 (YAG).

【0029】次に、得られたアルミナ粉体に溶媒及びバ
インダーを添加して混練乾燥することにより造粒体を作
製し、この造粒体を一軸加圧成形法、等加圧成形法、泥
漿鋳込法、射出成形法など通常のセラミックス成形法に
より所定形状に成形したあと、1450〜1700℃、
好ましくは1500〜1650℃の大気中など酸化雰囲
気中あるいは水素や窒素雰囲気中にて焼成することによ
り得ることができる。
Next, a granule is prepared by adding a solvent and a binder to the obtained alumina powder and kneading and drying, and the granule is subjected to a uniaxial pressing method, an isopressing method, a slurry. After molding into a predetermined shape by a normal ceramic molding method such as a casting method or an injection molding method, 1450 to 1700 ° C.
Preferably, it can be obtained by firing in an oxidizing atmosphere such as the air at 1500 to 1650 ° C. or in a hydrogen or nitrogen atmosphere.

【0030】なお、焼成温度を1450〜1700℃と
するのは、焼成温度が1450℃未満ではアルミナ粉体
の焼結性が不充分であるために緻密化することができ
ず、また、焼成温度が1700℃より高くなるとアルミ
ナ粒子が異常粒成長することから、いずれにおいてもア
ルミナセラミックスの強度及び硬度を向上させることが
できないからである。
The reason why the firing temperature is set to 1450 to 1700 ° C. is that if the firing temperature is lower than 1450 ° C., the alumina powder cannot be densified due to insufficient sinterability. If the temperature is higher than 1700 ° C., the alumina particles grow abnormally, and the strength and hardness of the alumina ceramics cannot be improved in any case.

【0031】このようにAlイオンとYイオンを原子レ
ベルで均一に混合した溶液にアルミ粉末を添加してAl
−Y系水酸化物とアルミナからなる混合粉体を作製し、
この混合粉体を仮焼きして原料粉末を作製するようにし
たことから、YAG粒子の含有量が少量にもかかわら
ず、高強度でかつ高硬度を兼ね備えたアルミナセラミッ
クスを得ることができる。
Aluminum powder is added to a solution in which Al ions and Y ions are uniformly mixed at the atomic level in this way, and Al ions are added.
Preparing a mixed powder comprising -Y-based hydroxide and alumina,
Since the mixed powder is calcined to prepare a raw material powder, an alumina ceramic having both high strength and high hardness can be obtained despite the small content of YAG particles.

【0032】(実施例)以下、本発明の実施例について
説明する。
(Examples) Examples of the present invention will be described below.

【0033】AlCl3 ・6H2 Oを9.126重量
%、YCl3 ・6H2 Oを6.879重量%の割合で水
に混合して溶液を作製し、この溶液中にアルミナ粉末を
83.995重量%添加混合したあとアンモニア(28
%)を加えて中和反応させることによりAl−Y系水酸
化物とアルミナからなる混合粉体を作製した。そして、
この混合粉体を乾燥させたあとに900℃の温度で仮焼
きして粗粉砕することにより二次原料としてYAG粒子
を分散させたアルミナ粉体を作製した。なお、分散粒子
については、X線回折法によりYAG粒子であることを
確認した。
A solution is prepared by mixing 9.126% by weight of AlCl 3 .6H 2 O and 6.879% by weight of YCl 3 .6H 2 O in water to prepare a solution. After adding and mixing 995% by weight of ammonia (28
%) And a neutralization reaction was performed to prepare a mixed powder composed of an Al-Y-based hydroxide and alumina. And
After drying this mixed powder, it was calcined at a temperature of 900 ° C. and coarsely pulverized to produce an alumina powder in which YAG particles were dispersed as a secondary material. The dispersed particles were confirmed to be YAG particles by X-ray diffraction.

【0034】次に、得られたアルミナ粉体に対してバイ
ンダーと溶媒として水を添加して混練乾燥させることに
より造粒体を作製し、該造粒体を型内に充填して冷間静
水圧成形法(CIP)により円柱状に成形したあと、こ
の成形体を1600℃の大気雰囲気中にて焼成すること
により、YAG粒子を5.0重量%含有したアルミナセ
ラミックスを得た。
Next, a granulated body is prepared by adding water as a binder and a solvent to the obtained alumina powder and kneading and drying the granulated body. After being formed into a cylindrical shape by a hydraulic forming method (CIP), the formed body was fired in an air atmosphere at 1600 ° C. to obtain an alumina ceramic containing 5.0% by weight of YAG particles.

【0035】そして、このアルミナセラミックスに研削
加工を施して角柱状の試料を製作し、SEM写真を撮影
して観察したところ、YAG粒子が焼結体の粒界及びア
ルミナ粒子内の双方に分散していた。また、SEM写真
よりアルミナ粒子及びYAG粒子の平均結晶粒子径を測
定したところ、アルミナの平均結晶粒子径は2.0μ
m、YAG粒子の平均結晶粒子径は0.5μmであっ
た。なお、アルミナ粒子及びYAG粒子の平均結晶粒子
径は、画像解析装置(ルーゼックス)を用いて測定し
た。
Then, the alumina ceramic was subjected to a grinding process to produce a prismatic sample, and SEM photographs were taken and observed. As a result, the YAG particles were dispersed in both the grain boundaries of the sintered body and in the alumina particles. I was When the average crystal particle diameter of the alumina particles and the YAG particles was measured from the SEM photograph, the average crystal particle diameter of the alumina was 2.0 μm.
m, the average crystal particle diameter of the YAG particles was 0.5 μm. The average crystal particle diameter of the alumina particles and the YAG particles was measured using an image analyzer (Luzex).

【0036】さらに、このアルミナセラミックスの硬度
をJIS R 1610により、抗折強度をJIS R
1601によりそれぞれ測定したところ、ビッカース
硬度(Hv1.0)は1778kg/mm2 、抗折強度は6
4.3kg/mm2 を有していた。
Further, the hardness of the alumina ceramic is determined according to JIS R 1610, and the bending strength is determined according to JIS R 1610.
The Vickers hardness (Hv1.0) was 1778 kg / mm 2 and the transverse rupture strength was 6 as measured according to 1601.
4.3 kg / mm 2 .

【0037】(実験例1)そこで、アルミナ含有量が9
9.5%であるアルミナセラミックスを基準試料として
用意し、機械的特性について実施例のアルミナセラミッ
クスとの比較測定を行った。
(Experimental Example 1) Then, when the alumina content was 9
9.5% alumina ceramics was prepared as a reference sample, and the mechanical properties were measured for comparison with those of the examples.

【0038】なお、本実験では各試料を3mm×4mm
×40mmの角柱体とし、見掛密度はJIS C 21
41のアルキメデス法に準拠し、破壊靱性値の測定はI
F法により30kgfの荷重をかけた状態で15秒間保
持して測定した。
In this experiment, each sample was 3 mm × 4 mm
× 40mm prism, apparent density is JIS C21
According to the Archimedes method of F.41, the measurement of fracture toughness
The measurement was performed by holding the load of 30 kgf by the F method for 15 seconds.

【0039】また、ビッカース硬度の測定については前
述したようにJIS R 1610に準拠し、ダイヤモ
ンド圧子の試験荷重を1000gfで5秒間保持して測
定し、抗折強度はJIS R 1601に準拠し、スパ
ン幅30mm、クロスヘッドスピード0.5mm/mi
nの条件にて行った。
The Vickers hardness was measured in accordance with JIS R 1610 as described above, while the test load of the diamond indenter was held at 1000 gf for 5 seconds, and the bending strength was measured in accordance with JIS R 1601. 30mm width, 0.5mm / mi crosshead speed
n.

【0040】それぞれの結果を表1に示す。この結果、
表1より判るように、実施例におけるアルミナセラミッ
クスは基準試料と比較してアルミナ含有量が少ないもの
の、YAG粒子の分散によって抗折強度およびビッカー
ス硬度を大幅に向上させることができた。しかも、アル
ミナの粒成長を抑制することができ、基準試料に対して
見掛密度を高めることもできた。
Table 1 shows the results. As a result,
As can be seen from Table 1, although the alumina content of the alumina ceramics in the examples was smaller than that of the reference sample, the bending strength and Vickers hardness could be greatly improved by the dispersion of the YAG particles. In addition, the grain growth of alumina could be suppressed, and the apparent density of the reference sample could be increased.

【0041】[0041]

【表1】 [Table 1]

【0042】(実験例2)次に、YAG粒子の含有量を
異ならせたアルミナセラミックスを実施例と同様の製法
により用意し、各々の抗折強度とビッカース硬度につい
て測定を行い、抗折強度が50kg/mm2 以上、ビッ
カース硬度が1700kg/mm2 以上を有するものを
優れたものとして評価した。
(Experimental Example 2) Next, alumina ceramics having different contents of YAG particles were prepared by the same manufacturing method as in the example, and the bending strength and Vickers hardness of each were measured. Those having 50 kg / mm 2 or more and Vickers hardness of 1700 kg / mm 2 or more were evaluated as excellent.

【0043】それぞれの結果は表2に示す通りである。
この結果、試料No.1では、YAG粒子を全く含有し
ていないことから抗折強度が35kg/mm2 、ビッカ
ース硬度が1640kg/mm2 と低かった。
The results are as shown in Table 2.
As a result, the sample No. In 1, the bending strength since it does not contain any YAG particles 35 kg / mm 2, the Vickers hardness was as low as 1640kg / mm 2.

【0044】また、試料No.7,8は、YAG粒子の
含有量が12重量%より多いために、試料No.8では
抗折強度50kg/mm2 以上、ビッカース硬度170
0kg/mm2 以上の双方の特性を満足することができ
ず、試料No.7ではビッカース硬度1700kg/m
2 以上を満足することができなかった。
The sample No. Samples Nos. 7 and 8 were sample Nos. 7 and 8 because the content of YAG particles was more than 12% by weight. 8, the flexural strength is 50 kg / mm 2 or more, and the Vickers hardness is 170.
0 kg / mm 2 or more, both properties could not be satisfied. 7, Vickers hardness 1700kg / m
m 2 or more could not be satisfied.

【0045】これに対し、試料No.2〜6は、YAG
粒子の含有量が0.5〜12重量%の範囲にあるため、
抗折強度を50kg/mm2 以上、ビッカース硬度を1
700kg/mm2 以上とすることができた。特に、Y
AG粒子の含有量が3.0〜10重量%の範囲にある試
料No.3〜5では、抗折強度を60kg/mm2
上、ビッカース硬度を1750kg/mm2 以上とする
ことができ、優れた機械的特性が得られることが判る。
On the other hand, the sample No. 2-6 are YAG
Since the content of the particles is in the range of 0.5 to 12% by weight,
Flexural strength of 50 kg / mm 2 or more, Vickers hardness of 1
It was 700 kg / mm 2 or more. In particular, Y
Sample No. having a content of AG particles in the range of 3.0 to 10% by weight. In the case of 3 to 5, the bending strength can be 60 kg / mm 2 or more, and the Vickers hardness can be 1750 kg / mm 2 or more, and it can be seen that excellent mechanical properties can be obtained.

【0046】[0046]

【表2】 [Table 2]

【0047】(実験例3)次に、YAG粒子の含有量を
5重量%としたアルミナセラミックスにおいて、アルミ
ナ粒子およびYAG粒子の平均結晶粒子径をそれぞれ異
ならせたものを実施例と同様の製法にて用意し、各々の
抗折強度及びビッカース硬度について測定を行った。
(Experimental Example 3) Next, alumina ceramics having a YAG particle content of 5% by weight and having different average crystal particle diameters of the alumina particles and the YAG particles were subjected to the same manufacturing method as in the example. Were prepared, and the bending strength and Vickers hardness were measured.

【0048】それぞれの結果は表3に示す通りである。
この結果、YAG粒子及びアルミナ粒子の平均結晶粒子
径が小さいほど、強度及び硬度を高められることが判
る。ただし、試料No.14のようにYAG粒子の平均
結晶粒子径が1.5μmより大きく、また、アルミナ粒
子の平均結晶粒子径が5.0μmより大きくなると、抗
折強度50kg/mm2 以上、ビッカース硬度1700
kg/mm2 以上の双方の特性を満足することができ
ず、また、試料No.13のようにアルミナ粒子の平均
結晶粒子径が5.0μmより大きくなっても、抗折強度
50kg/mm2 以上、ビッカース硬度1700kg/
mm2以上の双方の特性を満足することができなかっ
た。
The results are as shown in Table 3.
As a result, it is found that the smaller the average crystal particle diameter of the YAG particles and alumina particles, the higher the strength and hardness. However, the sample No. When the average crystal particle diameter of the YAG particles is larger than 1.5 μm and the average crystal particle diameter of the alumina particles is larger than 5.0 μm as in No. 14, the transverse rupture strength is 50 kg / mm 2 or more, and the Vickers hardness is 1700.
kg / mm 2 or more, both characteristics cannot be satisfied. Even when the average crystal particle diameter of the alumina particles is larger than 5.0 μm as in Example 13, the transverse rupture strength is 50 kg / mm 2 or more, and the Vickers hardness is 1700 kg /.
Both properties of mm 2 or more could not be satisfied.

【0049】これに対し、YAG粒子の平均結晶粒子径
が1.5μm以下でかつアルミナ粒子の平均結晶粒子径
が5.0μm以下である試料No.9〜12のものは、
アルミナセラミックスの抗折強度を50kg/mm2
上、ビッカース硬度を1700kg/mm2 以上とする
ことができた。特に試料No.9〜11のように、YA
G粒子の平均結晶粒子径が0.5μm以下でかつアルミ
ナ粒子の平均結晶粒子径が3.0μm以下のものは、ア
ルミナセラミックスの抗折強度を60kg/mm2
上、ビッカース硬度を1750kg/mm2 以上とで
き、優れていた。
On the other hand, the sample No. in which the average crystal particle diameter of the YAG particles was 1.5 μm or less and the average crystal particle diameter of the alumina particles was 5.0 μm or less. 9 to 12
The flexural strength of the alumina ceramic was 50 kg / mm 2 or more, and the Vickers hardness was 1700 kg / mm 2 or more. In particular, the sample No. As in 9-11, YA
If the average crystal particle diameter of the G particles is 0.5 μm or less and the average crystal particle diameter of the alumina particles is 3.0 μm or less, the flexural strength of the alumina ceramic is 60 kg / mm 2 or more, and the Vickers hardness is 1750 kg / mm 2. Above, it was excellent.

【0050】このことから、YAG粒子の平均結晶粒子
径は0.05〜1.5μm、アルミナ粒子の平均結晶粒
子径は0.5〜5.0μmの範囲が良く、より好ましく
はYAG粒子の平均結晶粒子径が0.05〜0.5μ
m、アルミナ粒子の平均結晶粒子径が0.5〜3.0μ
mの範囲にあるものが良いことが判る。
Therefore, the average crystal particle diameter of the YAG particles is preferably in the range of 0.05 to 1.5 μm, and the average crystal particle diameter of the alumina particles is preferably in the range of 0.5 to 5.0 μm. Crystal particle size 0.05-0.5μ
m, the average crystal particle diameter of the alumina particles is 0.5 to 3.0 μm
It can be seen that those in the range of m are good.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【発明の効果】以上のように、本発明によれば、YAG
粒子を0.5〜12重量%の範囲で含有し、残部が実質
的にアルミナからなり、上記YAG粒子の平均結晶粒子
径を0.05〜1.5μmでかつアルミナの平均結晶粒
子径を0.5〜5.0μmとするとともに、上記YAG
粒子を焼結体の粒界及びアルミ結晶中の双方に分散させ
てアルミナセラミックスを構成したことにより、安価に
高硬度でかつ高強度を有するアルミナセラミックスを得
ることができる。
As described above, according to the present invention, YAG
The particles are contained in the range of 0.5 to 12% by weight, and the remainder substantially consists of alumina. The average crystal particle diameter of the YAG particles is 0.05 to 1.5 μm and the average crystal particle diameter of alumina is 0. 0.5 to 5.0 μm and the YAG
By forming the alumina ceramics by dispersing the particles in both the grain boundaries of the sintered body and the aluminum crystal, it is possible to obtain alumina ceramics having high hardness and high strength at low cost.

【0053】また、本発明は、AlイオンとYイオンを
原子レベルで均一に混合した溶液にアルミナ粉末を添加
して中和反応することによりAl−Y系水酸化物とアル
ミナからなる混合粉体を作製し、この混合粉体を300
〜1000℃で仮焼きしてYAG粒子が分散したアルミ
ナ粉体を製作し、このアルミナ粉体を所定形状に成形し
たあと1450〜1700℃の温度で焼成してアルミナ
セラミックスを製造するようにしたことから、焼結体の
粒界及びアルミナ粒子内に少量のYAG粒子をほぼ均一
に分散させることができ、高硬度でかつ高強度を兼ね備
えたアルミナセラミックスを容易に製造することができ
る。
The present invention also provides a mixed powder comprising an Al—Y-based hydroxide and alumina by adding an alumina powder to a solution in which Al ions and Y ions are uniformly mixed at the atomic level and performing a neutralization reaction. And the mixed powder is mixed with 300
Alumina powder in which YAG particles are dispersed is prepared by calcining at ~ 1000 ° C, and the alumina powder is formed into a predetermined shape and then fired at a temperature of 1450-1700 ° C to produce alumina ceramics. Thus, a small amount of YAG particles can be substantially uniformly dispersed in the grain boundaries of the sintered body and in the alumina particles, and alumina ceramics having both high hardness and high strength can be easily produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るアルミナセラミックスの組織構造
を示す模式図である。
FIG. 1 is a schematic view showing the structure of an alumina ceramic according to the present invention.

【図2】本発明に係るアルミナセラミックスの製造プロ
セスを示すフローチャート図である。
FIG. 2 is a flowchart showing a process for producing alumina ceramics according to the present invention.

【図3】アルミナ−イットリア系の平衡状態図である。FIG. 3 is an equilibrium diagram of an alumina-yttria system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 大樹 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 稲村 偉 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 久米 秀樹 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 西川 義人 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 加藤 泰三 大阪府大阪市東成区中道2丁目13番14号 株式会社奥村坩堝製造所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Daiki Miyamoto 2-7-1 Ayumino, Izumi-shi, Osaka Inside the Osaka Prefectural Institute of Advanced Industrial Science and Technology (72) Inventor Takeshi Inamura 2-7-1 Ayumino, Izumi-shi, Osaka No. Within the Osaka Prefectural Institute of Industrial Science and Technology (72) Inventor Hideki Kume 2-7-1 Ayumino, Izumi City, Osaka Prefecture Inside the Osaka Prefectural Institute of Industrial Science and Technology (72) Yoshito Nishikawa 2-chome Ayumino, Izumi City, Osaka Prefecture No. 1 Inside Osaka Prefectural Institute of Advanced Industrial Science and Technology (72) Inventor Taizo Kato 2-13-14 Nakamichi, Higashinari-ku, Osaka-shi, Osaka Inside Okumura Crucible Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】YAG粒子を0.5〜12重量%含有し、
残部が実質的にアルミナからなり、上記YAG粒子の平
均結晶粒子径が0.05〜1.5μmでかつアルミナの
平均結晶粒子径が0.5〜5.0μmの範囲にあるとと
もに、上記YAG粒子が焼結体の粒界及びアルミナ粒子
内の双方に分散していることを特徴とする高強度、高硬
度アルミナセラミックス。
Claims: 1. A method comprising: containing 0.5 to 12% by weight of YAG particles;
The balance is substantially composed of alumina, the average crystal particle diameter of the YAG particles is 0.05 to 1.5 μm, the average crystal particle diameter of alumina is 0.5 to 5.0 μm, and the YAG particles are High-strength and high-hardness alumina ceramics, wherein are dispersed both in the grain boundaries of the sintered body and in the alumina particles.
【請求項2】YAG粒子が焼結体の粒界及びアルミナ粒
子内の双方に分散してなるアルミナセラミックスの製造
方法において、 1)AlイオンとYイオンを原子レベルで均一に混合し
た溶液を作製する工程と、 2)上記溶液にアルミナ粉末を添加して中和反応により
Al−Y系水酸化物とアルミナからなる混合粉体を作製
し、該混合粉体を300〜1000℃で仮焼きしてYA
G粒子が分散したアルミナ粉体を得る工程と、 3)上記アルミナ粉体に溶媒とバインダーを添加して造
粒体を作製し、所定形状に成形したあと1450〜17
00℃で焼成する工程 とからなることを特徴とする高強度、高硬度アルミナセ
ラミックスの製造方法。
2. A method for producing alumina ceramics in which YAG particles are dispersed both in the grain boundaries of a sintered body and in alumina particles. 1) Producing a solution in which Al ions and Y ions are uniformly mixed at an atomic level. And 2) adding alumina powder to the above solution to produce a mixed powder composed of an Al—Y-based hydroxide and alumina by a neutralization reaction, and calcining the mixed powder at 300 to 1000 ° C. YA
Obtaining an alumina powder in which G particles are dispersed; 3) adding a solvent and a binder to the alumina powder to form a granulated body;
And baking at 00 ° C .. A method for producing high-strength, high-hardness alumina ceramics.
JP14303198A 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof Expired - Fee Related JP4605829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14303198A JP4605829B2 (en) 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14303198A JP4605829B2 (en) 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11335159A true JPH11335159A (en) 1999-12-07
JP4605829B2 JP4605829B2 (en) 2011-01-05

Family

ID=15329308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14303198A Expired - Fee Related JP4605829B2 (en) 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4605829B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255634A (en) * 2001-02-23 2002-09-11 Kyocera Corp Free cutting high strength alumina sintered compact and corrosion resistant member using the sintered compact
JP2006182570A (en) * 2004-12-24 2006-07-13 Kyocera Corp Corrosion-resistant member, its production method, and member for semiconductor- or liquid crystal-producing apparatus
JP2006199562A (en) * 2005-01-24 2006-08-03 Kyocera Corp Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
JP2006315955A (en) * 2000-07-10 2006-11-24 Toshiba Ceramics Co Ltd Ceramic member
US8357262B2 (en) 2005-08-31 2013-01-22 Kyocera Corporation Corrosion-resistant member, treatment apparatus and sample treatment method using the member, and method for manufacture of corrosion-resistant member
WO2018003564A1 (en) * 2016-06-27 2018-01-04 日本特殊陶業株式会社 Ceramic sintered body
JP2020001990A (en) * 2018-07-02 2020-01-09 三菱マテリアル株式会社 cBN sintered body and cutting tool
JPWO2021107140A1 (en) * 2019-11-29 2021-06-03
CN116751035A (en) * 2023-05-31 2023-09-15 新化县新天地精细陶瓷有限公司 Alumina ceramic material for thermal quantity sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170081042A (en) * 2015-12-31 2017-07-11 주식회사 효성 Process for preparing transparent ceramic plates of phosphorescent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297263A (en) * 1987-05-28 1988-12-05 Nippon Denso Co Ltd Production of alumina ceramic
JPH09286660A (en) * 1996-04-25 1997-11-04 Kyocera Corp High strength alumina ceramic and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297263A (en) * 1987-05-28 1988-12-05 Nippon Denso Co Ltd Production of alumina ceramic
JPH09286660A (en) * 1996-04-25 1997-11-04 Kyocera Corp High strength alumina ceramic and its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315955A (en) * 2000-07-10 2006-11-24 Toshiba Ceramics Co Ltd Ceramic member
JP2002255634A (en) * 2001-02-23 2002-09-11 Kyocera Corp Free cutting high strength alumina sintered compact and corrosion resistant member using the sintered compact
JP2006182570A (en) * 2004-12-24 2006-07-13 Kyocera Corp Corrosion-resistant member, its production method, and member for semiconductor- or liquid crystal-producing apparatus
JP2006199562A (en) * 2005-01-24 2006-08-03 Kyocera Corp Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
US8357262B2 (en) 2005-08-31 2013-01-22 Kyocera Corporation Corrosion-resistant member, treatment apparatus and sample treatment method using the member, and method for manufacture of corrosion-resistant member
WO2018003564A1 (en) * 2016-06-27 2018-01-04 日本特殊陶業株式会社 Ceramic sintered body
JP2020001990A (en) * 2018-07-02 2020-01-09 三菱マテリアル株式会社 cBN sintered body and cutting tool
JPWO2021107140A1 (en) * 2019-11-29 2021-06-03
WO2021107140A1 (en) * 2019-11-29 2021-06-03 京セラ株式会社 Liquid contact member, method for producing same, member for analyzers, analyzer, sliding member and sliding device
CN116751035A (en) * 2023-05-31 2023-09-15 新化县新天地精细陶瓷有限公司 Alumina ceramic material for thermal quantity sensor

Also Published As

Publication number Publication date
JP4605829B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
CN104072140A (en) Dense composite material, method for manufacturing the same, joined body, and member for semiconductor manufacturing apparatuses
JP2001328869A (en) Abrasion-resistant member and method for producing the same
JPH07277814A (en) Alumina-based ceramic sintered compact
JPH08239270A (en) Superplastic silicon carbide sintered product and its production
US5518673A (en) Silicon nitride ceramic having high fatigue life and high toughness
JPH11335159A (en) High-strength, high-hardness alumina ceramics and its production
JPH08143400A (en) High strength and high toughness silicon nitride sintered compact
US6723672B1 (en) High-strength magnesia partially stabilized zirconia
JP6982000B2 (en) Oriented AlN sintered body and its manufacturing method
JPH05246760A (en) Zirconia-based composite ceramic sintered compact and its production
AU758013B2 (en) High-strength magnesia partially stabilized zirconia
JP2000344569A (en) High strength alumina-based sintered compact and its production
JPH06219840A (en) Silicon nitride sintered compact and its production
KITAYAMA et al. High hardness α-Si3N4 ceramics reinforced by rod-like β-Si3N4 seed particles
WO2018117162A1 (en) Transparent aln sintered body, and production method therefor
Hirata et al. Processing of high performance silicon carbide
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
Chen et al. Microstructure of (Y+ Sm)–α-sialon with a-sialon seeds
JP2002255634A (en) Free cutting high strength alumina sintered compact and corrosion resistant member using the sintered compact
JPH09286660A (en) High strength alumina ceramic and its production
JP2001526175A (en) Dense refractories with improved heat shock resistance
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP3121996B2 (en) Alumina sintered body
JPH08208317A (en) Alumina sintered body and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees