JP4605829B2 - High strength, high hardness alumina ceramics and manufacturing method thereof - Google Patents

High strength, high hardness alumina ceramics and manufacturing method thereof Download PDF

Info

Publication number
JP4605829B2
JP4605829B2 JP14303198A JP14303198A JP4605829B2 JP 4605829 B2 JP4605829 B2 JP 4605829B2 JP 14303198 A JP14303198 A JP 14303198A JP 14303198 A JP14303198 A JP 14303198A JP 4605829 B2 JP4605829 B2 JP 4605829B2
Authority
JP
Japan
Prior art keywords
alumina
particles
yag
powder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14303198A
Other languages
Japanese (ja)
Other versions
JPH11335159A (en
Inventor
岳志 前田
大樹 宮本
偉 稲村
秀樹 久米
義人 西川
泰三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKAPREFECTURAL GOVERNMENT
Kyocera Corp
Original Assignee
OSAKAPREFECTURAL GOVERNMENT
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKAPREFECTURAL GOVERNMENT, Kyocera Corp filed Critical OSAKAPREFECTURAL GOVERNMENT
Priority to JP14303198A priority Critical patent/JP4605829B2/en
Publication of JPH11335159A publication Critical patent/JPH11335159A/en
Application granted granted Critical
Publication of JP4605829B2 publication Critical patent/JP4605829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高強度と高硬度を兼ね備えたアルミナセラミックスとその製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、セラミック部材の中でも耐摩耗性、耐熱性、耐薬品性等の点で優れた特性を有するとともに、圧倒的に安価でかつ工業的に有用な材料としてアルミナセラミックスが使用されており、例えば、ディスクバルブ、ベーンポンプのベーン、プランジャーポンプのプランジャーロッド等の摺動部材や各種粉砕部材、さらには切削、研磨工具など様々な用途で使用されている。
【0003】
しかしながら、アルミナセラミックスは上述のような優れた特性を有する反面ジルコニアセラミックスや窒化珪素質セラミックスなどの他のセラミックスに比べて抗折強度が低いことから、高い応力のかかる部分に安定して使用することができなかった。
【0004】
そこで、近年、アルミナセラミックスの抗折強度を向上させるために、例えば、炭化珪素やジルコニアなどのアルミナとは異種の粒子をアルミナ粒子内および粒界に分散させたアルミナセラミックスが提案されている(特公昭59−24751号、特公昭59−25748号公報参照)。
【0005】
この種のアルミナセラミックスは、主体をなすアルミナ粉末に、分散させる炭化珪素粉末やジルコニア粉末を添加して混練乾燥させることにより造粒体を作製し、該造粒体を所定形状に形成したあと1400〜1750℃の温度で焼成することにより形成したものであり、炭化珪素やジルコニアがアルミナ粒子内および粒界に介在したものであった。
【0006】
このように炭化珪素やジルコニアを含有させることにより強度が向上する理由としては、粒子内に存在している炭化珪素が内部応力によりクラックの進展を偏向させたり、粒界に存在している炭化珪素が粒界の進展を直接阻止したり、あるいは、ジルコニア粒子の応力誘起変態によりクラックの進展エネルギーが吸収されるためであると考えられている。
【0007】
ところが、ジルコニア原料はアルミナ原料に比べて高価な原料であり、前述したアルミナセラミックスのように、ジルコニアを焼結体の粒界やアルミナ粒子内に介在させたものでは、アルミナセラミックスの強度および硬度を高めるために添加するジルコニア量が多くなり、高価な材料となってしまうといった課題があった。また、炭化珪素を分散粒子としたアルミナセラミックスはホットプレスなどの加圧焼結でないと緻密化しないため、常圧焼結で高強度、高硬度を有するアルミナセラミックスを製作することは困難であった。
【0008】
このように、ジルコニアに代わる安価な分散粒子ならびに、高強度、高硬度を維持しつつ分散量を減少させることができる製法が望まれていた。
【0009】
【発明の目的】
本発明は分散粒子をYAG粒子とし、少量の添加で高硬度でかつ高強度を兼ね備えたアルミナセラミックスとその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
そこで、本件発明者らは種々研究を重ねたところ、AlイオンとYイオンとを原子レベルで均一に混合した溶液にアルミナ粉末を添加してAl−Y系水酸化物とアルミナからなる混合粉体を得たあと、該混合粉体を仮焼きすることでYAG粒子が分散したアルミナ粉体を作製し、このアルミナ粉体を通常のセラミック製造方法でもって製造することによりYAG粒子の含有量を少なくしてもアルミナセラミックスの硬度と強度を向上させることができることを見出したものである。
【0011】
即ち、本発明は上記課題に鑑み、YAG粒子を1.0〜12.0重量%含有し、焼結助剤を1重量%以下(0重量%を含む)含有し、残部がアルミナからなり、上記YAG粒子の平均結晶粒子径を0.06〜1.21μmでかつアルミナの平均結晶粒子径を0.8〜4.0μmとするとともに、上記YAG粒子を焼結体中の粒界及びアルミナ粒子内の双方に分散させて高強度、高硬度を有するアルミナセラミックスを構成したものである。
【0012】
また、本発明は上記高強度、高硬度を有するアルミナセラミックスを得るために、アルミニウム塩とイットリウム塩とを水に溶解させて、Alイオン及びYイオンを原子レベルで均一に混合した溶液を作製する工程と、該溶液にアルミナの粉末を添加し、アンモニアを加えて中和反応させることによりAl−Y系水酸化物とアルミナからなる混合粉体を作製し、該混合粉体を300〜1000℃で仮焼きした後に粉砕することでYAG粒子が分散したアルミナ粉体を得る工程と、このアルミナ粉体に溶媒とバインダーを添加して造粒体を作製し、所定形状に成形した1450〜1700℃の温度で焼成する工程とを有する製造方法としたものである。
【0013】
【発明の実施の形態】
本発明のアルミナセラミックスは、図1に組織構造を示す如く、安価でかつ微細なYAG粒子をアルミナセラミックスの粒界だけでなくアルミナ粒子内にも分散させたことを特徴とする。
【0014】
即ち、セラミックスの破壊に伴う、クラックの進展を粒界に存在するYAG粒子により阻止するとともに、アルミナ粒子内に存在するYAG粒子によりクラックの進展を偏向させることができる。しかも、後述する如くYAG原料を溶液状態でマトリックスのアルミナ粉末と混合するため、微細かつ均一な分散が可能となり、YAG粒子の分散量を少量としても、クラックの進展を阻止する効果を十分に発揮させることができる。また、YAG粒子は焼成時におけるアルミナの粒成長を抑する作用があることから緻密化することができ、高強度でかつ高硬度を有する安価なアルミナセラミクスを得ることができる。
【0015】
このようなアルミナセラミックスを構成するには、焼結体の粒界及びアルミナ粒子内に分散させるYAG粒子の平均粒子径を0.06〜1.21μmとするとともに、アルミナの平均結晶粒子径を0.8〜4.0μmとすることが必要である。
【0016】
これはYAG粒子の平均粒子径が1.21μmより大きくなるとアルミナの結晶粒子径に対する割合が大きくなり過ぎるためにアルミナそのものの特性を劣化させ、アルミナセラミックスの強度及び硬度を大幅に低下させてしまうからであり、逆にYAG粒子の平均粒子径が0.06μm未満とすることは製造上難しいからである。
【0017】
また、アルミナの平均結晶粒子径が4.0μmより大きくなると焼結体中に微細なボイドが多数介在することになるために強度及び硬度を向上させることができず、逆に、YAG粒子を分散させたアルミナの平均結晶粒子径を0.8μm未満とすることは製造上難しいからである。
【0018】
なお、より好ましいYAG粒子の平均粒子径としては0.06〜0.5μmが良く、また、アルミナの平均結晶粒子径としては0.8〜3.0μmが良い。
【0019】
さらに、アルミナセラミックスの強度及び硬度を向上させるためにはYAG粒子の含有量も重要な要件となる。
【0020】
即ち、YAG粒子の含有量が1.0重量%未満では焼結時におけるアルミナ粒子の粒成長を充分に抑制することができないために強度及び硬度を向上させることができず、YAG粒子の含有量が12.0重量%より多くなるとアルミナ粒子内に多量のYAG粒子が分散することになるため、アルミナそのものの特性を劣化させ、アルミナセラミックスの強度及び硬度を低下させてしまうからである。
【0021】
その為、アルミナセラミックスに含有させるYAG粒子の含有量は1.0〜12.0重量%の範囲が良く、好ましくは3〜10重量%の範囲で含有させ、残部は実質的にアルミナからなるものが良い。
【0022】
なお、残部が実質的にアルミナからなるとは、YAG以外は殆どがアルミナから構成されるいることを指し、アルミナセラミックスの焼結性を助けるためにMgO、CaO、SiO2 等の焼結助剤を若干含有していても良いが、これらの焼結助剤は多くとも1重量%以下である。
【0023】
かくして、本発明に係るアルミナセラミックスはビッカース硬度(Hv1.0)が1700kg/mm2 以上と、本発明のアルミナセラミックスと同程度のアルミナ含有量を有する従来のアルミナセラミックスに比べて硬度を高めることができるとともに、抗折強度が50kg/mm2 以上と高い機械的強度を兼ね備えたものとすることができる。
【0024】
次に、本発明に係るアルミナセラミックスの製造方法について説明する。
【0025】
図2は本発明に係るアルミナセラミックスの製造プロセスを示すフローチャート図である。まず、AlイオンとYイオンを原子レベルで均一に混合した溶液を作製する。そして、この溶液にアルミナ粉末を添加して中和反応させることによりAl−Y系水酸化物とアルミナからなる混合粉体を得たあと、この混合粉体を300〜1000℃で仮焼きすることによりYAG粒子を分散させたアルミナ粉体を製作する。
【0026】
具体的には水溶性のアルミニウム塩とイットリウム塩とを水に溶解させて溶液を作製し、この溶液にアルミナ粉末を添加してアンモニアでもって中和反応させることにより、Al−Y系水酸化物とアルミナからなる混合粉体を作製し、これを300〜1000℃で仮焼きすることによりYAG粒子が分散したアルミナ粉体を形成し、1.5μm以下に粉砕する。
【0027】
ここで、アルミナ粉体中にYAG粒子を分散させることができるのは、図3にアルミナ−イットリア系の平衡状態図を示すように、室温では3Y2 3 ・5Al2 3 (YAG:イットリウム・アルミニウム・ガーネット)と2Y2 3 ・Al2 3 の2種類の化合物が存在し、3Y2 3 ・5Al2 3 (YAG)はアルミナとイットリアのモル比がAl2 3 /Y2 3 =62.5/37.5である時、2Y2 3 ・Al2 3 はアルミナとイットリアのモル比がAl2 3 /Y2 3 =33.3/66.7である時に析出する。
【0028】
そして、本発明の製法によれば、AlイオンとYイオンを原子レベルで均一に混合した溶液にさらにアルミナ粉末を添加してあることからアルミナ量が多くなり、アルミナ粒子に分散する化合物が3Y2 3 ・5Al2 3 (YAG)として析出するためと考えられる。
【0029】
次に、得られたアルミナ粉体に溶媒及びバインダーを添加して混練乾燥することにより造粒体を作製し、この造粒体を一軸加圧成形法、等加圧成形法、泥漿鋳込法、射出成形法など通常のセラミックス成形法により所定形状に成形したあと、1450〜1700℃、好ましくは1500〜1650℃の大気中など酸化雰囲気中あるいは水素や窒素雰囲気中にて焼成することにより得ることができる。
【0030】
なお、焼成温度を1450〜1700℃とするのは、焼成温度が1450℃未満ではアルミナ粉体の焼結性が不充分であるために緻密化することができず、また、焼成温度が1700℃より高くなるとアルミナ粒子が異常粒成長することから、いずれにおいてもアルミナセラミックスの強度及び硬度を向上させることができないからである。
【0031】
このようにAlイオンとYイオンを原子レベルで均一に混合した溶液にアルミ粉末を添加してAl−Y系水酸化物とアルミナからなる混合粉体を作製し、この混合粉体を仮焼きして原料粉末を作製するようにしたことから、YAG粒子の含有量が少量にもかかわらず、高強度でかつ高硬度を兼ね備えたアルミナセラミックスを得ることができる。
【0032】
(実施例)
以下、本発明の実施例について説明する。
【0033】
AlCl3 ・6H2 Oを9.126重量%、YCl3 ・6H2 Oを6.879重量%の割合で水に混合して溶液を作製し、この溶液中にアルミナ粉末を83.995重量%添加混合したあとアンモニア(28%)を加えて中和反応させることによりAl−Y系水酸化物とアルミナからなる混合粉体を作製した。そして、この混合粉体を乾燥させたあとに900℃の温度で仮焼きして粗粉砕することにより二次原料としてYAG粒子を分散させたアルミナ粉体を作製した。なお、分散粒子については、X線回折法によりYAG粒子であることを確認した。
【0034】
次に、得られたアルミナ粉体に対してバインダーと溶媒として水を添加して混練乾燥させることにより造粒体を作製し、該造粒体を型内に充填して冷間静水圧成形法(CIP)により円柱状に成形したあと、この成形体を1600℃の大気雰囲気中にて焼成することにより、YAG粒子を5.0重量%含有したアルミナセラミックスを得た。
【0035】
そして、このアルミナセラミックスに研削加工を施して角柱状の試料を製作し、SEM写真を撮影して観察したところ、YAG粒子が焼結体の粒界及びアルミナ粒子内の双方に分散していた。また、SEM写真よりアルミナ粒子及びYAG粒子の平均結晶粒子径を測定したところ、アルミナの平均結晶粒子径は2.0μm、YAG粒子の平均結晶粒子径は0.5μmであった。なお、アルミナ粒子及びYAG粒子の平均結晶粒子径は、画像解析装置(ルーゼックス)を用いて測定した。
【0036】
さらに、このアルミナセラミックスの硬度をJIS R 1610により、抗折強度をJIS R 1601によりそれぞれ測定したところ、ビッカース硬度(Hv1.0)は1778kg/mm2 、抗折強度は64.3kg/mm2 を有していた。
【0037】
(実験例1)
そこで、アルミナ含有量が99.5%であるアルミナセラミックスを基準試料として用意し、機械的特性について実施例のアルミナセラミックスとの比較測定を行った。
【0038】
なお、本実験では各試料を3mm×4mm×40mmの角柱体とし、見掛密度はJIS C 2141のアルキメデス法に準拠し、破壊靱性値の測定はIF法により30kgfの荷重をかけた状態で15秒間保持して測定した。
【0039】
また、ビッカース硬度の測定については前述したようにJIS R 1610に準拠し、ダイヤモンド圧子の試験荷重を1000gfで5秒間保持して測定し、抗折強度はJIS R 1601に準拠し、スパン幅30mm、クロスヘッドスピード0.5mm/minの条件にて行った。
【0040】
それぞれの結果を表1に示す。
この結果、表1より判るように、実施例におけるアルミナセラミックスは基準試料と比較してアルミナ含有量が少ないものの、YAG粒子の分散によって抗折強度およびビッカース硬度を大幅に向上させることができた。しかも、アルミナの粒成長を抑制することができ、基準試料に対して見掛密度を高めることもできた。
【0041】
【表1】

Figure 0004605829
【0042】
(実験例2)
次に、YAG粒子の含有量を異ならせたアルミナセラミックスを実施例と同様の製法により用意し、各々の抗折強度とビッカース硬度について測定を行い、抗折強度が50kg/mm2 以上、ビッカース硬度が1700kg/mm2 以上を有するものを優れたものとして評価した。
【0043】
それぞれの結果は表2に示す通りである。
この結果、試料No.1では、YAG粒子を全く含有していないことから抗折強度が35kg/mm2 、ビッカース硬度が1640kg/mm2 と低かった。
【0044】
また、試料No.7,8は、YAG粒子の含有量が12.0重量%より多いために、試料No.8では抗折強度50kg/mm以上、ビッカース硬度1700kg/mm以上の双方の特性を満足することができず、試料No.7ではビッカース硬度1700kg/mm以上を満足することができなかった。
【0045】
これに対し、試料No.2〜6は、YAG粒子の含有量が1.0〜12.0重量%の範囲にあるため、抗折強度を50kg/mm以上、ビッカース硬度を1700kg/mm以上とすることができた。特に、YAG粒子の含有量が3.0〜10重量%の範囲にある試料No.3〜5では、抗折強度を60kg/mm以上、ビッカース硬度を1750kg/mm以上とすることができ、優れた機械的特性が得られることが判る。
【0046】
【表2】
Figure 0004605829
【0047】
(実験例3)
次に、YAG粒子の含有量を5重量%としたアルミナセラミックスにおいて、アルミナ粒子およびYAG粒子の平均結晶粒子径をそれぞれ異ならせたものを実施例と同様の製法にて用意し、各々の抗折強度及びビッカース硬度について測定を行った。
【0048】
それぞれの結果は表3に示す通りである。この結果、YAG粒子及びアルミナ粒子の平均結晶粒子径が小さいほど、強度及び硬度を高められることが判る。ただし、試料No.14のようにYAG粒子の平均結晶粒子径が1.21μmより大きく、また、アルミナ粒子の平均結晶粒子径が4.0μmより大きくなると、抗折強度50kg/mm以上、ビッカース硬度1700kg/mm以上の双方の特性を満足することができず、また、試料No.13のようにアルミナ粒子の平均結晶粒子径が4.0μmより大きくなっても、抗折強度50kg/mm以上、ビッカース硬度1700kg/mm以上の双方の特性を満足することができなかった。
【0049】
これに対し、YAG粒子の平均結晶粒子径が1.21μm以下でかつアルミナ粒子の平均結晶粒子径が0.8μm以上4.0μm以下である試料No.9〜12のものは、アルミナセラミックスの抗折強度を50kg/mm以上、ビッカース硬度を1700kg/mm以上とすることができた。特に試料No.9〜11のように、YAG粒子の平均結晶粒子径が0.06μm以でかつアルミナ粒子の平均結晶粒子径が3.0μm以下のものは、アルミナセラミックスの抗折強度を60kg/mm以上、ビッカース硬度を1750kg/mm以上とでき、優れていた。
【0050】
このことから、YAG粒子の平均結晶粒子径は0.06〜1.21μm、アルミナ粒子の平均結晶粒子径は0.8〜4.0μmの範囲が良く、より好ましくはYAG粒子の平均結晶粒子径が0.06〜0.5μm、アルミナ粒子の平均結晶粒子径が0.8〜3.0μmの範囲にあるものが良いことが判る。
【0051】
【表3】
Figure 0004605829
【0052】
【発明の効果】
以上のように、本発明によれば、YAG粒子を1.0〜12.0重量%の範囲で含有し、焼結助剤を1重量%以下(0重量%を含む)含有し、残部がアルミナからなり、上記YAG粒子の平均結晶粒子径を0.06〜1.21μmでかつアルミナの平均結晶粒子径を0.8〜4.0μmとするとともに、上記YAG粒子を焼結体の粒界及びアルミ結晶中の双方に分散させてアルミナセラミックスを構成したことにより、安価に高硬度でかつ高強度を有するアルミナセラミックスを得ることができる。
【0053】
また、本発明は、アルミニウム塩とイットリウム塩とを水に溶解させて、AlイオンとYイオンを原子レベルで均一に混合した溶液にアルミナ粉末を添加し、アンモニアを加えて中和反応させることによりAl−Y系水酸化物とアルミナからなる混合粉体を作製し、この混合粉体を300〜1000℃で仮焼きした後に粉砕してYAG粒子が分散したアルミナ粉体を作製し、このアルミナ粉体に溶媒とバインダーを添加して造粒体を作製し、所定形状に成形した1450〜1700℃の温度で焼成してアルミナセラミックスを製造するようにしたことから、焼結体の粒界及びアルミナ粒子内に少量のYAG粒子をほぼ均一に分散させることができ、高硬度でかつ高強度を兼ね備えたアルミナセラミックスを容易に製造することができる。
【図面の簡単な説明】
【図1】本発明に係るアルミナセラミックスの組織構造を示す模式図である。
【図2】本発明に係るアルミナセラミックスの製造プロセスを示すフローチャート図である。
【図3】アルミナ−イットリア系の平衡状態図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alumina ceramic having both high strength and high hardness and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, among ceramic members, it has excellent characteristics in terms of wear resistance, heat resistance, chemical resistance, etc., and alumina ceramics are used as an overwhelmingly inexpensive and industrially useful material, for example, It is used in various applications such as sliding members such as disc valves, vanes of vane pumps, plunger rods of plunger pumps, various grinding members, and cutting and polishing tools.
[0003]
However, alumina ceramics have excellent characteristics as described above, but have low bending strength compared to other ceramics such as zirconia ceramics and silicon nitride ceramics, so they should be used stably in areas where high stress is applied. I could not.
[0004]
Therefore, in recent years, in order to improve the bending strength of alumina ceramics, for example, alumina ceramics in which particles different from alumina such as silicon carbide and zirconia are dispersed in alumina particles and at grain boundaries have been proposed (special features). No. 59-24751 and Japanese Examined Publication No. 59-25748).
[0005]
This type of alumina ceramic is prepared by adding a silicon carbide powder or zirconia powder to be dispersed to an alumina powder as a main component and kneading and drying the granulated body. After forming the granulated body into a predetermined shape, 1400 It was formed by firing at a temperature of ˜1750 ° C., and silicon carbide and zirconia were interposed in the alumina particles and in the grain boundaries.
[0006]
The reason why the strength is improved by containing silicon carbide or zirconia in this way is that silicon carbide existing in the grains deflects the progress of cracks due to internal stress, or silicon carbide existing in grain boundaries. It is thought that this is because the growth energy of cracks is absorbed directly by the prevention of grain boundary growth or by stress-induced transformation of zirconia particles.
[0007]
However, the zirconia raw material is an expensive raw material compared to the alumina raw material, and when the zirconia is interposed between the grain boundaries of the sintered body and the alumina particles as in the above-mentioned alumina ceramic, the strength and hardness of the alumina ceramic is low. There was a problem that the amount of zirconia added for the purpose of increase was increased, resulting in an expensive material. In addition, alumina ceramics with dispersed silicon carbide particles are not densified unless pressure sintering such as hot pressing, so it was difficult to produce alumina ceramics with high strength and high hardness by atmospheric pressure sintering. .
[0008]
Thus, there has been a demand for inexpensive dispersed particles that can replace zirconia, and a production method that can reduce the amount of dispersion while maintaining high strength and high hardness.
[0009]
OBJECT OF THE INVENTION
An object of the present invention is to provide alumina ceramics having high hardness and high strength by adding a small amount of dispersed particles as YAG particles and a method for producing the same.
[0010]
[Means for Solving the Problems]
Therefore, the present inventors have made various studies, and as a result, alumina powder is added to a solution in which Al ions and Y ions are uniformly mixed at the atomic level, and a mixed powder composed of Al-Y hydroxide and alumina. After that, the mixed powder is calcined to produce alumina powder in which YAG particles are dispersed, and this alumina powder is produced by a normal ceramic production method to reduce the content of YAG particles. Even so, it has been found that the hardness and strength of alumina ceramics can be improved.
[0011]
That is, in view of the above problems, the present invention contains 1.0 to 12.0% by weight of YAG particles, 1% by weight or less (including 0% by weight) of a sintering aid, and the balance is made of alumina. The average crystal particle diameter of the YAG particles is 0.06 to 1.21 μm, the average crystal particle diameter of alumina is 0.8 to 4.0 μm, and the YAG particles are separated from the grain boundaries and alumina particles in the sintered body. Alumina ceramics having a high strength and a high hardness are formed by dispersing both of them.
[0012]
In addition, in order to obtain the above-mentioned high strength and high hardness alumina ceramics, the present invention dissolves aluminum salt and yttrium salt in water to produce a solution in which Al ions and Y ions are uniformly mixed at the atomic level. A mixed powder composed of Al-Y hydroxide and alumina is prepared by adding an alumina powder to the solution and adding ammonia to the solution to cause a neutralization reaction; a step of YAG particles obtain alumina powder dispersed in in grinding after calcining, after this alumina powder with addition of solvent and a binder to prepare a granular material was molded into a predetermined shape from 1450 to 1700 ℃ is obtained by a production method having a step of firing at a temperature of.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the alumina ceramic of the present invention is characterized in that inexpensive and fine YAG particles are dispersed not only in the grain boundaries of alumina ceramics but also in the alumina particles.
[0014]
That is, it is possible to prevent the progress of cracks accompanying the destruction of ceramics by the YAG particles present at the grain boundaries and to deflect the progress of cracks by the YAG particles present in the alumina particles. Moreover, since the YAG raw material is mixed with the matrix alumina powder in a solution state as will be described later, fine and uniform dispersion is possible, and even if the amount of YAG particles dispersed is small, the effect of preventing the progress of cracks is fully exhibited. Can be made. In addition, YAG particles can be densified because they have an action of suppressing the grain growth of alumina during firing, and an inexpensive alumina ceramic having high strength and high hardness can be obtained.
[0015]
In order to constitute such an alumina ceramic, the average particle size of YAG particles dispersed in the grain boundaries and alumina particles of the sintered body is set to 0.06 to 1.21 μm, and the average crystal particle size of alumina is set to It is necessary to set it as 0.8-4.0 micrometers.
[0016]
This is because when the average particle diameter of YAG particles is larger than 1.21 μm, the ratio of alumina to the crystal particle diameter becomes too large, so that the characteristics of alumina itself deteriorate and the strength and hardness of alumina ceramics are greatly reduced. This is because, on the contrary, it is difficult in manufacturing that the average particle diameter of the YAG particles is less than 0.06 μm.
[0017]
Further, when the average crystal particle diameter of alumina is larger than 4.0 μm, a large number of fine voids are present in the sintered body, so that the strength and hardness cannot be improved. This is because it is difficult to produce an average crystal particle diameter of dispersed alumina of less than 0.8 μm.
[0018]
A more preferable average particle diameter of YAG particles is 0.06 to 0.5 μm, and an average crystal particle diameter of alumina is preferably 0.8 to 3.0 μm.
[0019]
Furthermore, the content of YAG particles is an important requirement for improving the strength and hardness of alumina ceramics.
[0020]
That is, if the content of YAG particles is less than 1.0 % by weight, the grain growth of alumina particles during sintering cannot be sufficiently suppressed, so the strength and hardness cannot be improved, and the content of YAG particles This is because if the amount exceeds 12.0 % by weight, a large amount of YAG particles are dispersed in the alumina particles, so that the characteristics of the alumina itself are deteriorated and the strength and hardness of the alumina ceramics are lowered.
[0021]
Therefore, the content of YAG particles to be contained in the alumina ceramic is preferably in the range of 1.0 to 12.0 % by weight, preferably in the range of 3 to 10% by weight, with the balance being substantially made of alumina. Is good.
[0022]
In addition, that the balance is substantially made of alumina means that most of the material other than YAG is made of alumina, and a sintering aid such as MgO, CaO, or SiO 2 is added to assist the sintering of alumina ceramics. Although it may be contained slightly, these sintering aids are at most 1% by weight.
[0023]
Thus, the alumina ceramic according to the present invention has a Vickers hardness (Hv1.0) of 1700 kg / mm 2 or more, which can increase the hardness compared to the conventional alumina ceramic having the same alumina content as the alumina ceramic of the present invention. In addition, the bending strength can be 50 kg / mm 2 or more and high mechanical strength.
[0024]
Next, a method for producing the alumina ceramic according to the present invention will be described.
[0025]
FIG. 2 is a flowchart showing the production process of alumina ceramics according to the present invention. First, a solution in which Al ions and Y ions are uniformly mixed at an atomic level is prepared. And after obtaining the mixed powder which consists of an Al-Y system hydroxide and alumina by adding alumina powder to this solution and making it neutralize, this mixed powder is calcined at 300-1000 ° C. Alumina powder in which YAG particles are dispersed is manufactured.
[0026]
Specifically, a water-soluble aluminum salt and an yttrium salt are dissolved in water to prepare a solution, and alumina powder is added to this solution and neutralized with ammonia to thereby obtain an Al-Y hydroxide. A mixed powder consisting of alumina and alumina is prepared, and calcined at 300 to 1000 ° C. to form alumina powder in which YAG particles are dispersed, and pulverized to 1.5 μm or less.
[0027]
Here, the YAG particles can be dispersed in the alumina powder because, as shown in FIG. 3, the equilibrium state diagram of the alumina-yttria system is 3Y 2 O 3 .5Al 2 O 3 (YAG: yttrium at room temperature). aluminum garnet) and two compounds of 2Y 2 O 3 · Al 2 O 3 is present, 3Y 2 O 3 · 5Al 2 O 3 (YAG) is the molar ratio of alumina and yttria Al 2 O 3 / Y When 2 O 3 = 62.5 / 37.5, 2Y 2 O 3 .Al 2 O 3 has a molar ratio of alumina to yttria of Al 2 O 3 / Y 2 O 3 = 33.3 / 66.7. Precipitates at some point.
[0028]
According to the production method of the present invention, since the alumina powder is further added to the solution in which Al ions and Y ions are uniformly mixed at the atomic level, the amount of alumina increases, and the compound dispersed in the alumina particles becomes 3Y 2. O 3 · 5Al 2 O 3 is considered to precipitate as (YAG).
[0029]
Next, a granulated body is prepared by adding a solvent and a binder to the obtained alumina powder and kneading and drying, and this granulated body is uniaxial pressure molding method, equal pressure molding method, slurry casting method After being molded into a predetermined shape by an ordinary ceramic molding method such as injection molding, it is obtained by firing in an oxidizing atmosphere such as air at 1450 to 1700 ° C., preferably 1500 to 1650 ° C., or in a hydrogen or nitrogen atmosphere. Can do.
[0030]
Note that the firing temperature is 1450 to 1700 ° C. If the firing temperature is less than 1450 ° C., the alumina powder cannot be densified due to insufficient sinterability, and the firing temperature is 1700 ° C. This is because the alumina particles grow abnormally at higher temperatures, so that the strength and hardness of the alumina ceramics cannot be improved in any case.
[0031]
In this way, aluminum powder is added to the solution in which Al ions and Y ions are uniformly mixed at the atomic level to produce a mixed powder composed of Al-Y hydroxide and alumina, and this mixed powder is calcined. Thus, the alumina powder having high strength and high hardness can be obtained although the content of the YAG particles is small.
[0032]
(Example)
Examples of the present invention will be described below.
[0033]
AlCl 3 · 6H 2 O was mixed with water at a ratio of 9.126% by weight and YCl 3 · 6H 2 O at a rate of 6.879% by weight to prepare a solution, and 83.995% by weight of alumina powder was added to this solution. After the addition and mixing, ammonia (28%) was added to cause a neutralization reaction, thereby preparing a mixed powder composed of Al—Y hydroxide and alumina. And after drying this mixed powder, it calcined at the temperature of 900 degreeC and coarsely pulverized, and thereby the alumina powder which disperse | distributed YAG particle | grains as a secondary raw material was produced. The dispersed particles were confirmed to be YAG particles by X-ray diffraction.
[0034]
Next, a granulated body is prepared by adding water as a binder and a solvent to the obtained alumina powder and kneading and drying, and the granulated body is filled in a mold and subjected to a cold isostatic pressing method. After being formed into a cylindrical shape by (CIP), this molded body was fired in an air atmosphere at 1600 ° C. to obtain alumina ceramics containing 5.0% by weight of YAG particles.
[0035]
The alumina ceramics were ground to produce a prismatic sample, and SEM photographs were taken and observed. As a result, YAG particles were dispersed both in the grain boundaries of the sintered body and in the alumina particles. Further, when the average crystal particle size of the alumina particles and the YAG particles was measured from the SEM photograph, the average crystal particle size of alumina was 2.0 μm, and the average crystal particle size of the YAG particles was 0.5 μm. In addition, the average crystal particle diameter of alumina particles and YAG particles was measured using an image analyzer (Luzex).
[0036]
Moreover, this alumina ceramics hardness JIS R 1610, where the bending strength were measured by JIS R 1601, the Vickers hardness (HV1.0) is 1778kg / mm 2, bending strength of 64.3kg / mm 2 Had.
[0037]
(Experimental example 1)
Therefore, alumina ceramics having an alumina content of 99.5% were prepared as reference samples, and the mechanical characteristics were compared with those of the alumina ceramics of the examples.
[0038]
In this experiment, each sample was a prismatic body of 3 mm × 4 mm × 40 mm, the apparent density was in accordance with the Archimedes method of JIS C 2141, and the fracture toughness value was measured with a load of 30 kgf applied by the IF method. Measured by holding for 2 seconds.
[0039]
As described above, the measurement of the Vickers hardness is based on JIS R 1610, the test load of the diamond indenter is measured by holding at 1000 gf for 5 seconds, the bending strength is based on JIS R 1601, the span width is 30 mm, The cross head speed was 0.5 mm / min.
[0040]
The results are shown in Table 1.
As a result, as can be seen from Table 1, although the alumina ceramics in the examples had less alumina content than the reference sample, the bending strength and Vickers hardness could be greatly improved by the dispersion of YAG particles. Moreover, the grain growth of alumina can be suppressed, and the apparent density can be increased with respect to the reference sample.
[0041]
[Table 1]
Figure 0004605829
[0042]
(Experimental example 2)
Next, alumina ceramics with different YAG particle contents were prepared by the same manufacturing method as in the examples, and the bending strength and Vickers hardness were measured. The bending strength was 50 kg / mm 2 or more, and the Vickers hardness was measured. Having 1700 kg / mm 2 or more was evaluated as excellent.
[0043]
Each result is as shown in Table 2.
As a result, sample no. In 1, the bending strength since it does not contain any YAG particles 35 kg / mm 2, the Vickers hardness was as low as 1640kg / mm 2.
[0044]
Sample No. Samples Nos. 7 and 8 have a YAG particle content of more than 12.0 % by weight. No. 8 cannot satisfy the characteristics of bending strength of 50 kg / mm 2 or more and Vickers hardness of 1700 kg / mm 2 or more. In No. 7, Vickers hardness of 1700 kg / mm 2 or more could not be satisfied.
[0045]
In contrast, sample no. In Nos. 2 to 6, since the YAG particle content is in the range of 1.0 to 12.0 % by weight, the bending strength can be 50 kg / mm 2 or more and the Vickers hardness can be 1700 kg / mm 2 or more. . In particular, Sample No. with YAG particle content in the range of 3.0 to 10% by weight. In 3-5, it can be understood that the bending strength can be 60 kg / mm 2 or more, the Vickers hardness can be 1750 kg / mm 2 or more, and excellent mechanical properties can be obtained.
[0046]
[Table 2]
Figure 0004605829
[0047]
(Experimental example 3)
Next, alumina ceramics having a YAG particle content of 5% by weight, with different average crystal particle diameters of alumina particles and YAG particles, were prepared by the same manufacturing method as in the examples. Measurements were made for strength and Vickers hardness.
[0048]
Each result is as shown in Table 3. As a result, it can be seen that the smaller the average crystal particle size of the YAG particles and the alumina particles, the higher the strength and hardness. However, Sample No. 14, when the average crystal particle size of YAG particles is larger than 1.21 μm and the average crystal particle size of alumina particles is larger than 4.0 μm, the bending strength is 50 kg / mm 2 or more, and the Vickers hardness is 1700 kg / Both of the characteristics of mm 2 or more cannot be satisfied. As shown in FIG. 13, even when the average crystal particle diameter of the alumina particles was larger than 4.0 μm, it was not possible to satisfy both the properties of bending strength of 50 kg / mm 2 or more and Vickers hardness of 1700 kg / mm 2 or more. .
[0049]
On the other hand, sample Nos. 1 and 2 having an average crystal particle diameter of YAG particles of 1.21 μm or less and an alumina crystal having an average crystal particle diameter of 0.8 μm to 4.0 μm. 9 to 12 were able to make the bending strength of alumina ceramics 50 kg / mm 2 or more and Vickers hardness 1700 kg / mm 2 or more. In particular, sample no. As in 9-11, the mean crystal grain size of the average crystal grain size of 0.06 [mu] m or more on a and alumina particles of YAG particles that following 3.0μm is the bending strength of the alumina ceramics 60 kg / mm 2 As described above, the Vickers hardness was 1750 kg / mm 2 or more, which was excellent.
[0050]
Therefore, the average crystal particle size of YAG particles is preferably 0.06 to 1.21 μm, and the average crystal particle size of alumina particles is preferably 0.8 to 4.0 μm, more preferably the average crystal of YAG particles. It can be seen that a particle diameter of 0.06 to 0.5 μm and an average crystal particle diameter of alumina particles in the range of 0.8 to 3.0 μm are preferable.
[0051]
[Table 3]
Figure 0004605829
[0052]
【The invention's effect】
As described above, according to the present invention, the YAG particles are contained in the range of 1.0 to 12.0% by weight, the sintering aid is contained in an amount of 1% by weight or less (including 0% by weight), and the balance is The YAG particles have an average crystal particle size of 0.06 to 1.21 μm and an alumina average crystal particle size of 0.8 to 4.0 μm. In addition, alumina ceramics having a high hardness and high strength can be obtained at low cost by constituting alumina ceramics by dispersing them both in the aluminum crystal.
[0053]
The present invention also Rukoto an aluminum salt and yttrium salt is dissolved in water, the alumina powder was added to the homogeneously mixed solution of Al ions and Y ions with atomic level, by neutralization reaction by the addition of ammonia To produce a mixed powder composed of Al-Y hydroxide and alumina , calcined at 300 to 1000 ° C. and then pulverized to produce an alumina powder in which YAG particles are dispersed. since the addition of solvent and a binder to an alumina powder to prepare a granular material, and so as to produce a calcined to alumina ceramics at a temperature of 1450-1700 ° C. after molding into a predetermined shape, grain of the sintered body A small amount of YAG particles can be dispersed almost uniformly in the boundary and alumina particles, and alumina ceramics having high hardness and high strength can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the structure of alumina ceramics according to the present invention.
FIG. 2 is a flowchart showing a production process of alumina ceramics according to the present invention.
FIG. 3 is an equilibrium diagram of an alumina-yttria system.

Claims (2)

YAG粒子を1.0〜12.0重量%含有し、焼結助剤を1重量%以下(0重量%を含む)含有し、残部がアルミナからなり、上記YAG粒子の平均結晶粒子径が0.06〜1.21μmでかつアルミナの平均結晶粒子径が0.8〜4.0μmの範囲にあるとともに、上記YAG粒子が焼結体の粒界及びアルミナ粒子内の双方に分散していることを特徴とする高強度、高硬度アルミナセラミックス。YAG particles are contained in an amount of 1.0 to 12.0% by weight, a sintering aid is contained in an amount of 1% by weight or less (including 0% by weight) , the balance is made of alumina, and the average crystal particle size of the YAG particles is 0. 0.06 to 1.21 μm, the average crystal particle diameter of alumina is in the range of 0.8 to 4.0 μm, and the YAG particles are dispersed both in the grain boundaries of the sintered body and in the alumina particles. High strength, high hardness alumina ceramics characterized by 請求項1に記載のアルミナセラミックスの製造方法であって、1)アルミニウム塩とイットリウム塩とを水に溶解させて、AlイオンとYイオンを原子レベルで均一に混合した溶液を作製する工程と、2)上記溶液にアルミナ粉末を添加し、アンモニアを加えて中和反応させることによりAl−Y系水酸化物とアルミナからなる混合粉体を作製し、該混合粉体を300〜1000℃で仮焼きした後に粉砕してYAG粒子が分散したアルミナ粉体を得る工程と、3)上記アルミナ粉体に溶媒とバインダーを添加して造粒体を作製し、所定形状に成形した後1450〜1700℃で焼成する工程とを有することを特徴とする高強度、高硬度アルミナセラミックスの製造方法。  The method for producing an alumina ceramic according to claim 1, wherein 1) a step of dissolving an aluminum salt and an yttrium salt in water to produce a solution in which Al ions and Y ions are uniformly mixed at an atomic level; 2) Alumina powder is added to the above solution, and ammonia is added to effect a neutralization reaction to produce a mixed powder composed of Al-Y hydroxide and alumina. The mixed powder is temporarily treated at 300 to 1000 ° C. A step of obtaining an alumina powder in which YAG particles are dispersed by calcination after baking; 3) a granule is prepared by adding a solvent and a binder to the alumina powder, and after forming into a predetermined shape, 1450 to 1700 ° C. And a method of producing a high-strength, high-hardness alumina ceramic characterized by comprising:
JP14303198A 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof Expired - Fee Related JP4605829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14303198A JP4605829B2 (en) 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14303198A JP4605829B2 (en) 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11335159A JPH11335159A (en) 1999-12-07
JP4605829B2 true JP4605829B2 (en) 2011-01-05

Family

ID=15329308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14303198A Expired - Fee Related JP4605829B2 (en) 1998-05-25 1998-05-25 High strength, high hardness alumina ceramics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4605829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116000A1 (en) * 2015-12-31 2017-07-06 주식회사 효성 Method for manufacturing transparent ceramic phosphor plate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315955A (en) * 2000-07-10 2006-11-24 Toshiba Ceramics Co Ltd Ceramic member
JP4889155B2 (en) * 2001-02-23 2012-03-07 京セラ株式会社 High-strength alumina sintered body having free machinability and corrosion-resistant member using the same
JP4873857B2 (en) * 2004-12-24 2012-02-08 京セラ株式会社 Corrosion-resistant member, manufacturing method thereof, and semiconductor / liquid crystal manufacturing apparatus member
JP2006199562A (en) * 2005-01-24 2006-08-03 Kyocera Corp Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
US8357262B2 (en) 2005-08-31 2013-01-22 Kyocera Corporation Corrosion-resistant member, treatment apparatus and sample treatment method using the member, and method for manufacture of corrosion-resistant member
JP6518628B2 (en) * 2016-06-27 2019-05-22 日本特殊陶業株式会社 Ceramic sintered body
JP7137119B2 (en) * 2018-07-02 2022-09-14 三菱マテリアル株式会社 cBN sintered body and cutting tool
WO2021107140A1 (en) * 2019-11-29 2021-06-03 京セラ株式会社 Liquid contact member, method for producing same, member for analyzers, analyzer, sliding member and sliding device
CN116751035A (en) * 2023-05-31 2023-09-15 新化县新天地精细陶瓷有限公司 Alumina ceramic material for thermal quantity sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297263A (en) * 1987-05-28 1988-12-05 Nippon Denso Co Ltd Production of alumina ceramic
JPH09286660A (en) * 1996-04-25 1997-11-04 Kyocera Corp High strength alumina ceramic and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297263A (en) * 1987-05-28 1988-12-05 Nippon Denso Co Ltd Production of alumina ceramic
JPH09286660A (en) * 1996-04-25 1997-11-04 Kyocera Corp High strength alumina ceramic and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116000A1 (en) * 2015-12-31 2017-07-06 주식회사 효성 Method for manufacturing transparent ceramic phosphor plate

Also Published As

Publication number Publication date
JPH11335159A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JPH07277814A (en) Alumina-based ceramic sintered compact
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
JP2008133160A (en) Boron carbide sintered compact and method of manufacturing the same
JP4605829B2 (en) High strength, high hardness alumina ceramics and manufacturing method thereof
US5518673A (en) Silicon nitride ceramic having high fatigue life and high toughness
JP2615437B2 (en) High strength and high toughness silicon nitride sintered body and method for producing the same
US5902542A (en) Method of producing silicon nitride ceramics having thermal high conductivity
JP6982000B2 (en) Oriented AlN sintered body and its manufacturing method
JP2002535230A (en) High strength zirconia with partially stabilized magnesia
EP3560905A1 (en) Transparent aln sintered body, and production method therefor
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP3810183B2 (en) Silicon nitride sintered body
JP3121996B2 (en) Alumina sintered body
JPH08208317A (en) Alumina sintered body and production thereof
JPH09286660A (en) High strength alumina ceramic and its production
Wang et al. Microstructure and boundary phases of Lu–Al-doped silicon nitride by pressureless sintering
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPH08198664A (en) Alumina-base sintered body and its production
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JPH08259332A (en) Ceramic fiber-reinforced turbine blade and its production
JP2000302542A (en) Jig used for sintering
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH0948671A (en) Silicon nitride sintered compact and its production
JPH04231370A (en) Aluminum oxide-based sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees