JPH11307083A - Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery - Google Patents

Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery

Info

Publication number
JPH11307083A
JPH11307083A JP10109300A JP10930098A JPH11307083A JP H11307083 A JPH11307083 A JP H11307083A JP 10109300 A JP10109300 A JP 10109300A JP 10930098 A JP10930098 A JP 10930098A JP H11307083 A JPH11307083 A JP H11307083A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
ion secondary
secondary battery
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10109300A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢治 中井
Koji Higashimoto
晃二 東本
Toyoshi Iida
豊志 飯田
Tetsuji Makino
哲司 牧野
Tadashi Kiyokawa
忠 清川
Hajime Kiyokawa
肇 清川
Masayuki Takashima
正之 高島
Susumu Yonezawa
晋 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA KAGAKU KENKYUSHO KK
Kiyokawa Plating Industries Co Ltd
Resonac Corp
Original Assignee
TANAKA KAGAKU KENKYUSHO KK
Kiyokawa Plating Industries Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA KAGAKU KENKYUSHO KK, Kiyokawa Plating Industries Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical TANAKA KAGAKU KENKYUSHO KK
Priority to JP10109300A priority Critical patent/JPH11307083A/en
Publication of JPH11307083A publication Critical patent/JPH11307083A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode plate for a lithium-ion secondary battery, capable of increasing a discharge capacity, by enlarging contact areas of a conductive substance with lithium-containing double oxide powder without lowering energy density. SOLUTION: Positive-electrode material particles 11 made up of Lix CoO2 (x=1.01) are prepared. Then, conductive thin films 12 are formed on surfaces of the positive-electrode material particles 11 by means of vapor deposition by using a carbon coater. The positive-electrode material particles 11 with the conductive thin films 12 formed on their surfaces are mixed with a binder, and mixed with a proper quantity of solvent added thereto to make an ink-like mixture. Then, the ink-like mixture is spread on both sides of a positive- electrode current collector. By drying this, positive-electrode material layers are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池用正極板及びリチウムイオン二次電池に関するも
のである。
The present invention relates to a positive electrode plate for a lithium ion secondary battery and a lithium ion secondary battery.

【0002】[0002]

【従来の技術】負極活物質にリチウムを用いたリチウム
二次電池は、高いエネルギー密度を有している。しかし
ながら、負極活物質に純金属のリチウムを用いた場合、
電池に充放電を繰り返すと負極活物質にリチウムが針状
析出するいわゆるデンドライトが生成して電池の内部短
絡を引き起こす。そこで、リチウムイオンの吸蔵、放出
が可能な炭素等のリチウムイオン保持体を負極材として
用い、LiCoO2 、LiNiO2 等の化学式Lix
y 2 で示されるリチウム含有複酸化物の粉末を正極材
粉末として用いる4V級のリチウムイオン二次電池が提
案された。リチウム含有複酸化物は、電位が高くて充放
電時の電位平坦性に優れている。LiCoO2 を例にと
ると、リチウムイオン二次電池は、下記式により充放電
を行う。
2. Description of the Related Art A lithium secondary battery using lithium as a negative electrode active material has a high energy density. However, when pure metal lithium is used as the negative electrode active material,
When the battery is repeatedly charged and discharged, a so-called dendrite in which lithium is needle-deposited in the negative electrode active material is generated, causing an internal short circuit of the battery. Therefore, a lithium ion carrier such as carbon capable of inserting and extracting lithium ions is used as a negative electrode material, and a chemical formula Li x M such as LiCoO 2 or LiNiO 2 is used.
powder 4V-class lithium-ion secondary battery using as the positive electrode material powder of the lithium-containing complex oxide represented by y O 2 have been proposed. The lithium-containing double oxide has a high potential and is excellent in potential flatness during charge and discharge. Taking LiCoO 2 as an example, a lithium ion secondary battery performs charging and discharging by the following equation.

【0003】[0003]

【化1】 上記式に示すようにリチウムイオン二次電池の充電反応
はLiNiO2 からの脱電子反応であり、放電反応はL
iNiO2 への電子和反応である。したがって、リチウ
ムイオン二次電池の充電反応及び放電反応をスムースに
行い電池の放電容量を高めるには、LiNiO2 からの
電子の移動、またはLiNiO2 への電子の移動を速や
かにする必要がある。しかしながら、化学式Lix y
2 で示されるリチウム含有複酸化物の電子伝導性はあ
まり良好ではない。そこで、粉末状または繊維状の黒鉛
やカーボンブラック等の炭素材からなる導電剤を正極材
に添加することが提案された。しかしながら、導電剤を
単に正極材に添加しただけでは、炭素材と活物質粉末と
の接触面積が十分に得られないので、電子伝導性を高め
るには限界がある。そこで、特開平2−262243号
公報に示されるように、微粉末状あるいは繊維状の炭素
材からなる導電性物質をリチウム含有複酸化物粉末(正
極材粉末)の表面に固定することが提案された。
Embedded image As shown in the above equation, the charge reaction of the lithium ion secondary battery is a de-electronization reaction from LiNiO 2 , and the discharge reaction is L
This is an electron sum reaction to iNiO 2 . Therefore, to increase the discharge capacity of the battery was charged reaction and discharging reaction of the lithium ion secondary battery smoothly, electron transfer from LiNiO 2, or it is necessary to promptly transfer of electrons to LiNiO 2. However, the chemical formula Li x M y
The electronic conductivity of the lithium-containing double oxide represented by O 2 is not very good. Therefore, it has been proposed to add a conductive agent made of a carbon material such as powdered or fibrous graphite or carbon black to the positive electrode material. However, simply adding a conductive agent to the positive electrode material does not provide a sufficient contact area between the carbon material and the active material powder, so there is a limit in improving electron conductivity. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 2-262243, it has been proposed to fix a conductive substance made of a fine powder or fibrous carbon material to the surface of a lithium-containing composite oxide powder (positive electrode powder). Was.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うに炭素材をリチウム含有複酸化物粉末の表面に固定し
ても、微粉末の炭素材とリチウム含有複酸化物粉末との
接触は、点接触になる。また、繊維状の炭素材とリチウ
ム含有複酸化物粉末との接触は、線接触になる。したが
って、このような従来技術では、炭素材とリチウム含有
複酸化物粉末とを十分に接触させることはできなかっ
た。そのため、LiNiO2 からの電子の移動、または
LiNiO2 への電子の移動を速やかにするには限界が
あり、電池の放電容量を十分に高めることはできなかっ
た。なお、炭素材とリチウム含有複酸化物粉末との接触
面積を高めるために、炭素材からなる導電剤の量を増や
すことも考えられるが、導電剤の量を増やすと、リチウ
ム含有複酸化物粉末の量が低下し、電池のエネルギー密
度が低くなる。
However, even when the carbon material is fixed on the surface of the lithium-containing double oxide powder, the contact between the fine powder carbon material and the lithium-containing double oxide powder is a point contact. become. Further, the contact between the fibrous carbon material and the lithium-containing double oxide powder is linear contact. Therefore, in such a conventional technique, the carbon material and the lithium-containing double oxide powder could not be brought into sufficient contact. Therefore, there is a limit to speeding up the transfer of electrons from LiNiO 2 or the transfer of electrons to LiNiO 2 , and it has not been possible to sufficiently increase the discharge capacity of the battery. In order to increase the contact area between the carbon material and the lithium-containing composite oxide powder, it is conceivable to increase the amount of the conductive agent composed of the carbon material. And the energy density of the battery decreases.

【0005】本発明の目的は、エネルギー密度を低くす
ることなく、導電剤とリチウム含有複酸化物粉末との接
触面積を大きくして、放電容量を高めることができるリ
チウムイオン二次電池用正極板及びリチウムイオン二次
電池を提供することにある。本発明の他の目的は、エネ
ルギー密度を低くすることなく、サイクル寿命を延ばす
ことができるリチウムイオン二次電池用正極板及びリチ
ウムイオン二次電池を提供することにある。
An object of the present invention is to increase the contact area between a conductive agent and a lithium-containing double oxide powder without lowering the energy density, thereby increasing the discharge capacity of a positive electrode plate for a lithium ion secondary battery. And a lithium ion secondary battery. Another object of the present invention is to provide a positive electrode plate for a lithium ion secondary battery and a lithium ion secondary battery that can extend the cycle life without lowering the energy density.

【0006】[0006]

【課題を解決するための手段】本発明は、化学式Lix
y 2 (但しMはCo,Ni,Mn,V,Fe,Ti
のいずれかからなり、x は0.2≦x ≦2.5の範囲で
あり、y は0.8≦y≦1.25の範囲である。)で示
される正極材粉末を含有する正極材層が集電体上に形成
され、正極材粉末の表面に導電性物質が固定されている
リチウムイオン二次電池用正極板を対象にする。本発明
では、正極材粉末の表面に薄膜の形態で導電性物質を固
定する。ここで、x を0.2≦x ≦2.5の範囲とする
のは、次の理由による。電池を充電すると、正極活物質
からリチウムイオンが脱離してxの値は小さくなる。し
かしながら、満充電しても脱離できないリチウムイオン
があり、その量はx の値が0.2となる量である。ま
た、x の値が2.5を超えると充放電可逆性が著しく低
下する。またy が0.8≦y ≦1.25の範囲であれ
ば、金属Mが充放電に伴い価数変化しても充放電可逆性
を維持できる。また、ここでいう薄膜の形態とは、導電
性物質を形成する原子または分子が相互に結合して薄い
膜を形成している形態である。
According to the present invention, there is provided a compound of the formula Li x
MyO 2 (where M is Co, Ni, Mn, V, Fe, Ti
Wherein x is in the range of 0.2 ≦ x ≦ 2.5, and y is in the range of 0.8 ≦ y ≦ 1.25. The present invention is directed to a positive electrode plate for a lithium ion secondary battery in which a positive electrode material layer containing a positive electrode material powder described in (1) is formed on a current collector, and a conductive material is fixed on the surface of the positive electrode material powder. In the present invention, a conductive substance is fixed in the form of a thin film on the surface of the positive electrode material powder. Here, the reason why x is in the range of 0.2 ≦ x ≦ 2.5 is as follows. When the battery is charged, lithium ions are desorbed from the positive electrode active material, and the value of x decreases. However, there are lithium ions which cannot be desorbed even when fully charged, and the amount of which is such that the value of x becomes 0.2. On the other hand, if the value of x exceeds 2.5, the charge / discharge reversibility is significantly reduced. If y is in the range of 0.8 ≦ y ≦ 1.25, the charge / discharge reversibility can be maintained even if the valence of the metal M changes with charge / discharge. Further, the term “thin film” as used herein refers to a form in which atoms or molecules forming a conductive substance are mutually bonded to form a thin film.

【0007】本発明のように、正極材粉末の表面に薄膜
の形態で導電性物質を固定すれば、正極材粉末と導電性
物質との接触面積が大きくなり、LiNiO2 からの電
子の移動、またはLiNiO2 への電子の移動が速やか
になる。また、導電性物質の占める体積を小さくして、
正極材粉末の正極材層への詰め込み量を増やすことがで
きる。そのため、電池の放電容量を十分に高めることが
できる。また、このような薄膜は、強固な構造を有して
いるので、電池に充放電が繰り返されても、崩壊され難
く、電池のサイクル寿命を延ばすことができる。
[0007] When a conductive material is fixed in the form of a thin film on the surface of the positive electrode material powder as in the present invention, the contact area between the positive electrode material powder and the conductive material is increased, and the transfer of electrons from LiNiO 2 , Alternatively, the transfer of electrons to LiNiO 2 is accelerated. Also, reduce the volume occupied by the conductive material,
The amount of the positive electrode material powder packed into the positive electrode material layer can be increased. Therefore, the discharge capacity of the battery can be sufficiently increased. In addition, since such a thin film has a strong structure, even if the battery is repeatedly charged and discharged, the thin film is hardly disintegrated, and the cycle life of the battery can be extended.

【0008】導電性物質としては、炭素及びAl,A
u,Ni等の金属を用いることができる。また、薄膜
は、蒸着またはスパッタリングにより形成することがで
きる。
[0008] As the conductive material, carbon and Al, A
Metals such as u and Ni can be used. Further, the thin film can be formed by evaporation or sputtering.

【0009】導電性物質(薄膜)の正極材粉末に対する
割合は0.1〜20体積%とするのが好ましい。0.1
体積%を下回ると、十分に導電性を高めることができな
い。20体積%を上回ると、正極材粉末充填量が低下す
る上、正極材粉末と非水電解質との接触が阻害される。
また、薄膜は、正極材粉末と電解質との接触を阻害しな
いように、正極材粉末上に部分的に形成する。
The ratio of the conductive substance (thin film) to the powder of the positive electrode material is preferably 0.1 to 20% by volume. 0.1
If it is less than the volume percentage, the conductivity cannot be sufficiently increased. If it exceeds 20% by volume, the positive electrode material powder filling amount is reduced, and the contact between the positive electrode material powder and the nonaqueous electrolyte is hindered.
The thin film is partially formed on the positive electrode material powder so as not to hinder contact between the positive electrode material powder and the electrolyte.

【0010】本発明の具体的な構成としては、化学式L
x y 2 (但しMはCo,Ni,Mn,V,Fe,
Tiのいずれかからなり、x は0.2≦x ≦2.5の範
囲であり、y は0.8≦y ≦1.25の範囲である。)
で示される正極材粉末と、炭酸エチレン及び炭酸ジエチ
ルにLiPF6 を溶解した非水電解質と、ポリフッ化ビ
ニリデンからなるバインダとを含有する正極材層がアル
ミ箔からなる集電体上に形成され、正極材粉末の表面に
炭素からなる導電性物質が固定されているリチウムイオ
ン二次電池用正極板を対象にする。そして、正極材粉末
の表面に蒸着またはスパッタリングにより形成された薄
膜の形態で導電性物質を固定し、導電性物質の正極材粉
末に対する割合を0.1〜20体積%にする。
The specific structure of the present invention is represented by a chemical formula L
i x M y O 2 (where M is Co, Ni, Mn, V, Fe,
X is in the range of 0.2 ≦ x ≦ 2.5, and y is in the range of 0.8 ≦ y ≦ 1.25. )
A positive electrode material layer containing a nonaqueous electrolyte obtained by dissolving LiPF 6 in ethylene carbonate and diethyl carbonate, and a binder made of polyvinylidene fluoride is formed on a current collector made of aluminum foil, A positive electrode plate for a lithium ion secondary battery in which a conductive material made of carbon is fixed on the surface of a positive electrode material powder. Then, the conductive material is fixed in the form of a thin film formed by vapor deposition or sputtering on the surface of the positive electrode material powder, and the ratio of the conductive material to the positive electrode material powder is set to 0.1 to 20% by volume.

【0011】本発明の正極板をリチウムイオン二次電池
に適応するには、本発明の正極板と負極集電体にリチウ
ムイオンを吸蔵放出する炭素材と非水電解質とを含有す
る負極材層が形成されている負極板との間に非水電解質
が介在させて構成すればよい。
In order to apply the positive electrode plate of the present invention to a lithium ion secondary battery, a negative electrode material layer containing a carbon material for absorbing and releasing lithium ions and a non-aqueous electrolyte in the positive electrode plate of the present invention and a negative electrode current collector A nonaqueous electrolyte may be interposed between the negative electrode plate and the negative electrode plate.

【0012】[0012]

【発明の実施の形態】(実施例1)本実施例では、次の
ようにしてリチウムイオン二次電池用正極板を製造し
た。まず、平均粒径1〜2μmのLix CoO2 (x=
1.01)からなる正極材粉末を用意した。次に図1の
概略断面図に示すカーボンコーターを用いて蒸着により
正極材粉末の表面に導電性物質からなる薄膜を形成し
た。図1に示すようにカーボンコーターは、減圧容器1
と回転容器2と一対の金属製のカーボン電極3,3とを
有している。カーボン電極3は、棒状の電極本体3aの
端部にカーボン棒3bが形成されて構成されている。そ
して、一対のカーボン電極3,3は、互いのカーボン棒
3b,3bが所定の間隔を隔てて対向するように直線状
に配置されている。回転容器2は一対のカーボン電極
3,3を軸線として減圧容器1内に回転自在に配置され
ており、回転容器2の一対のカーボン電極3,3の貫通
部は回転メカシール4によりシールされている。このカ
ーボンコーターを用いて正極材粉末の表面に導電層を形
成するには、まず、正極材粉末Pを回転容器2内に配置
してから、回転容器2内が10-2Torrになるように
真空ポンプで減圧し、該回転容器2を1〜20r/mの
回転速度で回転すると共に、一対のカーボン電極3,3
のカーボン棒3b,3b間に高電圧を印加してアーク放
電を行う。これにより、正極材粉末Pの表面に炭素から
なる導電性物質の薄膜(導電性薄膜)が形成される。な
お、導電性物質の正極材粉末に対する割合は2体積%で
あった。
(Example 1) In this example, a positive electrode plate for a lithium ion secondary battery was manufactured as follows. First, Li x CoO 2 (x =
1.01) was prepared. Next, a thin film made of a conductive material was formed on the surface of the positive electrode material powder by vapor deposition using a carbon coater shown in the schematic sectional view of FIG. As shown in FIG. 1, the carbon coater is
And a rotating container 2 and a pair of metal carbon electrodes 3 and 3. The carbon electrode 3 is configured by forming a carbon rod 3b at an end of a rod-shaped electrode main body 3a. The pair of carbon electrodes 3, 3 are linearly arranged so that the carbon rods 3b, 3b face each other at a predetermined interval. The rotating container 2 is rotatably disposed in the decompression container 1 around the pair of carbon electrodes 3, 3, and the penetrating portions of the pair of carbon electrodes 3, 3 of the rotating container 2 are sealed by a rotating mechanical seal 4. . In order to form a conductive layer on the surface of the positive electrode material powder using this carbon coater, first, the positive electrode material powder P is placed in the rotating container 2 and then the inside of the rotating container 2 is set to 10 −2 Torr. The pressure is reduced by a vacuum pump, and the rotary container 2 is rotated at a rotation speed of 1 to 20 r / m.
A high voltage is applied between the carbon rods 3b, 3b to perform arc discharge. Thereby, a thin film (conductive thin film) of a conductive material made of carbon is formed on the surface of the positive electrode material powder P. The ratio of the conductive substance to the positive electrode material powder was 2% by volume.

【0013】次に表面に薄膜を形成した正極材粉末とポ
リフッ化ビニリデン(PVDF)からなるバインダとを
体積比90:10で混合して混練し、これにN−メチル
−2−ピロリドンからなる溶媒を適量加え、更に混練し
てインク状混練物を作った。次にこのインク状混練物を
ロールトゥロールの転写により厚み20μm×50mm
×450mmの寸法を有するアルミニウム箔からなる正
極集電体の両面に塗布した。そして、これを乾燥して厚
み100μmの正極材層をそれぞれ形成して、本実施例
のリチウムイオン二次電池用正極板を完成した。なお、
この時点では、正極材層中に電解液は含まれていない。
図2は、正極材層の部分拡大図を示している。このよう
に、正極材粉末11の表面には、正極材粉末11と後に
含有される電解質との接触を阻害しないように、導電性
薄膜12が部分的に形成されている。
Next, a positive electrode material powder having a thin film formed on its surface and a binder made of polyvinylidene fluoride (PVDF) are mixed and kneaded at a volume ratio of 90:10, and then mixed with a solvent made of N-methyl-2-pyrrolidone. Was added in an appropriate amount and further kneaded to prepare an ink-like kneaded material. Next, this ink-like kneaded material was transferred by roll-to-roll transfer to a thickness of 20 μm × 50 mm.
It was applied to both sides of a positive electrode current collector made of an aluminum foil having a size of 450 mm. Then, this was dried to form a positive electrode material layer having a thickness of 100 μm, respectively, to complete a positive electrode plate for a lithium ion secondary battery of this example. In addition,
At this point, no electrolyte is contained in the positive electrode material layer.
FIG. 2 shows a partially enlarged view of the positive electrode material layer. As described above, the conductive thin film 12 is partially formed on the surface of the positive electrode material powder 11 so as not to hinder contact between the positive electrode material powder 11 and the electrolyte contained later.

【0014】(実施例2)本実施例の正極板は、正極材
粉末に対する導電性薄膜の割合を0.1体積%とし、正
極材粉末に対して0.9体積%のグラファイト粉末(平
均粒径0.5〜1μm)からなる導電剤を正極材層中に
添加して厚み100μmの正極材層を作り、その他は実
施例1と同様にして製造した。
(Example 2) In the positive electrode plate of this example, the ratio of the conductive thin film to the positive electrode material powder was 0.1% by volume, and 0.9% by volume of the graphite powder (average particle size) based on the positive electrode material powder. A conductive material having a diameter of 0.5 to 1 μm) was added to the positive electrode material layer to form a positive electrode material layer having a thickness of 100 μm.

【0015】(実施例3)本実施例の正極板は、炭素の
代りにアルミニウムを用いて導電性薄膜を形成し(正極
材粉末に対する導電性薄膜の割合は2体積%)、その他
は実施例1と同様にして製造した。本実施例では、蒸着
法により導電性薄膜を以下のようにして形成した。ま
ず、蒸着室内に正極材粉末と、アルミニウム箔を巻き付
けたタングステンフィラメントとを10cmの距離を隔
てて配置する。そして、蒸着室内を真空ポンプを用いて
10-5〜10-6mmHgで維持する。次にタングステン
フィラメントに電流を流して一次加熱してフィラメント
周辺に付着している不純物をガス化して除去する。次に
二次加熱によりアルミニウムを蒸気化して正極材粉末の
表面にアルミニウムからなる導電性薄膜を形成した。
(Example 3) The positive electrode plate of this example formed a conductive thin film using aluminum instead of carbon (the ratio of the conductive thin film to the powder of the positive electrode material was 2% by volume). It was manufactured in the same manner as in Example 1. In this example, a conductive thin film was formed by a vapor deposition method as follows. First, a positive electrode material powder and a tungsten filament around which an aluminum foil is wound are placed at a distance of 10 cm in a vapor deposition chamber. Then, the inside of the deposition chamber is maintained at 10 -5 to 10 -6 mmHg using a vacuum pump. Next, a current is applied to the tungsten filament to perform primary heating to gasify and remove impurities adhering around the filament. Next, aluminum was vaporized by secondary heating to form a conductive thin film made of aluminum on the surface of the positive electrode material powder.

【0016】(比較例1)本比較例では、表面に炭素か
らなる導電性薄膜を形成せず、正極材粉末に対して1
0.0体積%のグラファイト粉末(平均粒径0.5〜1
μm)からなる導電剤を正極材層中に添加し、その他は
実施例1と同様にして製造した。
Comparative Example 1 In this comparative example, a conductive thin film made of carbon was not formed on the surface,
0.0% by volume of graphite powder (average particle size 0.5 to 1)
μm) was added to the positive electrode material layer, and the others were produced in the same manner as in Example 1.

【0017】(比較例2)本比較例では、正極材粉末の
表面に導電性薄膜を形成する代りに特開平2−2622
43号公報に示すように、炭素微粉末を正極材粉末の表
面に固定化し、その他は実施例1と同様にして製造した
(正極材粉末に対する炭素微粉末の割合は2体積%)。
炭素微粉末の固定化は、帯電吸着作用により、正極材粉
末に対して10-1〜10-5の平均粒径を有するグラファ
イトからなる炭素粉末を正極材粉末の表面に吸着させた
後に、高速気流中に投入して粒子間衝突を行い、炭素粉
末を正極材粉末の表面に打ち込んで固定した。
(Comparative Example 2) In this comparative example, instead of forming a conductive thin film on the surface of the positive electrode material powder, JP-A-2-2622
As shown in JP-A-43-43, a carbon fine powder was immobilized on the surface of a positive electrode material powder, and the others were manufactured in the same manner as in Example 1 (the ratio of the carbon fine powder to the positive electrode material powder was 2% by volume).
The immobilization of the carbon fine powder is carried out by adsorbing a carbon powder made of graphite having an average particle diameter of 10 -1 to 10 -5 on the surface of the cathode material powder by a charge adsorption action, The particles were injected into an air flow to cause collision between particles, and carbon powder was driven into the surface of the positive electrode material powder and fixed.

【0018】次に上記各正極板を用いて図3の断面図に
示されるリチウムイオン二次電池をそれぞれ次のように
製造した。最初に負極板21を作った。まず、グラファ
イトとポリフッ化ビニリデン(PVDF)からなるバイ
ンダとを重量比90:10で混合して混練し、これにN
−メチル−2−ピロリドンを適量加え、更に混練してイ
ンク状混練物を作った。次にこのインク状混練物をロー
ルトゥロールの転写により厚み10μm×50mm×5
50mmの寸法を有する銅箔からなる負極集電体21a
の両面に塗布した。そして、これを乾燥して厚み100
μmの負極材層21bをそれぞれ形成して、負極板21
を作った。なお、この時点では、負極材層21b中に電
解液は含まれていない。
Next, a lithium ion secondary battery shown in the sectional view of FIG. 3 was manufactured using each of the above positive electrode plates as follows. First, the negative electrode plate 21 was formed. First, graphite and a binder made of polyvinylidene fluoride (PVDF) were mixed and kneaded at a weight ratio of 90:10, and N was added thereto.
-Methyl-2-pyrrolidone was added in an appropriate amount and further kneaded to form an ink kneaded product. Next, this ink-like kneaded material was transferred by roll-to-roll transfer to obtain a 10 μm × 50 mm × 5
Negative electrode current collector 21a made of copper foil having a size of 50 mm
Was applied to both sides. Then, dry it to a thickness of 100
Each of the negative electrode material layers 21b having a thickness of
made. At this point, no electrolyte is contained in the negative electrode material layer 21b.

【0019】次に厚み10μmの微多孔性ポリエチレン
フィルムからなるセパレータ22を介して各正極板23
と負極板21とをそれぞれ積層し、巻回して極板群を作
った。次に極板群を電池缶24内に配置してから負極集
電体21aに予め溶接しておいた負極タブ端子25を負
極缶24に溶接した。また、正極集電体23aに予め溶
接しておいた正極タブ端子26を正極キャップ27に溶
接した。
Next, each positive electrode plate 23 is interposed via a separator 22 made of a microporous polyethylene film having a thickness of 10 μm.
And the negative electrode plate 21 were respectively laminated and wound to form an electrode plate group. Next, after disposing the electrode plate group in the battery can 24, the negative electrode tab terminal 25 previously welded to the negative electrode current collector 21 a was welded to the negative electrode can 24. In addition, the positive electrode tab terminal 26, which was previously welded to the positive electrode current collector 23 a, was welded to the positive electrode cap 27.

【0020】次に体積比1:1の炭酸エチレンと炭酸ジ
エチレンとを混合した混合溶媒に1モル/lのLiPF
6 を溶解した非水電解液5mlを負池缶24内に注入し
た。そして、正極キャップ27を絶縁製のガスケット2
8を介して負極缶24の上部に配置してから、負極缶2
4の上部をかしめて、負極缶24内を密閉して各未化成
リチウムイオン二次電池を作った。次に各未化成リチウ
ムイオン二次電池を25±1℃において4.20Vの定
電圧(制限電流100mA)で化成して各リチウムイオ
ン二次電池を完成した。
Next, 1 mol / l of LiPF was added to a mixed solvent of ethylene carbonate and diethylene carbonate in a volume ratio of 1: 1.
5 ml of the non-aqueous electrolyte in which 6 was dissolved was injected into the negative pond can 24. Then, the positive electrode cap 27 is attached to the insulating gasket 2.
8 and then placed on top of the negative electrode can 24, and then the negative electrode can 2
4 was caulked, and the inside of the negative electrode can 24 was sealed to produce each unformed lithium ion secondary battery. Next, each unformed lithium ion secondary battery was formed at 25 ± 1 ° C. with a constant voltage of 4.20 V (current limit: 100 mA) to complete each lithium ion secondary battery.

【0021】次に上記各リチウムイオン二次電池を用い
て試験を行った。まず、各リチウムイオン二次電池を2
5±1℃において100mAの定電流(終止電圧2.8
V)で放電して各電池の放電平均電圧を求め、各電池の
重量エネルギー密度及び体積エネルギー密度を算出し
た。表1は、その結果を示している。
Next, a test was performed using each of the above lithium ion secondary batteries. First, each lithium ion secondary battery
100 mA constant current at 5 ± 1 ° C. (final voltage 2.8
V), the discharge average voltage of each battery was determined, and the weight energy density and volume energy density of each battery were calculated. Table 1 shows the results.

【0022】[0022]

【表1】 表1より、実施例の各電池は、比較例の各電池に比べて
放電平均電圧が高く、重量エネルギー密度及び体積エネ
ルギー密度を高められるのが分る。
[Table 1] From Table 1, it can be seen that each battery of the example has a higher discharge average voltage and higher weight energy density and volume energy density than each battery of the comparative example.

【0023】次に正極材粉末に対する導電性物質の量
(体積%)を変え、その他は上記各電池と同様にして正
極材層の厚みが100μmの各リチウムイオン二次電池
(導電性物質の量が異なる各リチウムイオン二次電池)
を作った。なお、正極材の厚みを一定(100μm)に
するため、各リチウムイオン二次電池の正極材粉末(L
x CoO2 )の重量は変化している。また、導電性物
質の量とは、実施例1,3,では、導電性薄膜の量であ
り、実施例2では、導電性薄膜と正極材粉末に加えたグ
ラファイトとを併せた量である。この実施例2では、正
極材粉末に対する導電性薄膜の割合は0.1体積%と一
定にし、正極材粉末に加えたグラファイトの量を変化さ
せた。また、比較例1では、正極材粉末に加えたグラフ
ァイト粉末の量であり、比較例2では、正極材粉末の表
面に固定化した炭素微粉末の量である。そして、各電池
の導電性物質の量と正極材粉末(Lix CoO2 )の重
量との関係及び各電池に下記の条件の充電を行った後に
放電を行った場合の各電池の導電性物質の量と放電容量
との関係を調べた。
Next, the amount (volume%) of the conductive material with respect to the powder of the positive electrode material was changed, and each lithium ion secondary battery having a positive electrode material layer thickness of 100 μm (the amount of the conductive material) Different lithium ion secondary batteries)
made. In order to keep the thickness of the cathode material constant (100 μm), the cathode material powder (L
the weight of the i x CoO 2) is changing. The amount of the conductive substance is the amount of the conductive thin film in Examples 1 and 3, and in Example 2, it is the combined amount of the conductive thin film and graphite added to the positive electrode material powder. In Example 2, the ratio of the conductive thin film to the cathode material powder was kept constant at 0.1% by volume, and the amount of graphite added to the cathode material powder was changed. In Comparative Example 1, the amount was graphite powder added to the positive electrode material powder, and in Comparative Example 2, it was the amount of carbon fine powder immobilized on the surface of the positive electrode material powder. Then, the relationship between the amount of the conductive material of each battery and the weight of the positive electrode material powder (Li x CoO 2 ), and the conductive material of each battery when each battery is charged and discharged under the following conditions The relationship between the amount of P and the discharge capacity was examined.

【0024】充電:4.2Vの定電圧,上限電流100
mA,20時間,25±1℃ 放電:100mA定電流,終止電圧2.8V,25±1
℃ 図4はその測定結果を示している。図4の各電池の導電
性物質の量と正極材粉末(Lix CoO2 )の重量(右
側縦軸)との関係を示す特性曲線より、実施例1,3の
電池は、比較例1,2の電池に比べて、導電性物質の量
が増加しても、正極材粉末(Lix CoO2 )の重量低
下が少ない[正極材粉末(Lix CoO2 )の重量を多
くできる]のが分る。これは、実施例1,3の電池で
は、導電性薄膜が正極材粉末表面に直接形成されている
ので、正極材粉末(Lix CoO2)を正極材層内に詰
め込むことができるためである。これに対して、比較例
1,2の電池では、導電性物質が微粉末または粉末状で
あるため、正極材層内に正極材粉末(Lix CoO2
を充分に詰め込むことができず、正極材層内には、多く
の空隙部が形成される。また、実施例1,3の電池が、
実施例2の電池に比べて、正極材粉末(Lix Co
2 )の重量を多くできるのは、実施例2の電池では、
正極材層中にグラファイト粉末が存在するためである。
Charge: constant voltage of 4.2 V, upper limit current 100
mA, 20 hours, 25 ± 1 ° C. Discharge: 100 mA constant current, final voltage 2.8 V, 25 ± 1
FIG. 4 shows the measurement results. From the characteristic curves showing the relationship between the amount of the conductive substance and the weight of the positive electrode material powder (Li x CoO 2 ) (vertical axis on the right side) in each of the batteries in FIGS. compared to the second battery, and the amount of conductive material is increased, [can increase the weight of the positive electrode material powder (Li x CoO 2)] weight decrease in positive electrode material powder (Li x CoO 2) is small for the I understand. This is because, in the batteries of Examples 1 and 3, since the conductive thin film is directly formed on the surface of the positive electrode material powder, the positive electrode material powder (Li x CoO 2 ) can be packed in the positive electrode material layer. . On the other hand, in the batteries of Comparative Examples 1 and 2, since the conductive substance is in the form of fine powder or powder, the positive electrode material powder (Li x CoO 2 ) is contained in the positive electrode material layer.
Cannot be sufficiently packed, and many voids are formed in the positive electrode material layer. Also, the batteries of Examples 1 and 3
Compared with the battery of Example 2, the cathode material powder (Li x Co
The weight of O 2 ) can be increased because of the battery of Example 2.
This is because graphite powder is present in the positive electrode material layer.

【0025】また、図4の各電池の導電性物質の量と放
電容量(左側縦軸)との関係を示す特性曲線より、実施
例1〜3の電池では、比較例1,2の電池に比べて、い
ずれの導電性物質の量においても、電池の放電容量が高
いのが分かる。これは、実施例1〜3の電池では、導電
性物質が導電性薄膜の形態で形成されているので、正極
材粉末(Lix CoO2 )への電子の移動または正極材
粉末(Lix CoO2)からの電子の移動が速やかに行
われるためである。また、比較例1の電池では、導電性
物質の量が4体積%を下回ると導電性が低下して放電容
量が大きく低下するのに対して,実施例1〜3の電池で
は、導電性物質の量が0.1体積%まで容量を高く維持
できるのが分る。また比較例2の電池では、導電性物質
の量が4体積%を下回っても比較例1の電池に比べれば
放電容量が大きく維持できるものの,実施例1〜3の電
池に比べると容量が低いのが分かる。これは、比較例2
の電池は、導電性物質を活物質に固定化しても、導電性
物質は、微粉末または粉末状であるため、正極材層内に
正極材粉末(Lix CoO2 )を充分に詰め込むことが
できないためである。また、各電池において導電性物質
の量が20体積%を超えて多くなると電子伝導のネット
ワークが十分になるにもかかわらず放電容量が低下する
のは、正極材粉末(Lix CoO2 )の量が低下するた
めである。
Further, from the characteristic curves showing the relationship between the amount of the conductive substance and the discharge capacity (vertical axis on the left side) of each battery shown in FIG. In comparison, it can be seen that the discharge capacity of the battery is high regardless of the amount of the conductive substance. This is the battery of Example 1-3, since the conductive material is formed in the form of a conductive thin cathode material powder (Li x CoO 2) electron transfer or cathode material powder (Li x CoO to This is because the transfer of electrons from 2 ) is performed quickly. Further, in the battery of Comparative Example 1, when the amount of the conductive substance is less than 4% by volume, the conductivity is reduced and the discharge capacity is significantly reduced. It can be seen that the capacity can be kept high up to the amount of 0.1% by volume. Further, in the battery of Comparative Example 2, even when the amount of the conductive substance is less than 4% by volume, the discharge capacity can be maintained larger than that of the battery of Comparative Example 1, but the capacity is lower than that of the batteries of Examples 1 to 3. I understand. This is Comparative Example 2
In the battery of the present invention, even if the conductive material is immobilized on the active material, the conductive material is in the form of fine powder or powder, so that the positive electrode material powder (Li x CoO 2 ) can be sufficiently packed in the positive electrode material layer. This is because they cannot. Further, when the amount of the conductive substance in each battery exceeds 20% by volume, the discharge capacity is reduced even though the electronic conduction network is sufficient, because the amount of the cathode material powder (Li x CoO 2 ) Is to be reduced.

【0026】次に上記各正極板を用いたリチウムイオン
二次電池に充放電を繰り返して、各電池の充放電サイク
ル回数と放電容量との関係(充放電サイクル特性)を調
べた充放電サイクルは、充電、放電の間に30分間の休
止を設け、その他は前述と同様の充電と放電とを繰り返
す条件で行った。図5はその測定結果を示している。図
5より、実施例1〜3の電池は、比較例1,2の電池に
比べて、充放電を繰り返しても、放電容量を高く維持し
て、充放電サイクル寿命を延ばせるのが分る。これは次
のような理由による。一般にLix CoO2 の式で示さ
れる正極材粉末は、電池に充放電が繰り返されると、リ
チウムイオンの吸蔵放出に伴って、収縮、膨脹する。そ
して、このような収縮、膨脹が繰り返されると、正極材
層中の導電性物質で構成される電子伝導のネットワーク
が崩壊してサイクル寿命特性が低下する。しかしなが
ら、実施例1〜3の電池では、導電性物質が薄膜の形態
で強固に形成されているので、正極材粉が収縮、膨脹し
ても電子伝導のネットワークが崩壊し難いためである。
Next, charging and discharging of the lithium ion secondary battery using each of the above positive electrode plates was repeated, and the relationship between the number of charge and discharge cycles and the discharge capacity (charge and discharge cycle characteristics) of each battery was examined. , A pause of 30 minutes was provided between charging and discharging, and the rest was performed under the same conditions of repeating charging and discharging as described above. FIG. 5 shows the measurement results. FIG. 5 shows that the batteries of Examples 1 to 3 maintain a high discharge capacity and prolong the charge / discharge cycle life even after repeated charge / discharge as compared with the batteries of Comparative Examples 1 and 2. This is for the following reasons. In general, the positive electrode material powder represented by the formula of Li x CoO 2 contracts and expands with the insertion and extraction of lithium ions when the battery is repeatedly charged and discharged. When such shrinkage and expansion are repeated, the electron conduction network formed of the conductive material in the positive electrode material layer collapses, and the cycle life characteristics deteriorate. However, in the batteries of Examples 1 to 3, since the conductive substance is firmly formed in the form of a thin film, even if the positive electrode material powder shrinks or expands, the electron conduction network is hard to collapse.

【0027】なお、上記各実施例では、非水電解質とし
て液体(非水電解液)のものを用いたが、リチウムイオ
ン伝導性固体非水電解質を非水電解質として用いてもよ
いのは勿論である。
In each of the above embodiments, a liquid (non-aqueous electrolyte) is used as the non-aqueous electrolyte. However, a lithium ion conductive solid non-aqueous electrolyte may be used as the non-aqueous electrolyte. is there.

【0028】[0028]

【発明の効果】本発明によれば、正極材粉末の表面に薄
膜の形態で導電性物質を固定するので、正極材粉末と導
電性物質との接触面積が大きくなり、LiNiO2 から
の電子の移動、またはLiNiO2 への電子の移動が速
やかになる。また、導電性物質の占める体積を小さくし
て、正極材粉末の正極材層への詰め込み量を増やすこと
ができる。そのため、電池の放電容量を十分に高めるこ
とができる。また、このような薄膜は、強固な構造を有
しているので、電池に充放電が繰り返されても、崩壊さ
れ難く、電池のサイクル寿命を延ばすことができる。
According to the present invention, since the conductive material is fixed in the form of a thin film on the surface of the positive electrode material powder, the contact area between the positive electrode material powder and the conductive material is increased, and the transfer of electrons from LiNiO 2 is increased. The transfer or the transfer of electrons to LiNiO 2 is accelerated. Further, the volume occupied by the conductive substance can be reduced, and the amount of the positive electrode material powder packed into the positive electrode material layer can be increased. Therefore, the discharge capacity of the battery can be sufficiently increased. In addition, since such a thin film has a strong structure, even if the battery is repeatedly charged and discharged, the thin film is hardly disintegrated, and the cycle life of the battery can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態のリチウムイオン二次電
池用正極板に用いる正極材粉末を製造する際の形態の一
例を説明するために用いる図である。
FIG. 1 is a view used to explain an example of a form when producing a positive electrode material powder used for a positive electrode plate for a lithium ion secondary battery according to an embodiment of the present invention.

【図2】 本発明の実施の形態のリチウムイオン二次電
池用正極板の正極材層の部分拡大図である。
FIG. 2 is a partially enlarged view of a positive electrode material layer of a positive electrode plate for a lithium ion secondary battery according to an embodiment of the present invention.

【図3】 試験に用いたリチウムイオン二次電池の概略
断面図である。
FIG. 3 is a schematic sectional view of a lithium ion secondary battery used for a test.

【図4】 試験に用いた電池の導電性物質の量と正極材
粉末(Lix CoO2)の重量との関係及び試験に用い
た電池に充放電を繰り返した場合の各電池の導電性物質
の量と放電容量との関係を示す図である。
FIG. 4 shows the relationship between the amount of the conductive material of the battery used in the test and the weight of the positive electrode material powder (Li x CoO 2 ), and the conductive material of each battery when the battery used in the test was repeatedly charged and discharged. FIG. 4 is a diagram showing the relationship between the amount of slag and the discharge capacity.

【図5】 試験に用いた電池の充放電サイクル回数と放
電容量との関係(充放電サイクル特性)を示す図であ
る。
FIG. 5 is a diagram showing a relationship between charge / discharge cycle times and discharge capacity (charge / discharge cycle characteristics) of a battery used in a test.

【符号の説明】[Explanation of symbols]

1 減圧容器 2 回転容器 3 カーボン電極 P 正極材粉末 11 正極材粉末 12 導電性薄膜 DESCRIPTION OF SYMBOLS 1 Decompression container 2 Rotating container 3 Carbon electrode P Cathode material powder 11 Cathode material powder 12 Conductive thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東本 晃二 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 (72)発明者 飯田 豊志 福井県福井市白方町45字砂浜割5番10号 株式会社田中化学研究所内 (72)発明者 牧野 哲司 福井県福井市白方町45字砂浜割5番10号 株式会社田中化学研究所内 (72)発明者 清川 忠 福井県福井市和田中1丁目414番地 清川 メッキ工業株式会社内 (72)発明者 清川 肇 福井県福井市和田中1丁目414番地 清川 メッキ工業株式会社内 (72)発明者 高島 正之 福井県福井市経田1丁目105番2号 (72)発明者 米沢 晋 福井県福井市乾徳3丁目8番25号 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koji Higashimoto 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd. No. 5-10 Inside Tanaka Chemical Laboratory Co., Ltd. (72) Inventor Tetsuji Makino 45 characters, Shirahamamachi, Shirakata-cho, Fukui City, Fukui Prefecture 5-10 Inside Tanaka Chemical Laboratory Co., Ltd. 1-414 Tanaka Inside Kiyokawa Plating Industry Co., Ltd. (72) Inventor Hajime Kiyokawa 1-4414 Wadanaka, Fukui City, Fukui Prefecture Inside 72 Kiyokawa Plating Industry Co., Ltd. No. 2 (72) Inventor Susumu Yonezawa 3-8-25, Inokutoku, Fukui City, Fukui Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化学式Lix y 2 (但しMはCo,
Ni,Mn,V,Fe,Tiのいずれかからなり、x は
0.2≦x ≦2.5の範囲であり、y は0.8≦y ≦
1.25の範囲である。)で示される正極材粉末を含有
する正極材層が集電体上に形成されてなり、 前記正極材粉末の表面に導電性物質が固定されているリ
チウムイオン二次電池用正極板において、 前記導電性物質は、前記正極材粉末の表面に薄膜の形態
で固定されていることを特徴とするリチウムイオン二次
電池用正極板。
1. A chemical formula Li x M y O 2 (where M is Co,
It consists of any of Ni, Mn, V, Fe, and Ti, x is in the range of 0.2 ≦ x ≦ 2.5, and y is 0.8 ≦ y ≦
1.25. A) a positive electrode material layer containing a positive electrode material powder represented by (4) is formed on a current collector, and a positive electrode plate for a lithium ion secondary battery in which a conductive substance is fixed on a surface of the positive electrode material powder; A positive electrode plate for a lithium ion secondary battery, wherein the conductive substance is fixed in a thin film form on the surface of the positive electrode material powder.
【請求項2】 前記導電性物質として炭素を用い、前記
薄膜は蒸着またはスパッタリングにより形成されている
ことを特徴とする請求項1に記載のリチウムイオン二次
電池用正極板。
2. The positive electrode plate of claim 1, wherein carbon is used as the conductive material, and the thin film is formed by vapor deposition or sputtering.
【請求項3】 前記導電性物質としてAl,Au,Ni
等の金属を用い、前記薄膜は蒸着またはスパッタリング
により形成されていることを特徴とする請求項1に記載
のリチウムイオン二次電池用正極板。
3. The method according to claim 1, wherein the conductive material is Al, Au, Ni.
The positive electrode plate for a lithium ion secondary battery according to claim 1, wherein the metal is used and the thin film is formed by vapor deposition or sputtering.
【請求項4】 前記導電性物質の前記正極材粉末に対す
る割合は0.1〜20体積%であることを特徴とする請
求項2または3に記載のリチウムイオン二次電池用正極
板。
4. The positive electrode plate for a lithium ion secondary battery according to claim 2, wherein a ratio of the conductive substance to the positive electrode material powder is 0.1 to 20% by volume.
【請求項5】 化学式Lix y 2 (但しMはCo,
Ni,Mn,V,Fe,Tiのいずれかからなり、x は
0.2≦x ≦2.5の範囲であり、y は0.8≦y ≦
1.25の範囲である。)で示される正極材粉末と、炭
酸エチレン及び炭酸ジエチルにLiPF6 を溶解した非
水電解質と、ポリフッ化ビニリデンからなるバインダと
を含有する正極材層がアルミ箔からなる集電体上に形成
されてなり、 前記正極材粉末の表面に炭素からなる導電性物質が固定
されているリチウムイオン二次電池用正極板において、 前記導電性物質は、前記正極材粉末の表面に蒸着または
スパッタリングにより形成された薄膜の形態で固定さ
れ、 前記導電性物質の前記正極材粉末に対する割合は0.1
〜20体積%であることを特徴とするリチウムイオン二
次電池用正極板。
5. The chemical formula Li x M y O 2 (where M is Co,
It consists of any of Ni, Mn, V, Fe, and Ti, x is in the range of 0.2 ≦ x ≦ 2.5, and y is 0.8 ≦ y ≦
1.25. ), A positive electrode material layer containing a nonaqueous electrolyte in which LiPF 6 is dissolved in ethylene carbonate and diethyl carbonate, and a binder made of polyvinylidene fluoride are formed on a current collector made of aluminum foil. In the positive electrode plate for a lithium ion secondary battery in which a conductive material made of carbon is fixed on the surface of the positive electrode material powder, the conductive material is formed on the surface of the positive electrode material powder by vapor deposition or sputtering. The ratio of the conductive material to the positive electrode material powder is 0.1
A positive electrode plate for a lithium ion secondary battery, wherein the content of the positive electrode plate is 20 to 20% by volume.
【請求項6】 化学式Lix y 2 (但しMはCo,
Ni,Mn,V,Fe,Tiのいずれかからなり、x は
0.2≦x ≦2.5の範囲であり、y は0.8≦y ≦
1.25の範囲である。)で示される正極材粉末を含有
する正極材層が正極集電体上に形成されている正極板
と、リチウムイオンを吸蔵放出する炭素材と非水電解質
とを含有する負極材層が負極集電体上に形成されている
負極板との間に非水電解質が介在し、 前記正極材粉末の表面に導電性物質が固定されているリ
チウムイオン二次電池において、 前記導電性物質は、前記正極材粉末の表面に薄膜の形態
で固定されているリチウムイオン二次電池。
6. Formula Li x M y O 2 (where M is Co,
It consists of any of Ni, Mn, V, Fe, and Ti, x is in the range of 0.2 ≦ x ≦ 2.5, and y is 0.8 ≦ y ≦
1.25. A) a positive electrode plate having a positive electrode material layer containing the positive electrode material powder shown on) formed on a positive electrode current collector; and a negative electrode material layer containing a carbon material that absorbs and releases lithium ions and a non-aqueous electrolyte. In a lithium ion secondary battery in which a nonaqueous electrolyte is interposed between a negative electrode plate formed on an electric body and a conductive material is fixed on a surface of the positive electrode material powder, the conductive material is A lithium ion secondary battery fixed in the form of a thin film on the surface of a positive electrode material powder.
JP10109300A 1998-04-20 1998-04-20 Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery Pending JPH11307083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10109300A JPH11307083A (en) 1998-04-20 1998-04-20 Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10109300A JPH11307083A (en) 1998-04-20 1998-04-20 Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JPH11307083A true JPH11307083A (en) 1999-11-05

Family

ID=14506702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10109300A Pending JPH11307083A (en) 1998-04-20 1998-04-20 Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JPH11307083A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231222A (en) * 2001-01-31 2002-08-16 Sanyo Electric Co Ltd Lithium secondary battery positive electrode, its manufacturing method, and lithium secondary battery using the same
KR100416098B1 (en) * 2001-12-18 2004-01-24 삼성에스디아이 주식회사 Cathode electrode, manufacturing method thereof, and lithium sulfur battery using the same
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
KR100869436B1 (en) 2003-01-08 2008-11-21 니폰 가가쿠 고교 가부시키가이샤 Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
JP2009099287A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Electrode material powder for secondary battery, and manufacturing method thereof
JP2009163989A (en) * 2008-01-07 2009-07-23 Sumitomo Electric Ind Ltd Lithium battery, positive electrode for lithium battery, and its manufacturing method
JP2012038554A (en) * 2010-08-06 2012-02-23 Amaz Techno-Consultant Llc Metal compound powder and method of manufacturing the same
JP2015088383A (en) * 2013-10-31 2015-05-07 三星電子株式会社Samsung Electronics Co.,Ltd. Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231222A (en) * 2001-01-31 2002-08-16 Sanyo Electric Co Ltd Lithium secondary battery positive electrode, its manufacturing method, and lithium secondary battery using the same
KR100416098B1 (en) * 2001-12-18 2004-01-24 삼성에스디아이 주식회사 Cathode electrode, manufacturing method thereof, and lithium sulfur battery using the same
KR100869436B1 (en) 2003-01-08 2008-11-21 니폰 가가쿠 고교 가부시키가이샤 Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
JP2009099287A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Electrode material powder for secondary battery, and manufacturing method thereof
JP2009163989A (en) * 2008-01-07 2009-07-23 Sumitomo Electric Ind Ltd Lithium battery, positive electrode for lithium battery, and its manufacturing method
JP2012038554A (en) * 2010-08-06 2012-02-23 Amaz Techno-Consultant Llc Metal compound powder and method of manufacturing the same
JP2015088383A (en) * 2013-10-31 2015-05-07 三星電子株式会社Samsung Electronics Co.,Ltd. Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN101207191B (en) Anode and battery
JP4701579B2 (en) Negative electrode for secondary battery
JP4126715B2 (en) Method for producing negative electrode material and method for producing secondary battery
JP4650603B2 (en) Anode material for secondary battery, method for producing the same, and secondary battery using the same
JP2001185127A (en) Lithium secondary battery
JP6690358B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery using the same
KR20090092104A (en) Electrode comprising niobium oxide and lithium battery using the same
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP3856525B2 (en) Secondary battery
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP2018026497A (en) Manufacturing method of power storage device and pre-doping method of power storage device
JPH0636800A (en) Lithium secondary battery
JPWO2015015883A1 (en) Lithium secondary battery and electrolyte for lithium secondary battery
JPH11307083A (en) Positive electrode plate for lithium-ion secondary battery and lithium-ion secondary battery
JP2000082471A (en) Lithium ion secondary battery and its manufacture
JP6500578B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPH06168722A (en) Nonaqueous electrolyte battery
JP2000294291A (en) Polymer electrolyte battery
JPH0945312A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using this
JPH11339856A (en) Manufacture of sheet-type lithium-ion secondary battery
JP2015099786A (en) Anode active material, anode containing the same, lithium battery adopting the same, and method of manufacturing the same
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP3363585B2 (en) Non-aqueous electrolyte battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP2011034919A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322