JP3856525B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP3856525B2
JP3856525B2 JP13138997A JP13138997A JP3856525B2 JP 3856525 B2 JP3856525 B2 JP 3856525B2 JP 13138997 A JP13138997 A JP 13138997A JP 13138997 A JP13138997 A JP 13138997A JP 3856525 B2 JP3856525 B2 JP 3856525B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
carbon
secondary battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13138997A
Other languages
Japanese (ja)
Other versions
JPH10321226A (en
Inventor
聡 柳瀬
知孝 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP13138997A priority Critical patent/JP3856525B2/en
Publication of JPH10321226A publication Critical patent/JPH10321226A/en
Application granted granted Critical
Publication of JP3856525B2 publication Critical patent/JP3856525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明はリチウムを吸蔵、放出できる活物質を用いた正極、負極、およびリチウムイオン移動媒体を有する二次電池に関するものである。
【0002】
【従来の技術】
近年、有機電解液を用いた二次電池、特にリチウムを用いた二次電池は高いエネルギー密度を有することから注目を集めている。機器の小型化、軽量化が可能なことから、リチウムイオン二次電池は、最近カメラ一体型VTRあるいは携帯電話等の携帯機器に多く使用されるようになってきた。現在、一般的に市販されているリチウムイオン二次電池は、正極活物質にコバルト酸リチウム等のリチウム複合酸化物、負極活物質にカーボンを用い、両極間をリチウムイオンが移動する事によって充放電を行う機構をとる。この時、活物質の単位容量あたり、また単位重量あたりのリチウム吸蔵、放出量が大きい程、高容量、高エネルギー密度の電池を得ることができ有利となる。しかしながらカーボン系の負極活物質は吸蔵、放出できるリチウムイオンの量に限界があることが知られており、また活物質の比重が小さいために電池缶に投入できる活物質の量も制限を受ける。このことは、より高容量、高エネルギー密度の電池を得るための障害となっている。
【0003】
このためカーボンに代わる負極活物質として金属または半金属あるいはそれらの合金を用いた二次電池が開示されている(例えば特開平5-159780号公報、特開平8-153517号公報、特開平8-153538号公報、第36回電池討論会要旨集147頁など)。これらの活物質は、カーボン系の活物質と比較して高い容量を示し、また単位体積あたりの重量が大きいため電池の高容量化には好適な素材である。これらの合金は、結晶中の隙間により多くのリチウムイオンを取り込むことができ、負極活物質として高い容量を示すものと考えられている。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの合金は高い容量を示すものの、充放電における充電容量と放電容量の比、すなわち充放電効率が低いという問題を抱えている。とりわけ初回の充放電においては、充電量と放電量の差、すなわち充電ロスが数百mAh/gにもおよぶ。この事実は、電池を組み立てる際に負極と組み合わせる正極活物質量の増加につながり、負極活物質単独の容量は高くても、電池にした場合の電池缶の容量、エネルギー密度が思うように向上しないという好ましくない結果を招く。
【0005】
本発明は上記の課題を解決し、高容量で充放電効率の高い負極活物質を用いた二次電池を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ね、次のような特徴を有した合金を負極活物質に用いることによってこの問題が解決されることを見出し本発明の完成に到った。
すなわち本発明は
(1)Li吸蔵可能な合金粒子を負極活物質とする二次電池において、該合金がその組成中にAl、Ge、Si、及びZnからなる群から選択されるいずれかを含む2種以上の金属あるいは金属と半金属からなる金属間化合物であって、該合金粒子は粒径が1〜50μmであり表面が炭素からなる層で被覆されていることを特徴とする二次電池。
(2)負極活物質の表面に被覆された炭素からなる層の厚みが5〜500nmである(1)の二次電池。
(3)負極活物質の表面に被覆された炭素からなる層をCVD処理により形成することを特徴とする(1)または(2)に記載の二次電池の製造方法。
(4)負極活物質の表面に被覆された炭素からなる層を基材の合金を有機物で被覆した後に焼成する事によって形成することを特徴とする(1)または(2)に記載の二次電池の製造方法。
である。
【0007】
本発明の第1の特徴は、Li吸蔵可能な合金を負極活物質とする二次電池において、負極活物質の表面が炭素からなる層で被覆されていることである。本発明における合金とは2種以上の金属、あるいは金属と半金属からなる化合物を指す。これら合金のうち、Li吸蔵可能な合金は前述のようにリチウムに対して高い吸蔵能力を示すが、なかでもその組成中にAl、Ge、Si、Znを含む合金は、カーボン系の負極活物質よりも高容量、高エネルギー密度であり、また繰り返し充放電を行ったときのサイクル特性にも優れている。これらの合金の表面を炭素で被覆することにより充放電時における充電ロスを減らし、充放電効率を向上させることができる。この理由は定かでないが、一般に充放電時の充電ロスは、充電時に負極活物質と電解液の間で電気化学的な反応が生じ、その時に消費される還元電流が充電ロスに相当すると考えられる。この時、活物質である合金粒子の表面に炭素からなる層が形成されていると、活物質と電解液が直接接触するのが妨げられ、充電ロスの原因となる電気化学的反応が抑制されるものと推定される。以下に本発明における合金の一例を具体的に例示する。
【0008】
Alを含有するものとしては、AlAs,Al2Au,AlAu2Mn,Al2Ca,Al2Ce,β−AlCo,γ’−AlCo3,AlCr2,θ−Al2Cu,AlCu2Mn,Al3Er,AlFe,AlFe3,Al3Ho,Al2La,Al3Mg4,Al8Mg5,AlMo3,AlNb3,AlNd,β−AlNi,γ’−AlNi3,AlNi2Ti,Al2Np,Al3Np,AlP,AlPd,Al2Pt,Al2Pu,AlSb,AlSc,AlTh2,Al2Th,Al2U,Al3U,Al2Y,Al3Yb,AlZr3,Al2Zrなどが挙げられる。
【0009】
Geを含有するものとしては、As3GeLi5,CoFeGe,CoGeMn,FeGe2,Fe1.7Ge,FeGeMn,FeGeNi,GeLi53,GeMg2,GeMnNi,GeMo3,β’−Ge2Mo,GeNb3,GeNi1.70,GeNi3,Ge3Pu,Ge3U,GeV3などが挙げられる。
Siを含有するものとしては、As3Li5Si,BeSiZr,CoSi2,β−Cr3Si,Cu3Mg2Si,Fe3Si,Li53Si,Mg2Si,MoSi2,Nb3Si,NiSi2,θ−Ni2Si,β−Ni3Si,ReSi2,α−RuSi,SiTa2,Si2Th,Si2U,β−Si2U,Si3U,SiV3,Si2W,SiZr2などが挙げられる。
【0010】
Znを含有するものとしては、AgAsZn,β−AgZn,AsLiZn,AsNaZn,β−AuZn,CeZn,β’−CuZn,EuZn,LaZn,LiPZn,MgNiZn,MgZn2,PrZn,Pt3Zn,PuZn2,Th2Zn,TiZn2,TiZn3,Zn2Zrなどが挙げられる。
これらの合金は各純元素を所定量秤量し混合したあと、不活性ガス雰囲気下で溶融混合して得られる。以上のような方法で得られた金属間化合物を公知の方法で粉砕、分級して合金粒子とする。この時の粒径は特に限定されないが、大きすぎると負極として用いた時の出力特性に支障をきたし、小さすぎると製造工程上現実的ではなくなるため1〜50μm、好ましくは5〜30μmに調整することが推奨される。
【0011】
このようにして得られた合金粒子の表面に炭素を被覆する。しかしながら合金粒子の表面に炭素からなる層を均一に被覆するのは、工業レベルでの生産を考えた場合に容易ではない。この方法についても、本発明者らは鋭意検討を重ねた結果、CVD処理による方法が有効であることを見出した。すなわち、本発明のもう一つの特徴は、基材となる合金の表面に炭素からなる層を被覆する際にCVD処理を用いることにある。本発明におけるCVD処理とは、基材となる合金粒子に有機化合物蒸気を高温条件下で一定時間導入し処理する方法を指す。この方法によれば、ガス状となった有機化合物が合金粒子表面に均一に拡散していき、表面に付着しながら炭化反応を起こすため、合金表面に炭素からなる層を均一な厚みに形成させることができる。ここで用いられる有機化合物には、高温下で炭素を形成させ易く、比較的沸点の低いものが好ましく、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブテン、ベンゼン、トルエン、エチルベンゼン、シクロヘキサン、シクロペンタンなどの炭化水素類またはその誘導体、あるいはジクロロメタン、ジクロロエタン、トリクロロメタン、トリクロロエタンなどのハロゲン化炭化水素類などが推奨される。なおここで形成される炭素の層は、本発明の効果を阻害しない程度、すなわち10wt%以下の範囲で炭素以外の元素を含むことができる。また処理温度は、導入される有機化合物の蒸気化とその炭化反応を促進する温度範囲および基材となる合金の融点を考慮して決定されるが400〜2000℃、好ましくは600〜1000℃が好適である。400℃以下の処理温度では合金表面での炭化反応が進みにくく、2000℃以上の温度では有機化合物蒸気が合金表面に到達する前に炭化してしまい、いずれの場合も均一な炭素層を形成しにくくなる。有機化合物蒸気を導入する方法については有機化合物を加温、蒸気化させた後、窒素や不活性ガスをキャリアーとして合金粒子を収納した容器に送り込む方法が簡便である。また被覆される炭素の厚みはCVD処理の時間を調整する事により調節する事ができる。本発明において被覆される炭素の厚みは、小さすぎると充放電効率向上の効果が十分でなく、また大きすぎると活物質以外の物質の重量を増加させることになり、電池缶のエネルギー密度の低下につながる。このため5〜500nm、好ましくは50〜200nmの範囲が推奨される。なお厚みの確認は、電子顕微鏡による観察、あるいは被覆前後の活物質の重量増加と炭素比重から算出が可能である。
【0012】
さらに本発明者らは基材となる合金表面に炭素からなる層を被覆する方法について、別の有効な方法を見出した。この方法は、基材となる合金粒子表面を有機物で被覆した後に焼成する事によって合金粒子の表面に炭素からなる層を形成させることを特徴とする。この方法は粘性の高い液状または固体状の有機化合物を適当な溶剤に溶解し溶液とし、この溶液に合金粒子を含浸させた後、過剰に付着した液を除去して、溶剤を蒸発させた後に焼成するものであり、CVD処理と同様の効果を示す。この時、粘性の高い液状または固体状の有機化合物としては石油ピッチ、タール、メソカーボンマイクロビーズ、ナフタレン、フェナントレン、ピレン、トリフェニレン、クリセン、コロネン、ペンタセンなどの炭化水素化合物およびその誘導体、フルフリルアルコール樹脂、アクリロニトリル樹脂、スチレン樹脂、塩化ビニル樹脂、フェノール樹脂などのポリマーまたはそのオリゴマーなどがあげられ、溶剤としてはアセトン、ベンゼン、キノリン等の比較的沸点が低く溶解力の高いものが適当である。また焼成温度としてはCVD処理と同様、炭化反応を促進する温度範囲として 400〜2000℃、好ましくは600〜1000℃が推奨される。400℃以下の処理温度では基材炭素表面での炭化反応が進みにくく、2000℃以上の温度では炭化反応と同時に有機化合物の分解が促進され、いずれの場合も炭素からなる層を形成しにくくなる。以上のようにして得られた表面を炭素で被覆された合金粒子は、高い容量と高い充放電効率を示し、リチウムイオン二次電池の負極活物質として優れた特性を示す。
【0013】
次に本発明における二次電池の電池構成について述べる。
本発明の二次電池に用いる負極は、電極集電体上に電極合剤層が形成されたものを用いる。このような電極は、本発明で得られる負極活物質と結着剤、必要に応じて導電フィラーを混合した電極合剤を溶剤に分散させることにより得られた電極合剤スラリーを電極集電体に塗工し、その後乾燥して得る。また必要に応じて、ローラープレスを行う。
【0014】
本発明の負極に用いる集電体としては特に限定されないが、Cu、Ni、ステンレススチールなどの10−100μ程度の厚みの金属製箔又は網などを用いる。結着剤としてはポリテトラフルオロエチレン、ポリトリフルオロエチレン、ポリエチレン、ニトリルゴム、ポリブタジエンゴム、ブチルゴム、ポリスチレン、スチレンブタジエンゴム、スチレンブタジエンラテックス、多硫化ゴム、ニトロセルロース、アクリロニトリルブタジエンゴム、ポリフッ化ビニル、ポリフッ化ビニリデンやフッ素ゴムなどが望ましいが、特に制限されない。
【0015】
また、活物質の電気抵抗が高い時は、導電性を上げるために導電フィラーを添加する事がある。導電フィラーとしては、黒鉛やカーボンブラックなどの炭素材料や、Cu,Fe,Tiなどの金属粉末を用いる。
本発明の負極と組み合わされる正極の活物質としては、化学組成式LixMyNzO2(Mはコバルト、ニッケル、マンガン及びその他の遷移金属から選ばれる少なくとも1種を表し、Nは非遷移金属の少なくとも一種を表わし、x,y,zは各々0.05<x<1.10、0.85≦y≦1.00、0≦z<0.10)で表わされるリチウム含有金属酸化物を用いることができる。これらは電位が高く、電池として高電圧が得られ、またサイクル性が良好である。上記のMとしてはCo、Ni、Mnの単独、及びCo/Ni、Mn/Cr、Mn/Feの複合が特に好ましい。上記のNとしては、非遷移金属であれば特に制限はないが、Al、In、Snが好ましい。また、Li(1+X)Mn(2−X)O4(0≦X≦1)で表わされる金属酸化物も用いる事ができる。TiS2、TiS3、MoS3、FeS2などの金属硫化物、V25、V613、MoO3などの金属酸化物などが挙げられる。正極の集電体としては、Al、Cu、Ni、ステンレススチールなどの10〜100μm程度の厚みの金属製箔又は網などを用いる事ができるが、リチウム含有遷移金属酸化物のような4V級の電位を有する活物質を用いる場合には、Al製の金属製箔又は網を用いる事が好ましい。
【0016】
本発明に用いられるリチウムイオン媒体としては、例えばリチウム塩を非プロトン性有機溶媒に溶解した溶液や、リチウム塩を高分子マトリックスに分散させた固体、或いはリチウム塩を非プロトン性有機溶媒に溶解した溶液と高分子マトリックスの混合物などが用いられる。前記有機溶媒は、エチレンカーボネートと、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの直鎖カーボネートが必須成分として含有している事が望ましい。その他エーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、スルホン系化合物、カーボネート類、エステル類などを含有していてもよい。これらの代表例としては、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチルラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルなどが挙げられるが、必ずしもこれらに限定されるものではない。前記リチウム塩としては、LiBF4,LiPF6,LiClO4,LiAsF6,CF3SO3Li,CH3SO3Li,LiI,LiP,LiCl,LiBr,(CF3SO2)2NLiなどがあげられる。また、前記高分子マトリックスとしては、例えばポリエチレンオキシド、ポリプロピレンオキシド、ポリテトラメチレンオキシド、ポリビニルアルコール、ポリビニルブチラールなどの脂肪族ポリエーテル、ポリエチレンスルフィド、ポリプロピレンスルフィドなどの脂肪族ポリチオエーテル、ポリエチレンサクシネート、ポリブチレンアジペート、ポリカプロラクトンなどの脂肪族ポリエステル、ポリエチレンイミン、ポリイミド、ポリフッ化ビニリデン、及びその前駆体などを用いることができる。
【0017】
また、正極と負極の間に、短絡防止のためのセパレータを設ける事ができる。セパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィンの単独の微多孔膜、或いはそれらを貼り合わせた膜や、ポリオレフィン、ポリエステル、ポリアミド、セルロースなどの不織布も単独で、或いは上記微多孔膜と貼り合わせた膜を使用できる。
【0018】
本発明の二次電池のその他構成要素として、端子、絶縁板、金属缶等の部品が用いられる事がある。また、本発明を電池缶として使用する場合には、材質としてステンレススチール、ニッケル鍍金スチール、鉄、アルミニウムなどを用いる。
電池の構造としては、特に限定されないが、正極、負極とセパレータを単層又は復層としたペーパー型電池、積層型電池、又は正極、負極とセパレータをロール状に巻いた円筒状や、角形状電池などの形態が挙げられる。
【0019】
【発明の実施の形態】
以下、実施例、比較例により本発明をさらに詳しく説明するが、本発明の範囲はこれに限定されるものではない。
【0020】
【実施例1〜8】
負極活物質として、AlFe3,AlNi3,GeMg2,GeNi3,Mg2Si,NiSi2,SiV3,TiZn2を用いた例を示す。
上記活物質の各純元素を量論比どうりに秤量し混合した粉末を、アルゴン雰囲気下にて電気炉で、表1に示す各温度で約2時間熱処理し、冷却、固化させて、板状の合金を得た。この板状物をハンマーで砕いた粗粉を、サンプルミルにて粉末状にし、これを400メッシュで篩って平均粒径約10μmの微粉末を得た。
【0021】
得られた合金粉末50gをロータリーキルン式の焼成炉内に仕込み、炉内に保ちつつ一定速度で回転させながら窒素をキャリァーガスとしてトルエン蒸気を炉内に供給した。700℃で2時間反応させた後、トルエンの供給を停止し、炉を冷却させてCVD処理された合金粉末を取り出し負極用の活物質とした。
前記のように作製した表面に炭素が被覆された合金粒子42wt%、導電フィラーとして鱗片状黒鉛(ロンザ(株)社製KS6)4wt%、アセチレンブラック(電気化学工業(株)社製デンカブラック)2wt%、結着剤としてポリフッ化ビニリデン溶液(呉羽化学工業(株)社製クレハKFポリマー#9130をN−メチル−2−ピロリドンに固形分率13wt%で溶解した液、以下PVdF溶液)を36wt%、N−メチル−2−ピロリドン(以下、NMP)を16wt%を各々添加したものをスリーワンモーターにて混合、攪拌して電極合剤スラリーを得た。そして、このスラリーを集電体である12μm厚の銅箔上に塗工、乾燥した後、150℃にてローラープレスを行なって、負極集電体と負極合剤層からなる膜厚約30μmの負極を得た。
【0022】
次に以下のようにして正極を作製した。平均粒径3μmのLiCoO2100重量部に対し、導電剤としてグラファイト5重量部、結着剤としてポリフッ化ビニリデンを溶解したジメチルホルムアミド溶液(5wt%)100重量部を加え、混合、攪拌してスラリーを得た。そして、このスラリーを集電体である15μm厚のAl箔上に塗工、乾燥後、プレス成形する事で、集電体と正極合剤層からなる正極を作製した。
【0023】
負極単独の性能をみるため、以下のように負極電位をコントロールして充放電評価を行った。上記のように得た正極と負極について、各々2.00cm2と2.05cm2に打ち抜き、集電体を溶接した各電極をポリエチレン製微多孔膜を介して向かい合うようにし、ガラス板及びクリップにて挟み込んだ。そして、正極及び負極の集電体を短絡しないようにガラス製試験セルの鰐口クリップにはさんだ後、負極近傍にくるように参照極であるリチウム金属をセットした。一方、エチレンカ−ボネ−トとメチルエチルカーボネートを体積割合で1:2に混合した溶媒に1モル/リットルで電解質LiPF6を溶解させた、モレキュラーシーブスで脱水して電解液を作製した。この電解液を十分水分を除去した前記ガラス製試験セルに極低湿度下で滴下した後、10時間放置し十分に含浸させた。
【0024】
このようにして得た試験セルの充放電試験は、参照極からみた負極の電位をコントロールする事により行う。ここでいう充電とは負極がリチウムイオンを吸蔵する方向であり、逆に放電とはリチウムイオンを放出する方向である。なお、正極活物質は、負極のリチウムイオン吸蔵量をまかなえるだけ十分な量を塗布してある。充電は電流密度1mA/cm2、10mV、24時間定電圧充電を行い、放電は電流密度1mA/cm2の1.2V定電流カットオフ放電を行った。この結果及び使用した負極の合剤層体積から負極合剤層の単位体積当たりの充放電量、及び充放電効率(=(放電量/充電量)×100)を求めた。結果を表1に示した。
【0025】
【実施例9〜16】
実施例1〜8と同様の合金粉末50gを、石油ピッチのアセトン溶液(重量濃度20%)に浸せきした後、過剰に付着した液を除去してからロータリーキルン式の焼成炉内に仕込み、窒素をパージガスとし、室温で60分、炉を一定速度で回転させたあと、炉内を600℃に昇温し一定速度で回転させながら焼成した。180分反応させた後、炉を冷却させて処理された合金粉末を取り出した。これを負極活物質として実施例1〜8と同様に評価を行った。結果を表1に示した。
【0026】
【比較例1〜8】
実施例1〜8においてCVD処理を施さないままの合金粒子を負極活物質として用いる以外は、実施例1〜8と同様の評価を行った。結果を表1に示した。
【0027】
【表1】

Figure 0003856525
【0028】
【発明の効果】
以上のようにLi吸蔵可能な合金に、本発明による処理を施した負極活物質を用いた二次電池は、高い容量を維持しながら充放電効率を向上することができ、高エネルギー密度の二次電池が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery having a positive electrode, a negative electrode, and a lithium ion transfer medium using an active material capable of inserting and extracting lithium.
[0002]
[Prior art]
In recent years, secondary batteries using an organic electrolyte, particularly secondary batteries using lithium, have attracted attention because of their high energy density. Since it is possible to reduce the size and weight of devices, lithium ion secondary batteries have recently been widely used in portable devices such as camera-integrated VTRs and mobile phones. Currently, commercially available lithium ion secondary batteries use a lithium composite oxide such as lithium cobaltate as the positive electrode active material and carbon as the negative electrode active material, and charge and discharge by moving lithium ions between the two electrodes. Take the mechanism to do. At this time, as the amount of lithium occlusion and release per unit capacity and unit weight of the active material increases, a battery having a high capacity and high energy density can be obtained, which is advantageous. However, it is known that a carbon-based negative electrode active material has a limit in the amount of lithium ions that can be occluded and released, and since the specific gravity of the active material is small, the amount of active material that can be put into a battery can is also limited. This is an obstacle to obtaining a battery with a higher capacity and a higher energy density.
[0003]
For this reason, secondary batteries using metals, metalloids, or alloys thereof as negative electrode active materials instead of carbon have been disclosed (for example, JP-A-5-159780, JP-A-8-153517, and JP-A-8-81). 153538 gazette, 36th battery debate abstract, page 147). These active materials are high in capacity compared with carbon-based active materials, and have a large weight per unit volume, so that they are suitable materials for increasing the capacity of batteries. These alloys are considered to be able to take in more lithium ions through the gaps in the crystal and exhibit a high capacity as a negative electrode active material.
[0004]
[Problems to be solved by the invention]
However, although these alloys show high capacity, they have a problem that the ratio of charge capacity to discharge capacity in charge / discharge, that is, charge / discharge efficiency is low. In particular, in the first charge / discharge, the difference between the charge amount and the discharge amount, that is, the charge loss reaches several hundred mAh / g. This fact leads to an increase in the amount of the positive electrode active material combined with the negative electrode when assembling the battery. Even if the capacity of the negative electrode active material alone is high, the capacity and energy density of the battery can when the battery is made do not improve as expected. This leads to an undesirable result.
[0005]
This invention solves said subject and provides the secondary battery using the negative electrode active material with high capacity | capacitance and high charging / discharging efficiency.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies to solve the above problems, and found that this problem can be solved by using an alloy having the following characteristics for the negative electrode active material, thereby completing the present invention. It was.
That is, the present invention includes (1) a secondary battery using Li-absorbable alloy particles as a negative electrode active material, wherein the alloy includes any one selected from the group consisting of Al, Ge, Si, and Zn in its composition. A secondary battery comprising an intermetallic compound composed of two or more metals or a metal and a semimetal, wherein the alloy particles have a particle diameter of 1 to 50 μm and the surface is coated with a layer composed of carbon. .
(2) The secondary battery according to (1), wherein the thickness of the carbon layer coated on the surface of the negative electrode active material is 5 to 500 nm.
(3) The method for producing a secondary battery as described in (1) or (2), wherein a layer made of carbon coated on the surface of the negative electrode active material is formed by a CVD process.
(4) The secondary layer according to (1) or (2), wherein the layer made of carbon coated on the surface of the negative electrode active material is formed by coating the base alloy with an organic substance and then firing the layer. Battery manufacturing method.
It is.
[0007]
The first feature of the present invention is that, in a secondary battery using a Li-occlusion alloy as a negative electrode active material, the surface of the negative electrode active material is covered with a layer made of carbon. The alloy in the present invention refers to a compound composed of two or more metals or a metal and a semimetal. Among these alloys, an alloy capable of occluding Li has a high occluding capacity with respect to lithium as described above. Among them, an alloy containing Al, Ge, Si, Zn in its composition is a carbon-based negative electrode active material. It has higher capacity and higher energy density than the above, and is excellent in cycle characteristics when repeatedly charged and discharged. By covering the surface of these alloys with carbon, charge loss during charge / discharge can be reduced, and charge / discharge efficiency can be improved. The reason for this is not clear, but in general, the charge loss during charge / discharge is considered to be caused by an electrochemical reaction between the negative electrode active material and the electrolyte during charge, and the reduction current consumed at that time corresponds to the charge loss. . At this time, if a layer made of carbon is formed on the surface of the alloy particles as the active material, direct contact between the active material and the electrolyte is prevented, and the electrochemical reaction that causes charge loss is suppressed. It is estimated that. Hereinafter, an example of the alloy in the present invention will be specifically exemplified.
[0008]
Examples of the material containing Al include AlAs, Al 2 Au, AlAu 2 Mn, Al 2 Ca, Al 2 Ce, β-AlCo, γ′-AlCo 3 , AlCr 2 , θ-Al 2 Cu, AlCu 2 Mn, Al 3 Er, AlFe, AlFe 3 , Al 3 Ho, Al 2 La, Al 3 Mg 4 , Al 8 Mg 5 , AlMo 3 , AlNb 3 , AlNd, β-AlNi, γ'-AlNi 3 , AlNi 2 Ti, Al 2 Np, Al 3 Np, AlP, AlPd, Al 2 Pt, Al 2 Pu, AlSb, AlSc, AlTh 2, Al 2 Th, Al 2 U, Al 3 U, Al 2 Y, Al 3 Yb, AlZr 3, Al 2 Zr etc. are mentioned.
[0009]
Examples of the material containing Ge include As 3 GeLi 5 , CoFeGe, CoGeMn, FeGe 2 , Fe 1.7 Ge, FeGeMn, FeGeNi, GeLi 5 P 3 , GeMg 2 , GeMnNi, GeMo 3 , β′-Ge 2 Mo, GeNb 3. , GeNi 1.70 , GeNi 3 , Ge 3 Pu, Ge 3 U, GeV 3 and the like.
Examples of materials containing Si include As 3 Li 5 Si, BeSiZr, CoSi 2 , β-Cr 3 Si, Cu 3 Mg 2 Si, Fe 3 Si, Li 5 P 3 Si, Mg 2 Si, MoSi 2 , and Nb 3. Si, NiSi 2 , θ-Ni 2 Si, β-Ni 3 Si, ReSi 2 , α-RuSi, SiTa 2 , Si 2 Th, Si 2 U, β-Si 2 U, Si 3 U, SiV 3 , Si 2 W, SiZr 2 and the like.
[0010]
Examples of Zn-containing materials include AgAsZn, β-AgZn, AsLiZn, AsNaZn, β-AuZn, CeZn, β′-CuZn, EuZn, LaZn, LiPZn, MgNiZn, MgZn 2 , PrZn, Pt 3 Zn, PuZn 2 and Th. 2 Zn, TiZn 2, TiZn 3 , such as Zn 2 Zr and the like.
These alloys are obtained by weighing and mixing a predetermined amount of each pure element and then melting and mixing in an inert gas atmosphere. The intermetallic compound obtained by the above method is pulverized and classified by a known method to obtain alloy particles. The particle size at this time is not particularly limited, but if it is too large, the output characteristics when used as a negative electrode will be hindered, and if it is too small, it will be impractical in the production process, so it is adjusted to 1-50 μm, preferably 5-30 μm. It is recommended.
[0011]
The surface of the alloy particles thus obtained is coated with carbon. However, it is not easy to uniformly coat the layer of carbon on the surface of the alloy particles when considering production at an industrial level. With regard to this method as well, the present inventors have made extensive studies and found that the method using the CVD process is effective. That is, another feature of the present invention is that a CVD process is used when a layer made of carbon is coated on the surface of an alloy serving as a base material. The CVD treatment in the present invention refers to a method in which an organic compound vapor is introduced into alloy particles serving as a base material for a certain period of time under high temperature conditions. According to this method, the gaseous organic compound diffuses uniformly on the surface of the alloy particles and causes a carbonization reaction while adhering to the surface of the alloy particles, so that a layer of carbon is formed on the alloy surface with a uniform thickness. be able to. The organic compounds used here are preferably those having a relatively low boiling point that are easy to form carbon at high temperatures. Methane, ethane, propane, butane, ethylene, propylene, butene, benzene, toluene, ethylbenzene, cyclohexane, cyclohexane Hydrocarbons such as pentane or derivatives thereof, or halogenated hydrocarbons such as dichloromethane, dichloroethane, trichloromethane, and trichloroethane are recommended. The carbon layer formed here can contain an element other than carbon within a range that does not impair the effects of the present invention, that is, in a range of 10 wt% or less. The processing temperature is determined in consideration of the temperature range for promoting vaporization of the introduced organic compound and its carbonization reaction, and the melting point of the alloy as the base material, but is 400 to 2000 ° C, preferably 600 to 1000 ° C. Is preferred. At a treatment temperature of 400 ° C. or less, the carbonization reaction on the alloy surface hardly proceeds, and at a temperature of 2000 ° C. or more, the organic compound vapor is carbonized before reaching the alloy surface, and in any case, a uniform carbon layer is formed. It becomes difficult. As a method for introducing the organic compound vapor, a method is simple in which the organic compound is heated and vaporized and then fed into a container containing alloy particles using nitrogen or an inert gas as a carrier. The thickness of the carbon to be coated can be adjusted by adjusting the CVD processing time. If the thickness of the carbon coated in the present invention is too small, the effect of improving the charge / discharge efficiency is not sufficient, and if it is too large, the weight of a substance other than the active material is increased, and the energy density of the battery can is reduced. Leads to. Therefore, a range of 5 to 500 nm, preferably 50 to 200 nm is recommended. The thickness can be confirmed by observation with an electron microscope, or by calculating the weight increase and carbon specific gravity of the active material before and after coating.
[0012]
Furthermore, the present inventors have found another effective method for coating a layer made of carbon on the surface of an alloy serving as a base material. This method is characterized in that a layer made of carbon is formed on the surface of the alloy particles by firing after coating the surface of the alloy particles as a base material with an organic substance. In this method, a highly viscous liquid or solid organic compound is dissolved in an appropriate solvent to form a solution, and after impregnating the alloy particles with this solution, the excessively adhered liquid is removed and the solvent is evaporated. It is fired and shows the same effect as the CVD process. At this time, liquid compounds or solid organic compounds having high viscosity include petroleum pitch, tar, mesocarbon microbeads, hydrocarbon compounds such as naphthalene, phenanthrene, pyrene, triphenylene, chrysene, coronene, pentacene, and derivatives thereof, and furfuryl alcohol. Examples thereof include polymers such as resins, acrylonitrile resins, styrene resins, vinyl chloride resins, phenol resins or oligomers thereof, and solvents having a relatively low boiling point and a high solubility, such as acetone, benzene, and quinoline, are suitable. As the baking temperature, the temperature range for promoting the carbonization reaction is recommended to be 400 to 2000 ° C., preferably 600 to 1000 ° C. as in the case of the CVD treatment. At a treatment temperature of 400 ° C. or lower, the carbonization reaction on the substrate carbon surface is difficult to proceed, and at a temperature of 2000 ° C. or higher, the decomposition of the organic compound is promoted simultaneously with the carbonization reaction, and in any case, it becomes difficult to form a layer made of carbon. . The alloy particles obtained by coating the surface with carbon as described above exhibit high capacity and high charge / discharge efficiency, and exhibit excellent characteristics as a negative electrode active material for a lithium ion secondary battery.
[0013]
Next, the battery configuration of the secondary battery in the present invention will be described.
As the negative electrode used in the secondary battery of the present invention, one in which an electrode mixture layer is formed on an electrode current collector is used. In such an electrode, an electrode mixture slurry obtained by dispersing an electrode mixture obtained by mixing the negative electrode active material obtained in the present invention, a binder, and, if necessary, a conductive filler in a solvent is used as an electrode current collector. And then dried to obtain. If necessary, a roller press is performed.
[0014]
Although it does not specifically limit as a collector used for the negative electrode of this invention, Metal foil or a net | network of about 10-100 micrometers thickness, such as Cu, Ni, stainless steel, etc. are used. Binders include polytetrafluoroethylene, polytrifluoroethylene, polyethylene, nitrile rubber, polybutadiene rubber, butyl rubber, polystyrene, styrene butadiene rubber, styrene butadiene latex, polysulfide rubber, nitrocellulose, acrylonitrile butadiene rubber, polyvinyl fluoride, Polyvinylidene fluoride and fluororubber are desirable, but are not particularly limited.
[0015]
Further, when the electrical resistance of the active material is high, a conductive filler may be added to increase conductivity. As the conductive filler, a carbon material such as graphite or carbon black, or a metal powder such as Cu, Fe, or Ti is used.
As an active material of the positive electrode combined with the negative electrode of the present invention, the chemical composition formula LixMyNzO 2 (M represents at least one selected from cobalt, nickel, manganese and other transition metals, and N represents at least one non-transition metal) X, y, and z can be lithium-containing metal oxides represented by 0.05 <x <1.10, 0.85 ≦ y ≦ 1.00, and 0 ≦ z <0.10, respectively. . These have a high potential, a high voltage can be obtained as a battery, and the cycleability is good. As the above M, Co, Ni, Mn alone and a composite of Co / Ni, Mn / Cr, Mn / Fe are particularly preferable. N is not particularly limited as long as it is a non-transition metal, but Al, In, and Sn are preferable. A metal oxide represented by Li (1 + X) Mn (2-X) O4 (0 ≦ X ≦ 1) can also be used. Examples thereof include metal sulfides such as TiS 2 , TiS 3 , MoS 3 and FeS 2, and metal oxides such as V 2 O 5 , V 6 O 13 and MoO 3 . As the current collector of the positive electrode, a metal foil or net having a thickness of about 10 to 100 μm such as Al, Cu, Ni, stainless steel, etc. can be used. When using an active material having a potential, it is preferable to use a metal foil or net made of Al.
[0016]
Examples of the lithium ion medium used in the present invention include a solution in which a lithium salt is dissolved in an aprotic organic solvent, a solid in which a lithium salt is dispersed in a polymer matrix, or a lithium salt dissolved in an aprotic organic solvent. A mixture of a solution and a polymer matrix is used. The organic solvent preferably contains ethylene carbonate and linear carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate as essential components. In addition, ethers, ketones, lactones, nitriles, amines, amides, sulfone compounds, carbonates, esters and the like may be contained. Typical examples of these include propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyllactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether , Sulfolane, methylsulfolane, acetonitrile, propionitrile and the like, but are not necessarily limited thereto. Examples of the lithium salt include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiI, LiP, LiCl, LiBr, (CF 3 SO 2 ) 2 NLi, and the like. . Examples of the polymer matrix include aliphatic polyethers such as polyethylene oxide, polypropylene oxide, polytetramethylene oxide, polyvinyl alcohol and polyvinyl butyral, aliphatic polythioethers such as polyethylene sulfide and polypropylene sulfide, polyethylene succinate, poly Aliphatic polyesters such as butylene adipate and polycaprolactone, polyethyleneimine, polyimide, polyvinylidene fluoride, and precursors thereof can be used.
[0017]
Further, a separator for preventing a short circuit can be provided between the positive electrode and the negative electrode. As the separator, a single microporous film of polyolefin such as polyethylene or polypropylene, a film obtained by bonding them, or a non-woven fabric such as polyolefin, polyester, polyamide, or cellulose, or a film bonded with the above microporous film. Can be used.
[0018]
As other components of the secondary battery of the present invention, parts such as a terminal, an insulating plate, and a metal can may be used. When the present invention is used as a battery can, stainless steel, nickel-plated steel, iron, aluminum or the like is used as a material.
The structure of the battery is not particularly limited, but is a paper-type battery, a laminated battery, or a positive electrode, a negative electrode and a separator, each of which has a positive electrode, a negative electrode, and a separator. Examples include a battery.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, the scope of the present invention is not limited to this.
[0020]
Examples 1-8
An example in which AlFe 3 , AlNi 3 , GeMg 2 , GeNi 3 , Mg 2 Si, NiSi 2 , SiV 3 , and TiZn 2 are used as the negative electrode active material will be described.
A powder obtained by weighing and mixing each pure element of the above active material in a stoichiometric ratio is heat-treated at each temperature shown in Table 1 for about 2 hours in an electric furnace in an argon atmosphere, cooled and solidified, A shaped alloy was obtained. The coarse powder obtained by pulverizing the plate-like material with a hammer was powdered with a sample mill, and sieved with 400 mesh to obtain a fine powder having an average particle size of about 10 μm.
[0021]
50 g of the obtained alloy powder was charged into a rotary kiln type firing furnace, and toluene vapor was supplied into the furnace using nitrogen as a carrier gas while rotating in a furnace at a constant speed. After reacting at 700 ° C. for 2 hours, the supply of toluene was stopped, the furnace was cooled, and the alloy powder subjected to CVD treatment was taken out and used as an active material for a negative electrode.
42 wt% of alloy particles whose surface is coated with carbon as described above, flaky graphite (KS6 manufactured by Lonza Co., Ltd.) 4 wt% as conductive filler, acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) 2 wt%, 36 wt% of a polyvinylidene fluoride solution (Kureha KF Co., Ltd. Kureha KF polymer # 9130 dissolved in N-methyl-2-pyrrolidone at a solid content of 13 wt%, hereinafter referred to as PVdF solution) as a binder %, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) added in an amount of 16 wt% was mixed and stirred by a three-one motor to obtain an electrode mixture slurry. And after apply | coating this slurry on the 12-micrometer-thick copper foil which is a collector, and drying, roller press is performed at 150 degreeC, and the film thickness of about 30 micrometer which consists of a negative electrode collector and a negative mix layer is formed. A negative electrode was obtained.
[0022]
Next, a positive electrode was produced as follows. To 100 parts by weight of LiCoO 2 having an average particle size of 3 μm, 5 parts by weight of graphite as a conductive agent and 100 parts by weight of a dimethylformamide solution (5 wt%) in which polyvinylidene fluoride is dissolved as a binder are added, mixed and stirred to form a slurry. Got. The slurry was coated on a 15 μm-thick Al foil as a current collector, dried, and press-molded to produce a positive electrode composed of the current collector and a positive electrode mixture layer.
[0023]
In order to see the performance of the negative electrode alone, charge / discharge evaluation was performed by controlling the negative electrode potential as follows. The positive electrode and the negative electrode obtained as described above were punched out to 2.00 cm 2 and 2.05 cm 2 , respectively, and the respective electrodes welded with the current collectors were opposed to each other through a polyethylene microporous film, and were attached to a glass plate and a clip. I caught it. Then, a lithium metal as a reference electrode was set so as to be near the negative electrode after being sandwiched between the mouth clip of the glass test cell so as not to short-circuit the positive and negative electrode current collectors. On the other hand, electrolyte solution was prepared by dehydrating with molecular sieves in which electrolyte LiPF 6 was dissolved at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2. This electrolytic solution was dropped into the glass test cell from which moisture had been sufficiently removed under extremely low humidity, and then allowed to stand for 10 hours to be sufficiently impregnated.
[0024]
The charge / discharge test of the test cell thus obtained is performed by controlling the potential of the negative electrode viewed from the reference electrode. Charging here is the direction in which the negative electrode occludes lithium ions, and conversely, discharging is the direction in which lithium ions are released. The positive electrode active material is applied in an amount sufficient to cover the lithium ion occlusion amount of the negative electrode. Charging was performed at a constant current of 1 mA / cm 2 and 10 mV for 24 hours, and discharging was performed at 1.2 V constant current cutoff discharge at a current density of 1 mA / cm 2 . The charge / discharge amount per unit volume of the negative electrode mixture layer and the charge / discharge efficiency (= (discharge amount / charge amount) × 100) were determined from this result and the mixture layer volume of the negative electrode used. The results are shown in Table 1.
[0025]
Examples 9 to 16
After immersing 50 g of the same alloy powder as in Examples 1 to 8 in a petroleum pitch acetone solution (weight concentration 20%), the excess adhering liquid was removed, and then charged into a rotary kiln-type firing furnace. A purge gas was used, and the furnace was rotated at a constant speed for 60 minutes at room temperature, and then the furnace was heated to 600 ° C. and fired while rotating at a constant speed. After reacting for 180 minutes, the furnace was cooled and the treated alloy powder was taken out. This was evaluated in the same manner as in Examples 1 to 8 using the negative electrode active material. The results are shown in Table 1.
[0026]
[Comparative Examples 1-8]
The same evaluation as in Examples 1 to 8 was performed except that the alloy particles that were not subjected to the CVD treatment in Examples 1 to 8 were used as the negative electrode active material. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0003856525
[0028]
【The invention's effect】
As described above, the secondary battery using the negative electrode active material obtained by performing the treatment according to the present invention on the Li-occlusion alloy can improve the charge / discharge efficiency while maintaining a high capacity, and has a high energy density. A secondary battery is obtained.

Claims (4)

Li吸蔵可能な合金粒子を負極活物質とする二次電池において、該合金がその組成中にAl、Ge、Si、及びZnからなる群から選択されるいずれかを含む2種以上の金属あるいは金属と半金属からなる金属間化合物であって、該合金粒子は粒径が1〜50μmであり表面が炭素からなる層で被覆されていることを特徴とする二次電池。In a secondary battery in which Li-occluded alloy particles are used as a negative electrode active material, the alloy includes two or more metals or metals including any one selected from the group consisting of Al, Ge, Si, and Zn in the composition A secondary battery , wherein the alloy particles have a particle diameter of 1 to 50 μm and the surface is coated with a layer made of carbon. 負極活物質の表面に被覆された炭素からなる層の厚みが5〜500nmである請求項1記載の二次電池。The secondary battery according to claim 1, wherein the thickness of the layer made of carbon coated on the surface of the negative electrode active material is 5 to 500 nm. 負極活物質の表面に被覆された炭素からなる層をCVD処理により形成することを特徴とする請求項1または2に記載の二次電池の製造方法 3. The method of manufacturing a secondary battery according to claim 1, wherein a layer made of carbon coated on a surface of the negative electrode active material is formed by a CVD process . 負極活物質の表面に被覆された炭素からなる層を基材の合金を有機物で被覆した後に焼成する事によって形成することを特徴とする請求項1または2に記載の二次電池の製造方法 The method for producing a secondary battery according to claim 1 or 2, wherein the layer made of carbon coated on the surface of the negative electrode active material is formed by coating the base alloy with an organic substance and then firing .
JP13138997A 1997-05-21 1997-05-21 Secondary battery Expired - Fee Related JP3856525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13138997A JP3856525B2 (en) 1997-05-21 1997-05-21 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13138997A JP3856525B2 (en) 1997-05-21 1997-05-21 Secondary battery

Publications (2)

Publication Number Publication Date
JPH10321226A JPH10321226A (en) 1998-12-04
JP3856525B2 true JP3856525B2 (en) 2006-12-13

Family

ID=15056825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13138997A Expired - Fee Related JP3856525B2 (en) 1997-05-21 1997-05-21 Secondary battery

Country Status (1)

Country Link
JP (1) JP3856525B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619000B2 (en) * 1997-01-28 2005-02-09 キヤノン株式会社 Electrode structure, secondary battery, and manufacturing method thereof
JP3661417B2 (en) * 1998-06-18 2005-06-15 宇部興産株式会社 Non-aqueous secondary battery
EP1054462A4 (en) * 1998-12-03 2006-09-06 Kao Corp Lithium secondary cell and method for manufacturing the same
JP4393610B2 (en) * 1999-01-26 2010-01-06 日本コークス工業株式会社 Negative electrode material for lithium secondary battery, lithium secondary battery, and charging method of the secondary battery
JP3579280B2 (en) * 1999-01-29 2004-10-20 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP4449094B2 (en) 1999-02-22 2010-04-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100359053B1 (en) * 2000-04-17 2002-11-07 한국과학기술연구원 Fabrication of carbon materials modified by fluidized bed cvd, carbon electrode and lithium secondary batteries
JP2004063433A (en) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
JP2003308837A (en) * 2002-04-18 2003-10-31 Shin Etsu Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method
JP4385589B2 (en) * 2002-11-26 2009-12-16 昭和電工株式会社 Negative electrode material and secondary battery using the same
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
EP2302720B1 (en) * 2003-03-26 2012-06-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure including the same
JP3995050B2 (en) * 2003-09-26 2007-10-24 Jfeケミカル株式会社 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5256403B2 (en) * 2004-09-06 2013-08-07 有限会社ジーイーエム Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof
JP5680351B2 (en) * 2010-08-06 2015-03-04 Amaz技術コンサルティング合同会社 Metal compound powder and method for producing the same
JP2012079470A (en) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US20160181601A1 (en) 2013-07-23 2016-06-23 Nippon Steel & Sumitomo Metal Corporation Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP6252119B2 (en) * 2013-11-11 2017-12-27 株式会社Gsユアサ Non-aqueous electrolyte storage element

Also Published As

Publication number Publication date
JPH10321226A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
JP3856525B2 (en) Secondary battery
JP3805053B2 (en) Lithium secondary battery
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
US20220006131A1 (en) Functional separator having catalytic sites introduced thereinto, manufacturing method therefor, and lithium secondary battery comprising same
JP2001185147A (en) Secondary battery using nonaqueous electrolytic solution
JPH04162357A (en) Nonaqueous secondary battery
US20230361276A1 (en) Sulfur-carbon composite manufacturing method, sulfur-carbon composite manufactured thereby, cathode comprising same sulfur-carbon composite, and lithium secondary battery comprising same cathode
CN113841277A (en) Lithium-sulfur secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
US11811018B2 (en) Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
JP6844236B2 (en) Manufacturing method of carbonaceous material
JP7100158B2 (en) Functional separation membrane, its manufacturing method and lithium secondary battery containing it
JP2003151627A (en) Battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JP3555261B2 (en) Battery electrolyte and battery
JP2003242979A (en) Electrode material and lithium battery using the same
JP2002313320A (en) Nonaqueous secondary battery
US11936064B2 (en) Functional separator, method for manufacturing the same, and lithium secondary battery comprising the same
JPH10233206A (en) Nonaqueous electrolyte secondary battery
US10964932B2 (en) Method for manufacturing an electrode for a lithium-sulfur battery having a large active surface area
JP3517117B2 (en) Lithium secondary battery
JP2000133308A (en) Non-aqueous secondary battery
JP2001229916A (en) Nonaqueous electrolyte secondary battery
JPH05182691A (en) Nonaqueous electrolyte secondary battery
KR20210010335A (en) Lithium-sulfur secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees