JPH11279642A - Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation

Info

Publication number
JPH11279642A
JPH11279642A JP8399298A JP8399298A JPH11279642A JP H11279642 A JPH11279642 A JP H11279642A JP 8399298 A JP8399298 A JP 8399298A JP 8399298 A JP8399298 A JP 8399298A JP H11279642 A JPH11279642 A JP H11279642A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
grain
annealing
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8399298A
Other languages
Japanese (ja)
Inventor
Shinya Hayashi
申也 林
Hiroyasu Fujii
浩康 藤井
Norihiro Yamamoto
紀宏 山本
Tomoji Kumano
知二 熊野
Katsuro Kuroki
克郎 黒木
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP8399298A priority Critical patent/JPH11279642A/en
Publication of JPH11279642A publication Critical patent/JPH11279642A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented silicon steel sheet excellent in magnetic properties and film formation in which low temp. slab heating is executed, and the relation between the partial pressure of nitrogen and temp. rising rate is specified. SOLUTION: In the method for producing a grain-oriented silicon steel sheet in which a silicon steel slab contg., by weight, 0.020 to 0.075% C, 2.5 to 5.0% Si, 0.02 to 0.15% Mn, S and/or Se, acid soluble Al, N and Sn, 0.03 to 0.20% Cr is heated to <=1280 deg.C, is thereafter hot-rolled and is subjected to pickling, cold rolling, decarburizing annealing, nitriding treatment and finish annealing, PH2 O/PH2 in the atmosphere in the temp. rising stage in the finish annealing is regulated to 0.05 to 0.3 from the start of the temp. rising to the switching temp. within 750 to 850 deg.C and to <0.05 to the soaking temp. after that, and the annealing is executed in such a manner that the relation between the temp. rising rate R ( deg.C/h) at 900 deg.C to the soaking temp. and the nitrogen partial pressure N (%) in the atmospheric gas satisfies the following condition: 17-0.25 N<=R<=40-1.25 N (where Nmax: 20).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心に
用いられる一方向性電磁鋼板の製造方法に関するもの
で、これにより鉄損の低い高磁束密度一方向性電磁鋼板
の製造を可能とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used for an iron core of an electric device, and thereby enables the production of a high magnetic flux density grain-oriented electrical steel sheet having a low iron loss. .

【0002】[0002]

【従来の技術】一方向性電磁鋼板は鋼板面が{110}
面で、圧延方向が<100>軸を有するいわゆるゴス方
位(ミラ−指数で{110}<001>方位を表す)を
持つ結晶粒から構成されており、軟磁性材料として変圧
器及び発電器用の鉄心に使用されている。この鋼板は磁
気特性として磁化特性と鉄損特性が良好でなければなら
ない。磁化特性の良否はかけられた一定の磁場中で鉄心
内に誘起される磁束密度の高低で決まり、磁束密度の高
い製品では鉄芯を小型化できる。磁束密度の高さは鋼板
結晶粒の方位を{110}<001>に高度に揃えるこ
とによって達成できる。鉄損は鉄心に所定の交流磁場を
与えた場合に熱エネルギ−として消費される電力損失で
あり、その良否に対して磁束密度、板厚、被膜張力、不
純物量、比抵抗、結晶粒の大きさ等が影響する。磁束密
度の高い鋼板は電気機器の鉄心を小さくでき、又鉄損も
小さくなるので望ましく、当該技術分野ではできる限り
磁束密度の高い製品を易いコストで製造する方法の開発
が課題である。
2. Description of the Related Art A grain-oriented electrical steel sheet has a steel sheet surface of {110}.
The surface is composed of crystal grains having a so-called Goss orientation (representing a {110} <001> orientation in the Miller index) having a <100> axis in the rolling direction, and is used as a soft magnetic material for transformers and generators. Used for iron cores. This steel sheet must have good magnetic properties such as magnetization properties and iron loss properties. The quality of the magnetization characteristics is determined by the level of the magnetic flux density induced in the iron core in the applied constant magnetic field, and a product having a high magnetic flux density can be downsized. The height of the magnetic flux density can be achieved by highly aligning the crystal grains of the steel sheet to {110} <001>. Iron loss is power loss that is consumed as heat energy when a predetermined AC magnetic field is applied to the iron core, and the magnetic flux density, plate thickness, coating tension, impurity amount, specific resistance, crystal grain size And so on. A steel sheet having a high magnetic flux density is desirable because it can reduce the iron core of an electric device and also reduce iron loss. In the technical field, the development of a method of manufacturing a product having a magnetic flux density as high as possible at an easy cost is an issue.

【0003】ところで、現在、工業生産されている代表
的な一方向性電磁鋼板の製造方法として3種類あるが、
各々については長所、短所がある。第一の技術はF.
M.Littmannによる特公昭30−3651号公
報に示されたMnSを用いた2回冷延工程であり、得ら
れる二次再結晶粒は安定して発達するが、高い磁束密度
が得られない。
At present, there are three methods for producing typical grain-oriented electrical steel sheets which are industrially produced.
Each has advantages and disadvantages. The first technology is F.I.
M. This is a two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. 30-3651 by Littmann, and the resulting secondary recrystallized grains are stably developed, but a high magnetic flux density cannot be obtained.

【0004】第二の技術は田口等による特公昭40−1
5644号公報に示されたAlN+MnSを用いた最終
冷延圧延率を80%以上の強圧下率とするプロセスであ
り、高い磁束密度は得られるが、工業生産に際しては製
造条件の厳密なコントロ−ルが要求される。第三の技術
は今中等による特公昭51−13469号公報に示され
たMnS(及び/又はMnSe)+Sbを含有する珪素
鋼を2回冷延工程によって製造するプロセスであり、比
較的に高い磁束密度は得られている。
The second technology is disclosed in Japanese Patent Publication No. 40-1 by Taguchi et al.
No. 5644 discloses a process in which the final cold rolling reduction using AlN + MnS is set to a high reduction ratio of 80% or more, and a high magnetic flux density can be obtained. Is required. The third technique is a process for producing a silicon steel containing MnS (and / or MnSe) + Sb by cold rolling twice twice, which is disclosed in Japanese Patent Publication No. 51-13469 by Imanaka, and has a relatively high magnetic flux. Density is obtained.

【0005】上記3種類の技術においては共通して次の
ような問題がある。即ち、上記技術はいずれもが析出物
を微細、均一に制御する技術として熱延に先立つスラブ
加熱温度を、1250℃超、実際には1300℃以上と
極めて高い温度にすることによって粗大に析出している
析出物を一旦固溶させ、さの後の熱延中、或いは熱処理
中に析出させている。スラブ加熱温度を上げることはス
ラブ加熱時の使用エネルギ−の増大、設備損傷率の増大
等の他、材質的にはスラブの結晶組織に起因する線状の
二次再結晶不良が発生し、特に薄手材、高Si材におい
て顕著になってくる。
[0005] The above three techniques have the following problems in common. In other words, any of the above techniques is a technique for controlling the precipitates finely and uniformly, by coarsely precipitating by setting the slab heating temperature prior to hot rolling to an extremely high temperature of more than 1250 ° C, actually 1300 ° C or more. The precipitate is dissolved once and then precipitated during hot rolling or heat treatment. Increasing the slab heating temperature increases the energy used during slab heating, increases the equipment damage rate, etc., and also causes linear secondary recrystallization failure due to the crystal structure of the slab. It becomes remarkable in thin materials and high Si materials.

【0006】このような高温スラブ加熱法に対し特開昭
62−40315号公報或いは特開平5−112827
号公報に開示されている技術、即ち二次再結晶に必要な
インヒビタ−は、脱炭焼鈍(一次再結晶)完了以降から
仕上げ焼鈍における二次再結晶発現以前までに造り込む
ものがある。その手段は、鋼中にNを侵入させることに
よって、インヒビタ−として機能する(Al,Si)N
を形成させるものである。
For such a high-temperature slab heating method, Japanese Patent Application Laid-Open No. 62-40315 or Japanese Patent Application Laid-Open No.
There is a technique disclosed in Japanese Patent Application Laid-Open Publication No. H10-209, ie, an inhibitor necessary for secondary recrystallization, which is formed from after completion of decarburizing annealing (primary recrystallization) to before the onset of secondary recrystallization in finish annealing. The means is to function as an inhibitor by allowing N to penetrate into the steel (Al, Si) N
Is formed.

【0007】鋼中にNを侵入させる手段としては、仕上
焼鈍昇温過程での雰囲気ガスからのNの侵入を利用する
か、脱炭焼鈍後段領域或いは脱炭焼鈍完了後のストリツ
プを連続ラインでNH3 等の窒化原となる雰囲気ガスを
も用いて行う。これらの方法によって磁気特性の良好な
一方向性電磁鋼板が得られているが、更なる高品質方向
性電磁鋼板が望まれるところである。
[0007] As a means for infiltrating N into steel, the infiltration of N from the atmosphere gas in the step of raising the temperature of the finish annealing is utilized, or the strip after decarburizing annealing or the strip after completion of decarburizing annealing is connected by a continuous line. This is also performed using an ambient gas such as NH 3 which is a nitriding source. Although a grain-oriented electrical steel sheet having good magnetic properties has been obtained by these methods, further high-quality grain-oriented electrical steel sheet is desired.

【0008】[0008]

【発明が解決しようとする課題】一方向性電磁鋼板の製
造方法においては、脱炭焼鈍後の一次再結晶粒の粒径及
びその集合組織が二次再結晶粒の発達並びに磁気特性を
大きく左右することは勿論であるが、脱炭焼鈍後に行う
仕上焼鈍は良好なGoss組織の発達及びフォルステラ
イト被膜を形成させる上で重要な工程である。特に、仕
上焼鈍昇温過程におけるインヒビタ−の変動が、二次再
結晶粒の発達及びその方位集積度を左右する。この変動
因子として、昇温過程の雰囲気ガスの組成(N,Hの割
合)、昇温速度或いはフォルステライト被膜形成状態等
がある。良好な被膜を形成させるためには昇温過程にお
ける雰囲気ガスの酸化ポテンシャルのコントロ−ルが重
要である。
In the method for producing a grain-oriented electrical steel sheet, the grain size and the texture of primary recrystallized grains after decarburization annealing greatly influence the development of secondary recrystallized grains and magnetic properties. Needless to say, finish annealing performed after decarburizing annealing is an important step in developing a good Goss structure and forming a forsterite film. In particular, the fluctuation of the inhibitor during the temperature rise in the finish annealing affects the development of the secondary recrystallized grains and the degree of azimuthal accumulation. The variation factors include the composition of the atmosphere gas (the ratio of N and H) during the temperature rise, the temperature rise rate, and the state of formation of the forsterite film. In order to form a good film, it is important to control the oxidation potential of the atmosphere gas during the temperature raising process.

【0009】本発明はこれら因子の組み合わせを適正に
することによって良好な被膜を有する磁気特性の優れた
一方向性電磁鋼板を安定して製造することを可能とする
と同時に、仕上焼鈍の時間短縮をも可能とすることを狙
いとするものである。
The present invention makes it possible to stably produce a grain-oriented electrical steel sheet having a good coating and excellent magnetic properties by optimizing the combination of these factors, and at the same time to shorten the time of finish annealing. It also aims to make it possible.

【0010】[0010]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量%で、C:0.020〜0.075%,S
i:2.5〜5.0%,Mn:0.05〜0.45%,
S或いはSeを単独又は複合で0.15%以下、酸可溶
性Al:0.010〜0.050%,N:0.0035
〜0.012%,Sn:0.02〜0.15%,Cr:
0.03〜0.20%、更に必要に応じてCu:0.0
3〜0.30%を添加し、残部Fe及び不可避的不純物
からなる電磁鋼スラブを、1280℃以下の温度に加熱
した後熱延し、酸洗し、最終圧延率が80%以上となる
圧延をし、次いで脱炭焼鈍をし、窒化処理をし、仕上焼
鈍をする一方向性電磁鋼板の製造方法において、仕上焼
鈍の昇温過程における雰囲気の酸化ポテンシャルPH2
O/PH2 を、昇温の始めから750℃〜850℃内の
切り替え温度までは0.05〜0.3、上記切り替え温
度から均熱温度までは0.05未満とし、かつ900℃
から均熱温度までの昇温速度R(℃/h)と雰囲気ガス
の窒素分圧N(%)との関係が次に示す条件を満たすこ
とを特徴とする磁気特性及び被膜形成の優れた一方向性
電磁鋼板の製造方法である。
The gist of the present invention is that C: 0.020 to 0.075% by weight and S:
i: 2.5 to 5.0%, Mn: 0.05 to 0.45%,
0.15% or less of S or Se alone or in combination, acid-soluble Al: 0.010 to 0.050%, N: 0.0035
To 0.012%, Sn: 0.02 to 0.15%, Cr:
0.03 to 0.20%, and if necessary, Cu: 0.0
An electromagnetic steel slab containing 3 to 0.30%, the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C or less, hot rolled, pickled, and rolled to a final rolling reduction of 80% or more. In the method for producing a grain-oriented electrical steel sheet which is subjected to decarburizing annealing, nitriding treatment and finish annealing, the oxidation potential PH 2 of the atmosphere during the temperature rise process of finish annealing is determined.
O / PH 2 is set to 0.05 to 0.3 from the beginning of the temperature rise to a switching temperature within 750 ° C. to 850 ° C., less than 0.05 from the switching temperature to the soaking temperature, and 900 ° C.
The relationship between the temperature rise rate R (° C./h) from the temperature to the soaking temperature and the nitrogen partial pressure N (%) of the atmospheric gas satisfies the following conditions. This is a method for manufacturing a grain-oriented electrical steel sheet.

【0011】また、本発明においては、上記製造方法に
加えて、最終冷延前に鋼板を950℃〜1170℃の温
度で焼鈍すること、更に仕上焼鈍における雰囲気ガスの
窒素ガスに含有される酸素の量を50ppm以下とする
ことを特徴とする磁気特性及び被膜形成の優れた一方向
性電磁鋼板の製造方法である。
Further, in the present invention, in addition to the above-mentioned production method, the steel sheet is annealed at a temperature of 950 ° C. to 1170 ° C. before final cold rolling, and furthermore, oxygen contained in nitrogen gas of an atmosphere gas in finish annealing. In which the amount of Pb is less than or equal to 50 ppm.

【0012】[0012]

【発明の実施の形態】以下本発明を詳細に説明するにあ
たり、先ず、本発明を実験結果に基づいて説明する。重
量%で、C:0.060%,Si:3,5%,Mn:
0.10%,S:0.07%,酸可溶性Al:0.02
8%,Cr:0.12%,P:0.020%,Sn:
0.05%,N:0.0086%を含んだスラブを11
50℃で加熱し、熱延し2.3mmの熱延板を製造し
た。これを1120℃に加熱し、冷却し、次いで900
℃に維持する焼鈍を行った後急冷した。更に、この焼鈍
された鋼板を酸洗し、0.23mmに冷延した。この冷
延板を湿水素、窒素雰囲気中で脱炭焼鈍をし一次再結晶
粒の平均粒径をほぼ23μm(画像処理測定)に調整し
た。この後、窒化焼鈍を750℃の温度で30秒間水
素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素
量をほぼ200ppmに調整した。次いでMgO,Ti
2 を主成分とした焼鈍分離剤を塗布し1200℃の温
度で20時間の仕上焼鈍を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below.
First, the present invention will be described based on experimental results. Heavy
C: 0.060%, Si: 3.5%, Mn:
0.10%, S: 0.07%, acid-soluble Al: 0.02
8%, Cr: 0.12%, P: 0.020%, Sn:
11 slabs containing 0.05%, N: 0.0086%
Heated at 50 ° C and hot rolled to produce a 2.3 mm hot rolled sheet
Was. This is heated to 1120 ° C., cooled and then 900
After annealing at a temperature of ° C., it was rapidly cooled. Furthermore, this annealing
The treated steel sheet was pickled and cold rolled to 0.23 mm. This cold
Rolled sheet is decarburized in a wet hydrogen and nitrogen atmosphere and primary recrystallized
Adjust the average particle size to approximately 23μm (image processing measurement)
Was. Thereafter, nitriding annealing is performed at a temperature of 750 ° C. for 30 seconds.
In a mixed gas of nitrogen, nitrogen and ammonia,
The amount was adjusted to approximately 200 ppm. Next, MgO, Ti
O TwoApplying an annealing separating agent mainly composed of
Finish annealing was performed for 20 hours.

【0013】この仕上焼鈍の昇温速度と雰囲気ガスの条
件は表1に示す値を用いた。昇温速度の変更開始温度は
900℃とし、窒素分圧の変更温度は850℃とし、8
50℃までの雰囲気ガスはH2 :75%,N2 :25%
の混合ガスとした。
The values shown in Table 1 were used for the conditions of the temperature rising rate and the atmosphere gas in the finish annealing. The change start temperature of the heating rate is 900 ° C., the change temperature of the nitrogen partial pressure is 850 ° C.,
Atmosphere gas up to 50 ° C: H 2 : 75%, N 2 : 25%
Of mixed gas.

【0014】[0014]

【表1】 [Table 1]

【0015】また、室温から800℃まで雰囲気の酸化
ポテンシャルはほぼ0.10に調整し、この温度以上で
はDryガスとした。この結果を図1に示す。この図1
から昇温速度(R℃/h)と雰囲気の窒素分圧(N%)
との関係が(15−0.25N)≦R≦(40−125
N)、ただし、Nmax:20、の範囲において、良好
な鉄損特性が得られることが分かる。このことは窒素分
圧を小さくすれば、仕上焼鈍の昇温速度を高めるめられ
るため、仕上焼鈍の時間短縮も可能とするものである。
The oxidation potential of the atmosphere was adjusted to approximately 0. 10 from room temperature to 800 ° C, and above this temperature, dry gas was used. The result is shown in FIG. This figure 1
Temperature rise rate (R ° C / h) and nitrogen partial pressure of atmosphere (N%)
Is (15−0.25N) ≦ R ≦ (40−125)
N) However, it can be seen that good iron loss characteristics are obtained in the range of Nmax: 20. This means that if the nitrogen partial pressure is reduced, the rate of temperature rise in the finish annealing can be increased, so that the time for the finish annealing can be shortened.

【0016】次に、上記仕上焼鈍における昇温過程での
800℃までの酸化ポテンシャルの影響を観察し、表2
に示す結果を得た。
Next, the influence of the oxidation potential up to 800 ° C. during the temperature rise process in the finish annealing was observed.
Were obtained.

【0017】[0017]

【表2】 [Table 2]

【0018】表2から分かるように、PH2 O/P
2 :0.05〜0.30の範囲において、鉄損特性、
被膜形成共良好なものが得られた。なお、本実験に用い
た窒素ガスに含有する酸素は8ppmであった。次に、
本発明の仕上焼鈍方法について前述した結果を含めて説
明する。
As can be seen from Table 2, PH 2 O / P
H 2: In 0.05 to 0.30 range, iron loss characteristics,
Good film formation was obtained. The oxygen contained in the nitrogen gas used in this experiment was 8 ppm. next,
The finish annealing method of the present invention will be described including the results described above.

【0019】本発明の仕上焼鈍において使用する雰囲気
ガスはH2 ,N2 ,或いはこの混合ガスである。そして
昇温過程における室温から750℃〜850℃内の切り
替え温度までの間は、ガスの酸化ポテンシャルを0.0
5〜0.3に調整することが必要である。これは脱炭焼
鈍後に形成された酸化層の変質を防ぎ良好なフォルステ
ライト被膜を得るために重要である。0.05未満では
反応不良となり被膜形成が悪い。一方、0.3を超える
と酸化性が強くなりすぎて被膜が厚くなって磁気特性を
損ない、また点状の金属面が現れ好ましくない。なお、
この間に用いる雰囲気ガスのH2 とN2 の割合は特に限
定しない。そして、上記の切り替え温度から均熱温度ま
での窒素分圧は20%以下にする必要がある。窒素分圧
の上限を規制することによって磁気特性、被膜形成とも
変動が少なくなり高位安定化する。
The atmosphere gas used in the finish annealing of the present invention is H 2 , N 2 , or a mixed gas thereof. Then, during the period from the room temperature to the switching temperature in the range of 750 ° C. to 850 ° C. in the heating process, the oxidation potential of the gas is set to 0.0
It is necessary to adjust to 5 to 0.3. This is important for preventing deterioration of the oxide layer formed after the decarburizing annealing and obtaining a good forsterite film. If it is less than 0.05, the reaction becomes poor and the film formation is poor. On the other hand, if it exceeds 0.3, the oxidizing property becomes too strong, and the film becomes thick, which impairs the magnetic properties, and a point-like metal surface appears, which is not preferable. In addition,
The ratio of H 2 and N 2 of the atmosphere gas used during this time is not particularly limited. The nitrogen partial pressure from the above switching temperature to the soaking temperature needs to be 20% or less. By regulating the upper limit of the nitrogen partial pressure, fluctuations in both magnetic properties and film formation are reduced, and high-level stability is achieved.

【0020】磁気特性が高位安定化する理由としては、
鋼板への窒化によるインヒビタ−の変動をなくし良好な
ゴス組織を発達させるものと考えている。唯この場合、
窒素分圧が低くなる程、二次再結晶温度域での脱窒が起
こり易くなる。従って、この温度域でのインヒビタ−の
弱まる速度と二次再結晶粒の成長速度のバランスをとる
ことが重要である。このバランスをとるため、昇温速度
R(℃/h)と窒素分圧N(%)の関係が以下の式を満
足する必要がある。
The reason why the magnetic characteristics are stabilized at a high level is as follows.
It is believed that the change in the inhibitor due to nitriding on the steel sheet is eliminated and a good Goss structure is developed. Only in this case,
As the nitrogen partial pressure decreases, denitrification in the secondary recrystallization temperature range is more likely to occur. Therefore, it is important to balance the rate at which the inhibitor weakens and the rate at which secondary recrystallized grains grow in this temperature range. In order to achieve this balance, the relationship between the heating rate R (° C./h) and the nitrogen partial pressure N (%) must satisfy the following equation.

【0021】17−0.25N≦R≦40−1.25N
(但し、Nmax:20) 上記式の範囲において良好な磁気特性が得られることは
図1からも明らかである。このことは窒素分圧を低くす
る程昇温速度が上げられことを示しており、仕上焼鈍の
時間短縮化につながる。窒素分圧が20%を超えると品
質を確保しての時間短縮が不可能になる。また、上記式
においてRが(17−0.25N)より小さいと二次再
結晶粒の発達が悪くなり、一方、(40−1.25N)
より大きいと二次再結晶粒の発達は良いが、方向性が劣
る。
17−0.25N ≦ R ≦ 40−1.25N
(However, Nmax: 20) It is clear from FIG. 1 that good magnetic characteristics are obtained in the range of the above expression. This indicates that the lower the partial pressure of nitrogen, the higher the rate of temperature rise, leading to a reduction in the time for finish annealing. If the nitrogen partial pressure exceeds 20%, it becomes impossible to shorten the time for ensuring the quality. Further, in the above formula, when R is smaller than (17-0.25N), the development of secondary recrystallized grains becomes worse, while on the other hand, (40-1.25N)
If it is larger, the development of secondary recrystallized grains is good, but the directionality is poor.

【0022】良好な被膜が形成される理由は以下に述べ
るとおりである。良好な被膜を形成させるためには少な
くとも850℃以上のフォルステライト生成温度域はで
きるだけ酸化ポテンシャルを低くする必要がある。本発
明が良好な被膜形成を可能とする理由は、前記したよう
に低温域の酸化ポテンシャルのコントロ−ルに加えて、
高温域の窒素分圧を低めることによる板間の酸化ポテン
シャルを小さくすることの効果が大きいと考えている。
この温度域の酸化ポテンシャルは0.05未満である
が、できるだけ小さい値がよい。0.05以上になると
追加酸化が大きくなり良好なフォルステライト被膜が得
られない。
The reason why a good film is formed is as follows. In order to form a good film, it is necessary to lower the oxidation potential as much as possible in the forsterite formation temperature range of at least 850 ° C. or higher. The reason why the present invention enables good film formation is as described above, in addition to the control of the oxidation potential in the low temperature range,
We believe that the effect of reducing the oxidation potential between plates by lowering the nitrogen partial pressure in the high-temperature region is significant.
The oxidation potential in this temperature range is less than 0.05, but preferably a value as small as possible. If it is 0.05 or more, additional oxidation increases, and a good forsterite film cannot be obtained.

【0023】本発明においては、この高温域の板間の酸
化ポテンシャルをできるだけ小さくするという狙いか
ら、使用する窒素ガスの酸素含有量は50ppm以下に
する必要がある。50ppmより多いとフォルステライ
ト被膜の形成が悪くなるので出来るだけ少ない方が良
い。昇温速度と窒素分圧との関係を規定する温度を90
0℃以上とした理由は、二次再結晶温度域がおおよそ9
00℃から1150℃の間にあるためで、特にこの温度
域を注意深くコントロ−ルすれば良い。
In the present invention, the oxygen content of the nitrogen gas used must be 50 ppm or less with the aim of minimizing the oxidation potential between the plates in this high temperature range. If it is more than 50 ppm, the formation of a forsterite film becomes worse. The temperature that defines the relationship between the heating rate and the nitrogen partial pressure is 90
The reason for setting the temperature to 0 ° C. or higher is that the secondary recrystallization temperature range is approximately 9 ° C.
Since the temperature is between 00 ° C. and 1150 ° C., this temperature range can be carefully controlled.

【0024】次に本発明における出発材料の成分限定理
由を以下の通り説明する。Cは、その含有量が0.02
0%未満になると、二次再結晶が不安定になり、二次再
結晶した場合でも製品の磁束密度がB8で1.80T程
度と低いものになる。一方、Cの含有量が0.075%
を超えて多くなりすぎると、脱炭焼鈍時間が長くなり、
生産性を損なう。好ましくは0.04〜0.06%がよ
い。
Next, the reasons for limiting the components of the starting material in the present invention will be explained as follows. C has a content of 0.02
If it is less than 0%, the secondary recrystallization becomes unstable, and the magnetic flux density of the product becomes as low as about 1.80 T at B8 even when the secondary recrystallization is performed. On the other hand, the content of C is 0.075%
If it exceeds too much, the decarburization annealing time will increase,
Impairs productivity. Preferably, 0.04 to 0.06% is good.

【0025】Siは、その含有量が2.5%未満になる
と低鉄損の製品を得難く、一方、5.0%を超えて多く
なり過ぎると材料の冷延性に問題を生じる。本発明の出
発材料の成分系における特徴の一つは、S或いはSeを
単独又は複合で0.015%以下、好ましくは0.00
70%以下とする点にある。Sは周知の如くMnS,M
nSeを形成し粒成長を抑制する作用をする。本発明に
おいては、二次再結晶を発現させるに必要なインヒビタ
−は脱炭焼鈍以降で造り込むことを特徴としており、冷
延以前で微細な析出物が分散することは、一次再結晶粒
径を調整して高磁束密度低鉄損を得る本発明においては
好ましくない。従って、S或いはSeは0.015%以
下としている。又S或いはSeを少なくすることは熱延
時の耳割れの低減にも効果が大きい。
When the content of Si is less than 2.5%, it is difficult to obtain a product having a low iron loss. On the other hand, when the content exceeds 5.0%, there is a problem in the cold rolling property of the material. One of the characteristics of the component system of the starting material of the present invention is that S or Se, alone or in combination, is 0.015% or less, preferably 0.005% or less.
The point is to be 70% or less. S is MnS, M as is well known.
It acts to form nSe and suppress grain growth. In the present invention, the inhibitor required to develop secondary recrystallization is characterized by being built after decarburization annealing, and fine precipitates are dispersed before cold rolling, and the primary recrystallization particle size is reduced. Is not preferred in the present invention in which high magnetic flux density and low iron loss are obtained by adjusting. Therefore, S or Se is set to 0.015% or less. Reducing S or Se is also highly effective in reducing edge cracking during hot rolling.

【0026】Alは、Nと結合してAlNを形成する
が、本発明においては、後工程即ち一次再結晶完了後に
鋼を窒化することにより、(Al,Si)Nを形成せし
めることを必須としているから、フリ−のAlが一定量
必要である。そのために、酸可溶性Alとして、0.0
10〜0.050%添加する。Nは、0.0035〜
0.012%にする必要がある。0.012%を超える
とブリスタ−と呼ばれる鋼板表面の膨れが発生し、また
一次再結晶組織の調整が困難になる。下限は0.003
5%がよく、この値未満になると二次再結晶粒を発達さ
せるのが困難になる。
Although Al combines with N to form AlN, in the present invention, it is essential that (Al, Si) N be formed by nitriding the steel after the completion of the first step of recrystallization. Therefore, a certain amount of free Al is required. Therefore, as the acid-soluble Al, 0.0
Add 10 to 0.050%. N is 0.0035 to
Must be 0.012%. If it exceeds 0.012%, blistering of the steel sheet surface called blister occurs, and it is difficult to adjust the primary recrystallization structure. The lower limit is 0.003
5% is good, and when it is less than this value, it becomes difficult to develop secondary recrystallized grains.

【0027】Mnは、その含有量が少なすぎると二次再
結晶が不安定となり、一方、多すぎると高い磁束密度を
持つ製品を得難くなる。適正な含有量は、0.050〜
0.45%である。Snは、脱炭焼鈍後の集合組織を改
善し、ひいては二次再結晶粒を改善し被膜の安定化と相
俟って鉄損改善に効果が大きい。Snの量は0.02〜
0.15%であり、この量より少ないと効果が弱く、一
方、多いと窒化が困難になり二次再結晶粒が発達しなく
なる。好ましくは0.03〜0.08%がよい。
If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The proper content is 0.050
0.45%. Sn improves the texture after decarburizing annealing, and further improves secondary recrystallized grains, stabilizes the coating film, and has a great effect on iron loss improvement. The amount of Sn is 0.02-
If the amount is less than 0.15%, the effect is weak. On the other hand, if it is more than this, nitriding becomes difficult and secondary recrystallized grains do not develop. Preferably, 0.03 to 0.08% is good.

【0028】Crは、脱炭焼鈍時の酸化を促進する元素
であるが、Snとの複合添加で仕上げ焼鈍後の被膜形成
が安定化する。Crの量は0.03から0.20%であ
る。0.03%未満では上記効果が得られず、また、
0.20%超添加しても合金コストが上昇するだけで効
果は向上しないので前述の範囲に制限される。好ましく
は0.05〜0.15%がよい。
Cr is an element that promotes oxidation during decarburization annealing, but the addition of Sn stabilizes film formation after finish annealing. The amount of Cr is 0.03 to 0.20%. If it is less than 0.03%, the above effect cannot be obtained.
Even if the addition exceeds 0.20%, the effect is not improved only by increasing the alloy cost, so that it is limited to the above-mentioned range. Preferably, 0.05 to 0.15% is good.

【0029】Cuは、高磁束密度を得るのに効果があ
り、その適量は0.03〜0.30%である。この他微
量のP,Niを含むことは本発明の主旨を損なうもので
はない。次に、本発明の仕上焼鈍に至るまでの製造プロ
セスについて説明する。電磁鋼スラブは、転炉或いは電
気炉等の溶解炉で鋼を溶製し、必要に応じて真空脱ガス
処理し、次いで連続鋳造によって或いは造塊後分解圧延
することによって得られる。
Cu is effective in obtaining a high magnetic flux density, and its appropriate amount is 0.03 to 0.30%. In addition, containing trace amounts of P and Ni does not impair the gist of the present invention. Next, a manufacturing process up to finish annealing of the present invention will be described. The electromagnetic steel slab is obtained by smelting steel in a melting furnace such as a converter or an electric furnace, subjecting the steel to vacuum degassing if necessary, and then performing continuous casting or cracking and rolling after agglomeration.

【0030】このようにして得られたスラブは1280
℃以下の温度で加熱した後所定板厚に熱延する。前述の
スラブ加熱温度が1280℃の温度より高いと脱炭焼鈍
時の一次再結晶結晶粒の粒径調整が困難になり、高磁束
密度鋼板が得られ難い。熱延板の焼鈍は実施する場合も
実施しない場合も本発明においては適用可能である。熱
延板焼鈍を行う場合は950℃〜1170℃の温度で焼
鈍急冷することが望ましい。950℃より低いと金属組
織の調整及び一部固溶したAlNの析出調整が不充分と
なり、一方、1170℃を超えるとAlNの固溶量が多
くなり、脱炭焼鈍時の一次再結晶粒の調整が困難にな
る。
The slab thus obtained is 1280
After heating at a temperature of not more than ° C., it is hot-rolled to a predetermined thickness. If the slab heating temperature is higher than 1280 ° C., it is difficult to adjust the grain size of primary recrystallized crystal grains during decarburizing annealing, and it is difficult to obtain a high magnetic flux density steel sheet. The present invention can be applied to the case where the annealing of the hot rolled sheet is performed or not. When performing hot-rolled sheet annealing, it is desirable to perform annealing quenching at a temperature of 950 ° C. to 1170 ° C. When the temperature is lower than 950 ° C., the adjustment of the metal structure and the adjustment of the precipitation of partially dissolved AlN become insufficient. On the other hand, when the temperature exceeds 1170 ° C., the solid solution amount of AlN increases, and the primary recrystallized grains at the time of decarburization annealing become large. Adjustment becomes difficult.

【0031】冷延率は高いB8を得るために80%以上
とする。また、脱炭焼鈍は脱炭を行う他に一次再結晶粒
径の調整及びフォルステライト被膜形成に必要な酸化層
を生成させる役割がある。これは通常800〜900℃
の温度域で湿水素、窒素ガス中で行う。次に窒化処理条
件は特に限定しないが、一例としては窒化焼鈍を乾水
素、窒素、アンモニアの混合ガスの中で、650〜85
0℃の温度域で連続焼鈍法により短時間で行う方法があ
る。時間は特に限定しないが、通常30〜60秒であ
る。良好な二次再結晶粒を安定して発達させるには窒化
量は150ppm以上必要である。この後、MgO,T
iO2 を主成分とするスラリ−を塗布し、1100℃以
上の温度で仕上焼鈍を行う。
The cold rolling ratio is set to 80% or more in order to obtain a high B8. In addition, the decarburizing annealing has a role of adjusting the primary recrystallization grain size and generating an oxide layer necessary for forming a forsterite film, in addition to performing decarburization. This is usually 800-900 ° C
In a wet hydrogen or nitrogen gas atmosphere. Next, the conditions of the nitriding treatment are not particularly limited. As an example, the nitriding annealing is performed in a mixed gas of dry hydrogen, nitrogen, and ammonia at 650 to 85.
There is a method in which the annealing is performed in a short time by a continuous annealing method in a temperature range of 0 ° C. The time is not particularly limited, but is usually 30 to 60 seconds. In order to stably develop good secondary recrystallized grains, the amount of nitriding is required to be 150 ppm or more. After this, MgO, T
A slurry containing iO 2 as a main component is applied, and finish annealing is performed at a temperature of 1100 ° C. or more.

【0032】[0032]

【実施例】〈実施例1〉重量%で、C:0.055%,
Si:3.35%,Mn0.095%,S:0.006
%,酸可溶性Al:0.027%,N:0.0085
%,Cr:0.12%,Sn:0.05%,P:0.0
25%を含む電磁鋼スラブを1150℃で加熱熱延し、
2.6mmの熱延板にした。これを1120℃の温度に
加熱、均熱後、一旦900℃に冷却後その温度に保持す
る焼鈍を施した後急冷却した。
EXAMPLES <Example 1> By weight%, C: 0.055%,
Si: 3.35%, Mn 0.095%, S: 0.006
%, Acid-soluble Al: 0.027%, N: 0.0085
%, Cr: 0.12%, Sn: 0.05%, P: 0.0
Electromagnetic steel slab containing 25% is hot-rolled at 1150 ° C,
A 2.6 mm hot rolled sheet was obtained. This was heated to a temperature of 1120 ° C., soaked, cooled once to 900 ° C., then annealed at that temperature, and then rapidly cooled.

【0033】次いで酸洗し0.30mmに冷延し、83
0℃の温度で150秒、露点65℃、の湿水素、窒素雰
囲気中で脱炭焼鈍をし、一次再結晶粒径を22μmに調
整した。この後750℃の温度で30秒の窒化焼鈍を水
素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素
量をほぼ220ppmに調整した。次いでMgO、Ti
2 を主成分とするスラリ−を塗布し、1200℃の温
度で20時間の仕上焼鈍を行った。この昇温過程の80
0℃までと800℃から1200℃までの雰囲気ガスの
条件及び昇温速度は表3、表4に示すとおりである。
Next, the product was pickled and cold rolled to 0.30 mm.
Decarburization annealing was performed in a wet hydrogen and nitrogen atmosphere at a temperature of 0 ° C. for 150 seconds and a dew point of 65 ° C. to adjust the primary recrystallization particle size to 22 μm. Thereafter, nitriding annealing at a temperature of 750 ° C. for 30 seconds was performed in a mixed gas of hydrogen, nitrogen and ammonia to adjust the nitrogen content of the steel sheet to approximately 220 ppm. Next, MgO, Ti
A slurry containing O 2 as a main component was applied and finish annealing was performed at a temperature of 1200 ° C. for 20 hours. 80 of this heating process
Tables 3 and 4 show the conditions of the atmosphere gas from 0 ° C. and from 800 ° C. to 1200 ° C., and the rate of temperature rise.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】結果を図1に示す。本発明の範囲において
良好な鉄損特性が得られ、昇温速度を高めることが可能
である。 〈実施例2〉重量%で、C:0.043%,Si:3,
00%,Mn:0.14%,S:0.07%,酸可溶性
Al:0.031%,N:0.0068%,Cr:0.
10%,Sn:0.05%,Cu:0.07%,P:
0.020%、を含む電磁鋼スラブを1100℃で加
熱、熱延し2.8mmの熱延板にした。次いで、これを
酸洗し0.35mmに冷延し、850℃の温度で150
秒の脱炭焼鈍を露点65℃、の湿水素、窒素雰囲気中で
行った。
FIG. 1 shows the results. Good iron loss characteristics can be obtained within the range of the present invention, and the rate of temperature rise can be increased. <Example 2> By weight%, C: 0.043%, Si: 3,
00%, Mn: 0.14%, S: 0.07%, acid-soluble Al: 0.031%, N: 0.0068%, Cr: 0.
10%, Sn: 0.05%, Cu: 0.07%, P:
An electromagnetic steel slab containing 0.020% was heated at 1100 ° C. and hot rolled to form a 2.8 mm hot rolled sheet. Next, this was pickled, cold rolled to 0.35 mm, and dried at a temperature of 850 ° C. for 150 minutes.
Second decarburizing annealing was performed in a wet hydrogen and nitrogen atmosphere at a dew point of 65 ° C.

【0037】この後750℃の温度で30秒の窒化焼鈍
を水素、窒素、アンモニアの混合ガス中で行い、鋼板の
窒素量をほぼ220ppmに調整した。次いでMgO,
TiO2 を主成分とするスラリ−を塗布し、1200℃
の温度で20時間の仕上焼鈍を行った。この昇温過程の
800℃までの雰囲気ガスを(H2 :50%+N2 :5
0%)混合ガスとし、この酸化ポテンシャルをほぼ0.
15に調整した。800℃から1200℃までは、H
2 :100%Dryガスと(H2 :50%+N2 :5
0%)の混合Dryガスの2水準とし、昇温速度は30
℃/hとした。結果を表5に示す。
Thereafter, nitriding annealing at a temperature of 750 ° C. for 30 seconds was carried out in a mixed gas of hydrogen, nitrogen and ammonia to adjust the amount of nitrogen in the steel sheet to approximately 220 ppm. Then MgO,
A slurry containing TiO 2 as a main component is applied, and 1200 ° C.
At 20 ° C. for 20 hours. The atmosphere gas up to 800 ° C. in this temperature rising process was (H 2 : 50% + N 2 : 5).
0%) as a mixed gas, and the oxidation potential is set to approximately 0.
Adjusted to 15. From 800 ° C to 1200 ° C, H
2 : 100% dry gas and (H 2 : 50% + N 2 : 5
0%) of the mixed dry gas, and the rate of temperature rise is 30.
° C / h. Table 5 shows the results.

【0038】[0038]

【表5】 [Table 5]

【0039】本発明の条件であるH2 :100%ガス雰
囲気において良好な磁気特性並びに被膜が得られた。
Good magnetic properties and a coating were obtained in an atmosphere of H 2 : 100% gas, which is a condition of the present invention.

【0040】[0040]

【発明の効果】本発明により良好な被膜を有し磁気特性
の優れた製品が得られると同時に仕上げ焼鈍時間の短縮
が可能となる。
According to the present invention, a product having a good coating and excellent magnetic properties can be obtained, and at the same time, the finish annealing time can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上焼鈍の昇温速度と窒素分圧と鉄損特性の関
係を示す図。
FIG. 1 is a graph showing the relationship between the temperature rise rate of finish annealing, nitrogen partial pressure, and iron loss characteristics.

【図2】仕上焼鈍の昇温速度と窒素分圧と鉄損特性の関
係を示す図。
FIG. 2 is a graph showing a relationship between a temperature rise rate in finish annealing, a nitrogen partial pressure, and iron loss characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 1/16 H01F 1/16 B (72)発明者 山本 紀宏 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 熊野 知二 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 (72)発明者 田中 収 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01F 1/16 H01F 1/16 B (72) Inventor Norihiro Yamamoto 1-1 Nichihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Inside Yawata Works (72) Inventor Tomoji Kumano 1-1 Niwahata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Katsuro Kuroki Tobata-ku, Kitakyushu, Fukuoka Inside Nippon Steel Plant Design Co., Ltd. at 46 at Nakahara (72) Inventor Osamu Tanaka Inside Nippon Steel Plant Design Co., Ltd. at 46 Ohara Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.020〜0.075
%,Si:2.5〜5.0%,Mn:0.05〜0.4
5%,S或いはSeを単独又は複合で0.15%以下、
酸可溶性Al:0.010〜0.050%,N:0.0
035〜0.012%,Sn:0.02〜0.15%,
Cr:0.03〜0.20%、残部Fe及び不可避的不
純物からなる電磁鋼スラブを、1280℃以下の温度に
加熱した後熱延し、酸洗し、最終圧延率が80%以上と
なる冷延をし、次いで脱炭焼鈍をし、窒化処理をし、仕
上焼鈍をする一方向性電磁鋼板の製造方法において、仕
上焼鈍の昇温過程における雰囲気の酸化ポテンシャルP
2 O/PH2を、昇温の始めから750℃〜850℃
内の切り替え温度までは0.05〜0.3、上記切り替
え温度から均熱温度までは0.05未満とし、かつ90
0℃から均熱温度までの昇温速度R(℃/h)と雰囲気
ガスの窒素分圧N(%)との関係が次に示す条件を満た
すことを特徴とする磁気特性及び被膜形成の優れた一方
向性電磁鋼板の製造方法。 17−0.25N≦R≦40−1.25N(但し、Nma
x :20)
1. C: 0.020 to 0.075 by weight%
%, Si: 2.5 to 5.0%, Mn: 0.05 to 0.4
5%, S or Se alone or in combination 0.15% or less,
Acid-soluble Al: 0.010 to 0.050%, N: 0.0
035 to 0.012%, Sn: 0.02 to 0.15%,
Cr: 0.03 to 0.20%, the electromagnetic steel slab consisting of the balance Fe and inevitable impurities is heated to a temperature of 1280 ° C. or lower, then hot-rolled, pickled, and the final rolling reduction becomes 80% or more. In a method for producing a grain-oriented electrical steel sheet which is subjected to cold rolling, followed by decarburizing annealing, nitriding and finish annealing, the oxidation potential P of the atmosphere during the temperature rise process of finish annealing is set.
H 2 O / PH 2 is maintained at 750 ° C. to 850 ° C. from the beginning of heating.
0.05 to 0.3 up to the switching temperature, less than 0.05 from the switching temperature to the soaking temperature, and 90
Excellent in magnetic properties and film formation characterized in that the relationship between the temperature rise rate R (° C./h) from 0 ° C. to the soaking temperature and the nitrogen partial pressure N (%) of the atmospheric gas satisfies the following conditions. Manufacturing method of unidirectional magnetic steel sheet. 17−0.25N ≦ R ≦ 40−1.25N (However, Nma
x: 20)
【請求項2】 重量%で、Cuを0.03〜0.30%
を更に添加することを特徴とする請求項1記載の磁気特
性及び被膜形成の優れた一方向性電磁鋼板の製造方法。
2. Cu is 0.03 to 0.30% by weight.
The method for producing a grain-oriented electrical steel sheet according to claim 1, further comprising:
【請求項3】 最終冷延前に鋼板を950℃〜1170
℃の温度で焼鈍をすることを特徴とする請求項1または
2記載の磁気特性及び被膜形成の優れた一方向性電磁鋼
板の製造方法。
3. The steel sheet is heated to 950 ° C. to 1170 before final cold rolling.
The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the annealing is performed at a temperature of ° C.
【請求項4】 窒素ガスに含有される酸素の量が50p
pm以下であることを特徴とする特許請求項1、2また
は3記載の磁気特性及び被膜形成の優れた一方向性電磁
鋼板の製造方法。
4. The amount of oxygen contained in the nitrogen gas is 50 p.
4. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the magnetic properties are not more than pm.
JP8399298A 1998-03-30 1998-03-30 Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation Withdrawn JPH11279642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8399298A JPH11279642A (en) 1998-03-30 1998-03-30 Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8399298A JPH11279642A (en) 1998-03-30 1998-03-30 Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation

Publications (1)

Publication Number Publication Date
JPH11279642A true JPH11279642A (en) 1999-10-12

Family

ID=13818040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8399298A Withdrawn JPH11279642A (en) 1998-03-30 1998-03-30 Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation

Country Status (1)

Country Link
JP (1) JPH11279642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102282A1 (en) * 2006-03-07 2007-09-13 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
EP2377961A4 (en) * 2008-12-16 2017-05-17 Nippon Steel & Sumitomo Metal Corporation Oriented electrical steel sheet, and method for producing same
CN112941286A (en) * 2021-01-29 2021-06-11 武汉钢铁有限公司 High-magnetic-induction oriented silicon steel manufacturing method for improving effective nitrogen and bottom layer quality

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102282A1 (en) * 2006-03-07 2007-09-13 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
JP2007238984A (en) * 2006-03-07 2007-09-20 Nippon Steel Corp Method for manufacturing grain oriented silicon steel sheet having excellent magnetic characteristic
US7833360B2 (en) 2006-03-07 2010-11-16 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet very excellent in magnetic properties
KR101060745B1 (en) 2006-03-07 2011-08-31 닛테츠 플랜트 디자이닝 코포레이션 Method for producing oriented electrical steel sheet with excellent magnetic properties
EP2377961A4 (en) * 2008-12-16 2017-05-17 Nippon Steel & Sumitomo Metal Corporation Oriented electrical steel sheet, and method for producing same
CN112941286A (en) * 2021-01-29 2021-06-11 武汉钢铁有限公司 High-magnetic-induction oriented silicon steel manufacturing method for improving effective nitrogen and bottom layer quality

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3368310B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH11279642A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3390108B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH09194941A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH07310125A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2000038618A (en) Production of grain oriented silicon steel sheet good in magnetic property
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607