JP3390109B2 - Low iron loss high magnetic flux density - Google Patents

Low iron loss high magnetic flux density

Info

Publication number
JP3390109B2
JP3390109B2 JP20105195A JP20105195A JP3390109B2 JP 3390109 B2 JP3390109 B2 JP 3390109B2 JP 20105195 A JP20105195 A JP 20105195A JP 20105195 A JP20105195 A JP 20105195A JP 3390109 B2 JP3390109 B2 JP 3390109B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
temperature
cold rolling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20105195A
Other languages
Japanese (ja)
Other versions
JPH0949022A (en
Inventor
知二 熊野
康成 吉冨
幸司 山崎
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP20105195A priority Critical patent/JP3390109B2/en
Publication of JPH0949022A publication Critical patent/JPH0949022A/en
Application granted granted Critical
Publication of JP3390109B2 publication Critical patent/JP3390109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鉄損特性の優れた一
方向性電磁鋼板の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主として変圧器、発
電機その他の電気機器の鉄心材として用いられ、それが
有する磁気特性として励磁特性と鉄損特性が良好である
ことの他、良好な被膜を有するものでなければならな
い。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as core materials for transformers, generators and other electric equipment, and have good magnetic properties such as excitation properties and iron loss properties. It must have a coating.

【0003】一方向性電磁鋼板は、二次再結晶現象を利
用して圧延面に{110}面、圧延方向に<001>軸
を持ついわゆるゴス方位を有する結晶粒を発達させるこ
とによって得られる。
A unidirectional electrical steel sheet is obtained by utilizing secondary recrystallization phenomenon to develop crystal grains having a so-called Goss orientation having a {110} plane in the rolling surface and a <001> axis in the rolling direction. .

【0004】前記二次再結晶現象は、よく知られている
ように、仕上げ焼鈍過程で生じるが、二次再結晶の発現
を十分なものとするためには、仕上げ焼鈍過程における
二次再結晶発現温度域まで一次再結晶粒の成長を抑制す
るAlN、MnS、MnSe等の微細な析出物、いわゆ
るインヒビターを鋼中に存在させる必要がある。
As is well known, the secondary recrystallization phenomenon occurs during the finish annealing process, but in order to sufficiently develop the secondary recrystallization, the secondary recrystallization phenomenon occurs in the finish annealing process. It is necessary to allow fine precipitates such as AlN, MnS, and MnSe, so-called inhibitors, which suppress the growth of primary recrystallized grains up to the development temperature range, to be present in the steel.

【0005】従って、電磁鋼スラブはインヒビター形成
元素、例えばAl、Mn、S、Se、N等を完全に固溶
させるために、1350〜1400℃といった高温に加
熱される。そして、電磁鋼スラブ中に完全に固溶せしめ
られたインヒビター形成元素は、熱延板あるいは最終冷
間圧延前の中間板厚の段階で、焼鈍によってAlN、M
nS、MnSeとして微細に析出せしめられる。
Therefore, the electromagnetic steel slab is heated to a high temperature such as 1350 to 1400 ° C. in order to completely dissolve the inhibitor forming elements such as Al, Mn, S, Se and N. Then, the inhibitor-forming element completely solid-solved in the electromagnetic steel slab is AlN, M by annealing at the stage of intermediate plate thickness before hot rolling or final cold rolling.
Finely precipitated as nS and MnSe.

【0006】この他冶金的には二次再結晶粒を小さくす
ることにより、磁区細分化を図り鉄損の低減が可能であ
る。この方法には例えば特開昭50−16610号公報
に示される冷間圧延時に熱効果を与える方法、あるいは
特開昭58−23414号公報に示されるような鋼中に
Snを添加する方法等があり、又プロセス面からは特開
平1−290716号公報に示される如く、冷延鋼板を
急速加熱処理し脱炭焼鈍を施す方法が提案されている。
これらはいずれも高温スラブ加熱を前提とした製造プロ
セスによるものである。
In addition to this, metallurgically, by making the secondary recrystallized grains small, it is possible to subdivide the magnetic domains and reduce the iron loss. Examples of this method include a method of imparting a heat effect during cold rolling as disclosed in Japanese Patent Laid-Open No. 50-16610, or a method of adding Sn to steel as disclosed in Japanese Patent Laid-Open No. 58-23414. In view of the process, as disclosed in Japanese Patent Laid-Open No. 1-290716, a method has been proposed in which a cold rolled steel sheet is subjected to rapid heat treatment and decarburization annealing.
All of these are based on a manufacturing process premised on high temperature slab heating.

【0007】このような高温スラブ加熱法に対して特公
61−60896号公報、特開昭62−40315号
公報等に開示されている技術、即ち二次再結晶に必要な
インヒビターは、脱炭焼鈍完了以降から仕上げ焼鈍にお
ける二次再結晶発現以前まで造り込むものがある。その
手段としては、鋼中にNを侵入させることによって、イ
ンヒビターとして機能する(Al、Si)Nを形成させ
る。
[0007] A special method for such high temperature slab heating method
The techniques disclosed in JP-A-61-60896 and JP-A-62-40315, that is, the inhibitors required for secondary recrystallization, are from the completion of decarburization annealing to the appearance of secondary recrystallization in finish annealing. There is something to build. As a means thereof, N is allowed to penetrate into steel to form (Al, Si) N which functions as an inhibitor.

【0008】鋼中にNを侵入させる手段としては、仕上
げ焼鈍昇温過程での雰囲気ガスからのNの侵入を利用す
るか、脱炭焼鈍後段領域あるいは脱炭焼鈍完了後のスト
リップを連続ラインでNH3 等の窒化源となる雰囲気ガ
スを用いて行う。
As a means for injecting N into the steel, the invasion of N from the atmospheric gas in the finish annealing temperature rising process is used, or the strip after decarburization annealing or the strip after decarburization annealing is completed in a continuous line. It is performed by using an atmosphere gas such as NH 3 which serves as a nitriding source.

【0009】[0009]

【発明が解決しようとする課題】本発明は、低温スラブ
加熱を前提とする特公昭61−60896号公報に基づ
くものであるが、このプロセスにおいて重要なことは、
脱炭焼鈍板の結晶組織(平均粒径、粒径分布)、集合組
織の調整と冷延以降のインヒビターの造り込みである。
特に脱炭焼鈍の結晶組織および集合組織は製品の磁気特
性に大きな影響を及ぼすことが知られている。
The present invention is based on Japanese Patent Publication No. 61-60896, which is premised on low temperature slab heating. What is important in this process is:
This is the adjustment of the crystal structure (average grain size, grain size distribution) and texture of the decarburized annealed sheet and the incorporation of the inhibitor after cold rolling.
It is known that the crystal structure and texture of decarburization annealing have a great influence on the magnetic properties of the product.

【0010】結晶組織に影響を与える工程として冷間圧
延と脱炭焼鈍がある。もちろん冷間圧延前の焼鈍条件が
影響することは言うまでもない。本発明は熱延板焼鈍の
冷却条件と冷間圧延時の鋼板温度に着目し、これらの条
件と鉄損特性の関係を明らかにして鉄損の低い高磁束密
度一方向性電磁鋼板の製造方法を提供するものである。
Cold rolling and decarburization annealing are processes that affect the crystal structure. Needless to say, the annealing conditions before cold rolling have an influence. The present invention focuses on the cooling conditions of hot-rolled sheet annealing and the steel sheet temperature during cold rolling, and clarifies the relationship between these conditions and iron loss characteristics to produce a high magnetic flux density unidirectional electrical steel sheet with low iron loss. Is provided.

【0011】[0011]

【課題を解決するための手段】本発明は重量比で、C
:0.025〜0.075%、 Si:2.5〜4.
5%、Mn:0.050〜0.45%、 S ≦0.
015%、酸可溶性Al:0.015〜0.040%、
N≦0.010%、必要に応じてSn:0.02〜
0.15%、 Cr:0.05〜0.30%、C
u:0.03〜0.30%を含有し、残部Fe及び不可
避的不純物からなる電磁鋼スラブを1280℃以下の温
度に加熱した後、熱延し、最終冷延前に焼鈍を実施し、
一回または中間焼鈍を介挿する二回以上の圧延でその最
終圧延率を80%以上とし、ついで脱炭焼鈍、窒化処
理、仕上げ焼鈍をする一方向性電磁鋼板の製造におい
て、最終冷延前の鋼板の焼鈍を2段均熱とし、高温側の
温度、均熱時間を950〜1150℃、180秒以内、
低温側の温度、均熱時間を800〜950℃、30〜3
00秒とし、800〜950℃の温度域から300℃ま
での平均冷却速度をR℃/secで冷却し、最終冷延の複数
回のパスの少なくとも1回以上鋼板に100〜300℃
の温度範囲で下記条件を満たすT℃で1分以上の時間保
持する熱効果を与えることを特徴とする低鉄損高磁束密
度一方向性電磁鋼板の製造方法にある。 400−10R≦T≦690−12R
The present invention provides a weight ratio of C
: 0.025 to 0.075%, Si: 2.5 to 4.
5%, Mn: 0.050 to 0.45%, S ≤ 0.
015%, acid soluble Al: 0.015 to 0.040%,
N ≦ 0.010%, Sn: 0.02 as required
0.15%, Cr: 0.05-0.30%, C
u: A magnetic steel slab containing 0.03 to 0.30% and the balance Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or lower, hot rolled, and annealed before final cold rolling,
In the production of unidirectional electrical steel sheet in which final rolling rate is 80% or more in one rolling or two or more rollings with intermediate annealing, and then decarburization annealing, nitriding treatment and finish annealing are performed, before final cold rolling. Of the steel sheet of No. 2 is soaked in two steps, the temperature on the high temperature side, the soaking time is 950 to 1150 ° C., within 180 seconds,
Temperature on the low temperature side, soaking time is 800 to 950 ° C, 30 to 3
00 seconds, the average cooling rate from the temperature range of 800 to 950 ° C. to 300 ° C. is cooled at R ° C./sec, and 100 to 300 ° C. is applied to the steel sheet at least once in multiple passes of final cold rolling.
In the method for producing a low iron loss high magnetic flux density grain-oriented electrical steel sheet, which has a thermal effect of holding at T ° C. satisfying the following conditions in the temperature range of 1 minute or more. 400-10R ≦ T ≦ 690-12R

【0012】以下本発明を詳細に説明する。本発明にお
いて、出発材料とするスラブの成分組成の限定理由は以
下の通りである。Cはその含有量が0.025%未満で
は、高磁束密度が安定して得られ難い。一方、0.07
5%を超えて多くなりすぎると、脱炭焼鈍時間が長くな
り生産性を損なう。Siは含有量が2.5%未満になる
と低鉄損の製品が得られ難く、4.5%を超えると冷間
圧延時に、割れ、破断が多発し安定した冷間圧延作業を
不可能にする。
The present invention will be described in detail below. In the present invention, the reasons for limiting the component composition of the slab used as the starting material are as follows. When the content of C is less than 0.025%, it is difficult to stably obtain a high magnetic flux density. On the other hand, 0.07
If it exceeds 5% and becomes too large, the decarburization annealing time becomes long and the productivity is impaired. If the Si content is less than 2.5%, it is difficult to obtain a product with low iron loss, and if it exceeds 4.5%, cracks and fractures frequently occur during cold rolling, making stable cold rolling work impossible. To do.

【0013】本発明の成分系における特徴の1つは、S
を0.015%以下、好ましくは0.010%以下とす
る点にある。公知の技術、例えば特公昭40−1564
4号公報あるいは特公昭47−25250号公報に開示
されている技術においては、Sは二次再結晶を発現させ
るのに必要な析出物の一つであるMnSの形成元素とし
て必須であった。しかしながら、インヒビターとして
(Al、Si)Nを用いる本発明においては、MnSは
特に必要としない。むしろ、MnSが増加することは一
次再結晶粒径調整を困難にし、高磁束密度鋼板を得難く
する。
One of the features of the component system of the present invention is S
Is 0.015% or less, preferably 0.010% or less. Known technology, for example, Japanese Patent Publication No. 40-1564
In the technique disclosed in Japanese Patent Publication No. 4 or Japanese Patent Publication No. 47-25250, S was indispensable as an element for forming MnS, which is one of the precipitates necessary for causing secondary recrystallization. However, MnS is not particularly required in the present invention using (Al, Si) N as the inhibitor. Rather, an increase in MnS makes it difficult to adjust the primary recrystallization grain size and makes it difficult to obtain a high magnetic flux density steel sheet.

【0014】AlはNと結合してAlNを形成するが、
本発明においては後工程、即ち、一次再結晶完了鋼を窒
化することにより(Al、Si)Nを形成せしめること
を必須としているから、フリーのAlが一定量以上必要
である。そのため酸可溶性Alとして0.015〜0.
040%添加する。
Al combines with N to form AlN,
In the present invention, it is necessary to form (Al, Si) N by a post-process, that is, by nitriding the primary recrystallized steel, so that a certain amount of free Al is required. Therefore, as acid-soluble Al, 0.015 to 0.
Add 040%.

【0015】Nは0.010%以下にする必要がある。
これを超えるとブリスターと呼ばれる鋼板表面の膨れが
発生する。下限は、0.0020%程度がよい。Mnは
その含有量が少なすぎると二次再結晶の発達が悪くな
り、一方多すぎると磁束密度鋼板が得られ難くなる。適
正な含有量は0.050〜0.45%である。
N must be 0.010% or less.
If it exceeds this, swelling of the steel sheet surface called blister occurs. The lower limit is preferably about 0.0020%. If the content of Mn is too small, the development of secondary recrystallization deteriorates, while if it is too large, it becomes difficult to obtain a magnetic flux density steel sheet. The proper content is 0.050 to 0.45%.

【0016】SnとCrは複合添加で仕上げ焼鈍時の被
膜形成を安定化すると同時にSnは脱炭焼鈍後の一次再
結晶集合組織を改善し、ひいては二次再結晶粒を小粒化
し、被膜の安定化と相俟って鉄損改善に効果が大きい。
Snの適量は0.02〜0.15%であり、これより少
ないと効果が弱く、一方多いと窒化が困難になり二次再
結晶粒が発達しなくなる。Crの適量は0.05〜0.
30%が良い。Cuは高磁束密度鋼板を得るうえで効果
がありその適量は0.03〜0.30%の範囲である。
なお、微量のP、Tiを鋼中に含有せしめることは、本
発明の主旨を損なうものではない。
[0016] Sn and Cr stabilize the film formation during finish annealing by the combined addition, and at the same time, Sn improves the primary recrystallization texture after decarburization annealing, which in turn reduces secondary recrystallized grains to stabilize the film. The effect of improving iron loss is large in combination with
An appropriate amount of Sn is 0.02 to 0.15%, and if it is less than this, the effect is weak, while if it is more than that, nitriding becomes difficult and secondary recrystallized grains do not develop. An appropriate amount of Cr is 0.05 to 0.
30% is good. Cu is effective in obtaining a high magnetic flux density steel sheet, and its appropriate amount is in the range of 0.03 to 0.30%.
It should be noted that the inclusion of a trace amount of P and Ti in the steel does not impair the gist of the present invention.

【0017】次に本発明の製造プロセスを説明する。電
磁鋼スラブは、転炉あるいは電気炉などの溶解炉で鋼を
溶製し、必要に応じて真空脱ガス処理し、しかる後熱間
圧延に先立つスラブ加熱が成される。本発明のプロセス
においては、スラブの加熱温度は1280℃以下の低い
ものとして加熱エネルギーの消費量を少なくするととも
に、鋼中のAlNを完全に固溶させずに不完全固溶状態
とする。このスラブを熱延して所定の厚みの熱延板を造
る。
Next, the manufacturing process of the present invention will be described. The electromagnetic steel slab is produced by melting steel in a melting furnace such as a converter or an electric furnace, performing vacuum degassing treatment if necessary, and then performing slab heating prior to hot rolling. In the process of the present invention, the heating temperature of the slab is set to a low temperature of 1280 ° C. or lower to reduce the consumption of heating energy, and the AlN in the steel is not completely solid-solved to be an incomplete solid solution state. This slab is hot-rolled to make a hot-rolled plate having a predetermined thickness.

【0018】次に、本発明の特徴である熱延板焼鈍条件
と冷延条件について説明する。C:0.054%、S
i:3.25%、Mn:0.10%、P:0.02%、
S:0.008%、酸可溶性Al:0.030%、S
n:0.06%、Cr:0.12%、N:0.0078
%を含むインゴットを1150℃に加熱した後熱延し
2.3mmの熱延板を造った。次いでこの熱延板を表1の
条件で焼鈍し冷却した。
Next, the hot-rolled sheet annealing conditions and cold-rolling conditions that characterize the present invention will be described. C: 0.054%, S
i: 3.25%, Mn: 0.10%, P: 0.02%,
S: 0.008%, acid-soluble Al: 0.030%, S
n: 0.06%, Cr: 0.12%, N: 0.0078
% Of the ingot was heated to 1150 ° C. and then hot rolled to produce a hot rolled sheet of 2.3 mm. Next, this hot rolled sheet was annealed and cooled under the conditions shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】この後酸洗し板厚0.23mmまで冷延し
た。この冷延の途中板厚で50〜350℃の温度範囲で
5分保持するAging処理をした。この条件を表2に
示す。
After that, it was pickled and cold-rolled to a plate thickness of 0.23 mm. During this cold rolling, an aging treatment was performed in which the plate thickness was maintained for 5 minutes in the temperature range of 50 to 350 ° C. This condition is shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】次いで脱炭焼鈍を835℃の温度でN2
25%、H2 :75%、露点65℃の雰囲気中で行っ
た。次いで750℃×30sec の窒化処理をN2
2 、NH3 の混合ガス中で行い窒化後のN2 量をほぼ
200ppm に調整した。この後MgOとTiO2 を主成
分とする焼鈍分離材を塗布し、1200℃×20時間の
仕上げ焼鈍を行った。この後無水クロム酸、リン酸アル
ミニウムを主成分とする張力コーティングを施した。熱
延板焼鈍後の冷却条件(R℃/sec)−冷延時のAgin
g温度(T℃)−鉄損特性の関係を図1に示す。
Then decarburization annealing was carried out at a temperature of 835 ° C. with N 2 :
It was carried out in an atmosphere of 25%, H 2 : 75%, and a dew point of 65 ° C. Next, nitriding treatment at 750 ° C. for 30 seconds is performed with N 2 ,
The amount of N 2 after nitriding was adjusted to approximately 200 ppm in a mixed gas of H 2 and NH 3 . After that, an annealing separator containing MgO and TiO 2 as main components was applied, and finish annealing was performed at 1200 ° C. for 20 hours. After that, tension coating containing chromic anhydride and aluminum phosphate as main components was applied. Cooling condition after hot-rolled sheet annealing (R ° C / sec) -Agin during cold rolling
FIG. 1 shows the relationship between g temperature (T ° C.) and iron loss characteristics.

【0023】この図から400−10R≦T≦690−
12Rの範囲で非常に優れた低鉄損材が得られることが
分かる。熱延板焼鈍の高温側の温度は950℃〜115
0℃の範囲とする。この温度より低くても高くても一次
再結晶粒の粒径成長が困難になり高B8 特性が得られ難
い。この焼鈍時間は180秒以内とする。この時間を超
しても特別の効果は認められない。
From this figure, 400-10R≤T≤690-
It is understood that a very excellent low iron loss material can be obtained in the range of 12R. The temperature on the high temperature side of hot-rolled sheet annealing is 950 ° C to 115 ° C.
It shall be in the range of 0 ° C. If the temperature is lower or higher than this temperature, it is difficult to grow the grain size of the primary recrystallized grains, and it is difficult to obtain high B 8 characteristics. This annealing time is within 180 seconds. No special effect is observed even if this time is exceeded.

【0024】低温側の温度は800〜950℃の範囲と
する。この温度域がAlN析出を促進させ一次再結晶粒
の粒径調整を容易にさせる他、僅かなγ相を残存させ
て、この後の急冷によりhard相を形成させ適正な一
次再結晶集合組織を得る。焼鈍時間は30〜300秒が
よい。
The temperature on the low temperature side is in the range of 800 to 950.degree. This temperature range promotes AlN precipitation and facilitates the grain size adjustment of primary recrystallized grains, and also leaves a slight γ phase, which is then rapidly cooled to form a hard phase to form an appropriate primary recrystallized texture. obtain. The annealing time is preferably 30 to 300 seconds.

【0025】冷却規制温度下限を300℃とした理由
は、急冷によって材質硬度に十分影響を与える温度であ
るからである。勿論この温度以下も急冷することが好ま
しい。冷延途中段階のAging温度は100〜300
℃で鉄損改善の効果が大きい。
The reason why the lower limit of cooling regulation temperature is set to 300 ° C. is that it is the temperature at which the material hardness is sufficiently affected by the rapid cooling. Of course, it is preferable to rapidly cool below this temperature. Aging temperature during the cold rolling is 100 to 300
Greatly improves iron loss at ℃.

【0026】Aging時間は1分以上であれば効果が
でるが、好ましくは5分程度が良い。これより長くなっ
ても効果は十分ある。なお工業的にはリバース圧延機に
よる高温圧延域あるいは加熱装置設置により対応でき
る。本発明においては優れた磁気特性を得る上で、脱炭
焼鈍後の一次再結晶粒径とその集合組織の調整が重要で
ある。適正な一次再結晶粒径は15μm以上通常20〜
26μmと高温スラブ加熱材の10μm程度に比べて大
きい。
The aging time is effective if it is 1 minute or more, but preferably about 5 minutes. Even if it is longer than this, the effect is sufficient. Incidentally, industrially, it can be dealt with by setting up a high temperature rolling zone by a reverse rolling mill or installing a heating device. In the present invention, it is important to adjust the primary recrystallized grain size and its texture after decarburization annealing in order to obtain excellent magnetic properties. An appropriate primary recrystallized grain size is 15 μm or more, usually 20 to
26 μm, which is larger than about 10 μm of the high temperature slab heating material.

【0027】一般に集合組織の面からは粒径が大きくな
ることは好ましくない。このため、より厳密な集合組織
調整が必要となってくる。本発明の冷延前の鋼板の冷却
速度と冷延時のAgingの組み合わせは将にこの冷延
集合組織を適正化し好ましい一次再結晶集合組織を得て
いるものと考えられる。冷間圧延率は高いB8 値を得る
ために80%以上とする。
Generally, it is not preferable that the grain size is large in terms of texture. For this reason, more rigorous organization adjustment is needed. It is considered that the combination of the cooling rate of the steel sheet before cold rolling and the aging at the time of cold rolling of the present invention generally optimizes this cold rolled texture to obtain a preferable primary recrystallization texture. The cold rolling rate is 80% or more in order to obtain a high B 8 value.

【0028】脱炭焼鈍は脱炭を行う他に、一次再結晶組
織の調整及び被膜形成に必要な酸化層を形成させる役割
がある。これは通常800〜900℃の温度域で湿水
素、窒素ガス中で行う。次に窒化処理について述べる。
窒化処理は通常脱炭焼鈍後に650〜850℃の温度域
でストリップを走行せしめる状態下で行う。
In addition to decarburization, the decarburization annealing has a role of adjusting the primary recrystallization structure and forming an oxide layer necessary for forming a film. This is usually performed in a temperature range of 800 to 900 ° C. in wet hydrogen and nitrogen gas. Next, the nitriding process will be described.
The nitriding treatment is usually performed after decarburization annealing in a state where the strip is run in a temperature range of 650 to 850 ° C.

【0029】雰囲気ガスは特にこだわらないが、一般に
水素ガス、窒素ガス、アンモニアガスの混合ガスを用い
る。この後、MgO、TiO2 を主成分とするスラリー
を塗布し、1100℃以上の温度で仕上げ焼鈍を公知の
方法で行う。
The atmosphere gas is not particularly limited, but generally a mixed gas of hydrogen gas, nitrogen gas and ammonia gas is used. Then, a slurry containing MgO and TiO 2 as a main component is applied, and finish annealing is performed at a temperature of 1100 ° C. or higher by a known method.

【0030】[0030]

【実施例】【Example】

[実施例1]C:0.058%、Si:3.45%、M
n:0.10%、S:0.007%、酸可溶性Al:
0.027%、Sn:0.05%、Cr:0.12%、
N:0.0080%を含むスラブを1150℃に加熱し
た後熱延し2.6mmの熱延板を造った。
[Example 1] C: 0.058%, Si: 3.45%, M
n: 0.10%, S: 0.007%, acid-soluble Al:
0.027%, Sn: 0.05%, Cr: 0.12%,
A slab containing N: 0.0080% was heated to 1150 ° C. and then hot-rolled to produce a hot-rolled sheet of 2.6 mm.

【0031】次いで熱延板焼鈍を1080℃×30sec
+850℃×2min の焼鈍をした後、850℃〜300
℃までの冷却速度を10℃/secと、40℃/secとして室
温まで冷却した。この後酸洗し0.30mmまで冷延し
た。この冷延の途中板厚段階において表3のようなAg
ing処理を行った。
Then, hot-rolled sheet annealing is performed at 1080 ° C. for 30 seconds.
After annealing at + 850 ° C x 2min, 850 ° C-300
The cooling rate to 10 ° C. was set to 10 ° C./sec and 40 ° C./sec to cool to room temperature. This was followed by pickling and cold rolling to 0.30 mm. Ag in the plate thickness stage during this cold rolling as shown in Table 3
The ing process was performed.

【0032】[0032]

【表3】 [Table 3]

【0033】次いで脱炭焼鈍を830℃の温度でN2
25%、H2 :75%、露点65℃の雰囲気中で行っ
た。次いで750℃×30秒の窒化処理をN2 、H2
NH3の混合ガス中で行い、窒化後のN2 量をほぼ20
0ppm に調整した。この後MgOとTiO2 を主成分と
する焼鈍分離剤を塗布し、1200℃×20時間の仕上
げ焼鈍を行った。この後水洗し、無水クロム酸、リン酸
アルミニウムを主成分とする張力コーティングを施し
た。磁気特性を表4に示す。本発明の範囲で非常に優れ
た鉄損値を示している。
Then decarburization annealing was carried out at a temperature of 830 ° C. with N 2 :
It was carried out in an atmosphere of 25%, H 2 : 75%, and a dew point of 65 ° C. Next, nitriding treatment at 750 ° C. for 30 seconds is performed with N 2 , H 2 ,
It is performed in a mixed gas of NH 3 and the amount of N 2 after nitriding is set to about 20.
Adjusted to 0 ppm. After that, an annealing separator containing MgO and TiO 2 as main components was applied, and finish annealing was performed at 1200 ° C. for 20 hours. After that, it was washed with water and subjected to tension coating containing chromic anhydride and aluminum phosphate as main components. The magnetic properties are shown in Table 4. It shows a very good iron loss value within the range of the present invention.

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【発明の効果】本発明のの低温スラブ加熱法により、磁
気特性の優れた一方向性電磁鋼板を得ることができる。
According to the low temperature slab heating method of the present invention, it is possible to obtain a grain-oriented electrical steel sheet having excellent magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aging温度と熱延板焼鈍の冷速と磁気特性
の関係を示す図表である。
FIG. 1 is a chart showing a relationship between an aging temperature, a cold speed of hot-rolled sheet annealing, and magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 幸司 北九州市戸畑区飛幡町1番1号 新日本 製鐵株式会社 八幡製鐵所内 (72)発明者 黒木 克郎 北九州市戸畑区大字中原46−59 日鐵プ ラント設計株式会社内 (56)参考文献 特開 昭61−60896(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/06 H01F 1/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Yamazaki 1-1 Tobahata-cho, Tobata-ku, Kitakyushu City Shin Nippon Steel Co., Ltd. Yawata Works (72) Inventor Katsuro Kuroki 46-59 Nakahara, Tobata-ku, Kitakyushu Nittetsu Plant Design Co., Ltd. (56) Reference JP-A-61-60896 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/06 H01F 1/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で、 C :0.025〜0.075%、 Si:2.5〜4.5%、 Mn:0.050〜0.45%、 S ≦0.015%、 酸可溶性Al:0.015〜0.040%、 N ≦0.010% を含有し残部Fe及び不可避的不純物からなる電磁鋼ス
ラブを1280℃以下の温度に加熱した後、熱延し、
終冷延前に焼鈍を実施し、一回または中間焼鈍を介挿す
る二回以上の圧延でその最終圧延率を80%以上とし、
ついで脱炭焼鈍、窒化処理、仕上げ焼鈍をする一方向性
電磁鋼板の製造において、最終冷延前の鋼板の焼鈍を2
段均熱とし、高温側の温度、均熱時間を950〜115
0℃、180秒以内、低温側の温度、均熱時間を800
〜950℃、30〜300秒とし、800〜950℃の
温度域から300℃までの平均冷却速度をR℃/secで冷
却し、最終冷延の複数回のパスの少なくとも1回以上鋼
板に100〜300℃の温度範囲で下記条件を満たすT
℃で1分以上の時間保持する熱効果を与えることを特徴
とする低鉄損高磁束密度一方向性電磁鋼板の製造方法。 400−10R≦T≦690−12R
1. By weight ratio, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, Mn: 0.050 to 0.45%, S ≤ 0.015%, acid soluble Al: 0.015 to .040%, after heating the electrical steel slab containing N ≦ 0.010% the balance being Fe and unavoidable impurities to a temperature of 1280 ° C. or less, hot rolled, the outermost
Annealing is performed before final cold rolling, and the final rolling rate is set to 80% or more by rolling once or twice or more with intermediate annealing.
Then, in the production of unidirectional electrical steel sheet that undergoes decarburization annealing, nitriding treatment, and finish annealing, annealing of the steel sheet before final cold rolling is
Stage soaking, high temperature side, soaking time 950-115
0 ℃, within 180 seconds, low temperature side, soaking time 800
To 950 ° C., 30 to 300 seconds, the average cooling rate from the temperature range of 800 to 950 ° C. to 300 ° C. is cooled at R ° C./sec, and the steel sheet is subjected to at least one or more times of multiple passes of final cold rolling 100 times or more. T satisfying the following conditions in the temperature range of ~ 300 ° C
A method for producing a low iron loss high magnetic flux density unidirectional electrical steel sheet, which is characterized by imparting a thermal effect of holding at ℃ for 1 minute or more. 400-10R ≦ T ≦ 690-12R
【請求項2】 重量比で、 C :0.025〜0.075%、 Si:2.5〜4.5%、 Mn:0.050〜0.45%、 S ≦0.015%、 酸可溶性Al:0.015〜0.040%、 N ≦0.010%、 Sn:0.02〜0.15%、 Cr:0.05〜0.30%を含有し残部Fe及び不可
避的不純物からなる電磁鋼スラブを出発素材とする請求
項1記載の方法。
2. By weight ratio, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, Mn: 0.050 to 0.45%, S ≤ 0.015%, acid Soluble Al: 0.015 to 0.040%, N ≤ 0.010%, Sn: 0.02 to 0.15%, Cr: 0.05 to 0.30%, and the balance Fe and unavoidable impurities 2. The method according to claim 1, wherein said electromagnetic steel slab is used as a starting material.
【請求項3】 重量比で、 C :0.025〜0.075%、 Si:2.5〜4.5%、 Mn:0.050〜0.45%、 S ≦0.015%、 酸可溶性Al:0.015〜0.040%、 N ≦0.010%、 Sn:0.02〜0.15%、 Cr:0.05〜0.30%、 Cu:0.03〜0.30%を含有し残部Fe及び不可
避的不純物からなる電磁鋼スラブを出発素材とする請求
項1記載の方法。
3. By weight ratio, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, Mn: 0.050 to 0.45%, S ≤ 0.015%, acid Soluble Al: 0.015 to 0.040%, N ≤ 0.010%, Sn: 0.02 to 0.15%, Cr: 0.05 to 0.30%, Cu: 0.03 to 0.30. The method according to claim 1, wherein an electromagnetic steel slab containing 10% by weight and the balance Fe and unavoidable impurities is used as a starting material.
JP20105195A 1995-08-07 1995-08-07 Low iron loss high magnetic flux density Expired - Lifetime JP3390109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20105195A JP3390109B2 (en) 1995-08-07 1995-08-07 Low iron loss high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20105195A JP3390109B2 (en) 1995-08-07 1995-08-07 Low iron loss high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH0949022A JPH0949022A (en) 1997-02-18
JP3390109B2 true JP3390109B2 (en) 2003-03-24

Family

ID=16434591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20105195A Expired - Lifetime JP3390109B2 (en) 1995-08-07 1995-08-07 Low iron loss high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3390109B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435478B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR100406420B1 (en) * 1999-12-27 2003-11-20 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet with high permeability
US7887645B1 (en) 2001-05-02 2011-02-15 Ak Steel Properties, Inc. High permeability grain oriented electrical steel
KR100721823B1 (en) * 2005-12-22 2007-05-25 주식회사 포스코 A hot rolling method for grain-oriented electrical steel sheet
KR100825305B1 (en) * 2006-12-28 2008-04-28 주식회사 포스코 Method for manufacturing the grain-oriented electrical steel sheets having improved magnetic property

Also Published As

Publication number Publication date
JPH0949022A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH0583612B2 (en)
JP3390109B2 (en) Low iron loss high magnetic flux density
JP3368310B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3271654B2 (en) Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3390108B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH09194941A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

EXPY Cancellation because of completion of term