JP2000282142A - Manufacture of grain oriented silicon steel sheet - Google Patents

Manufacture of grain oriented silicon steel sheet

Info

Publication number
JP2000282142A
JP2000282142A JP8591499A JP8591499A JP2000282142A JP 2000282142 A JP2000282142 A JP 2000282142A JP 8591499 A JP8591499 A JP 8591499A JP 8591499 A JP8591499 A JP 8591499A JP 2000282142 A JP2000282142 A JP 2000282142A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
annealing
hot rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8591499A
Other languages
Japanese (ja)
Inventor
Tomoji Kumano
知二 熊野
Yoshifumi Ohata
喜史 大畑
Nobunori Fujii
宣憲 藤井
Hitoshi Yokouchi
仁 横内
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP8591499A priority Critical patent/JP2000282142A/en
Publication of JP2000282142A publication Critical patent/JP2000282142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a low-cost grain oriented silicon steel sheet, capable of giving a steel sheet minimal in fluctuations in magnetic properties and having a high magnetic flux density by means of a low temperature slab heating even if a hot rolled plate annealing is omitted. SOLUTION: A silicon steel slab, having a composition containing, by weight, <=0.075% C, 2.5-4.5% Si, <=0.015%, independently or in combination, of S or Se, and 0.0005-0.0040% B and further containing Al, N, Sn, Cr, Mn, and Cu, is heated to <=1,280 deg.C and hot rolled, and the resultant steel plate is subjected to cold rolling at a draft of >=80%, to decarburizing annealing, to nitriding treatment, and to finish annealing, by which the grain oriented silicon steel sheet can be manufactured. In this method, at the time of hot rolling, the initial finish hot rolling temperature after roughing at >=60% cumulative draft is regulated to 900-1,100 deg.C, and also the B content of the slab and the deviation ΔF0T( deg.C), in the inner part of coil, of initial finish hot rolling temperature are controlled to values within the ranges satisfying ΔF0T<=1.25.B+50 (where B: ppm).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気機器の鉄心に用
いられる高磁束密度一方向性電磁鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high magnetic flux density unidirectional magnetic steel sheet used for an iron core of electric equipment.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、鋼板面が{11
0}面で、圧延方向が<100>軸を有するいわゆるゴ
ス方位をもつ結晶粒から構成されており、軟磁性材料と
して変圧器及び発電機用の鉄心に利用される。この鋼板
は磁気特性として磁化特性と鉄損特性が良好でなければ
ならない。磁化特性の良否は、付与された一定の磁場中
で鉄心内に誘起される磁束密度の高低で決まり、磁束密
度の高い製品では鉄心を小型化できる。磁束密度の高さ
は鋼板結晶粒の方位を{110}<001>に高度に揃
えることによって達成できる。鉄損は、鉄心に所定の交
流磁場を与えた場合に熱エネルギ−として消費される電
力損失であり、その良否に対して磁束密度、板厚、不純
物量、比抵抗、結晶粒の大きさ等が影響する。
2. Description of the Related Art A grain-oriented electrical steel sheet has a steel sheet surface of $ 11.
It is composed of crystal grains having a so-called Goss orientation having a <100> axis in the 0 ° plane and the rolling direction, and is used as a soft magnetic material in iron cores for transformers and generators. This steel sheet must have good magnetic properties such as magnetization properties and iron loss properties. The quality of the magnetizing characteristics is determined by the level of the magnetic flux density induced in the iron core in the given constant magnetic field, and a product with a high magnetic flux density can be downsized. The height of the magnetic flux density can be achieved by highly aligning the crystal grains of the steel sheet to {110} <001>. Iron loss is a power loss consumed as heat energy when a predetermined AC magnetic field is applied to an iron core. The quality of the iron loss is determined by magnetic flux density, plate thickness, impurity amount, specific resistance, crystal grain size, and the like. Influences.

【0003】磁束密度の高い鋼板は電気機器の鉄心を小
さくでき、又鉄損も小さくなるので望ましく、当該技術
分野ではできる限り磁束密度の高い製品を安いコストで
製造する方法の開発が課題である。現在、工業的に生産
されている代表的な一方向性電磁鋼板の製造方法として
は、特公昭30−3651号公報に示されたMnSを用
いた二回冷延プロセスの他に、AlN+MnSを用いた
高冷延プロセスの特公昭40−15644号公報、Mn
Se+Sbを用いた二回冷延プロセスである特公昭51
−13469号公報等に開示された技術がある。
[0003] A steel sheet having a high magnetic flux density is desirable because it can reduce the iron core of electrical equipment and also reduce iron loss. In the technical field, there is a problem in developing a method of manufacturing a product having a magnetic flux density as high as possible at a low cost. . At present, as a typical method of manufacturing a grain-oriented electrical steel sheet industrially produced, AlN + MnS is used in addition to the two-time cold rolling process using MnS described in Japanese Patent Publication No. 30-3651. Japanese Patent Publication No. 40-15644 of the high cold rolling process, Mn
Tokiko Sho 51, a double cold rolling process using Se + Sb
There is a technique disclosed in, for example, Japanese Patent No. 13469.

【0004】これらの技術は、いずれも析出物を微細、
均一に制御する技術として熱延に先立つスラブ加熱温度
を、1250℃超、実際には1300℃以上と極めて高
い温度にすることによって、粗大に析出している析出物
を一旦固溶させ、その後の熱延中、或いは熱処理によっ
て、析出させる。スラブ加熱温度を上げることはスラブ
加熱時の使用エネルギの増大、設備損傷率の増大等のほ
か材質的にはスラブの結晶組織に起因する線状の二次再
結晶不良が発生する。
[0004] In each of these techniques, the precipitate is fine,
As a technology for uniform control, the slab heating temperature prior to hot rolling is set to an extremely high temperature of more than 1250 ° C., actually 1300 ° C. or more, so that coarsely precipitated precipitates are once dissolved and then solid-dissolved. Precipitate during hot rolling or by heat treatment. Increasing the slab heating temperature not only increases the energy used during slab heating, increases the equipment damage rate, etc., but also causes a linear secondary recrystallization failure due to the crystal structure of the slab.

【0005】このような高温スラブ加熱に対して比較的
低い加熱温度で製造可能な例えば、特開昭62−403
15号公報に開示されている技術、即ち二次再結晶に必
要なインヒビタ−は、脱炭焼鈍完了以降から仕上げ焼鈍
における二次再結晶発現以前までに造り込む方法があ
る。その手段としては、鋼中にNを侵入させることによ
って、インヒビタ−として機能する(Al,Si)Nを
形成させるものである。鋼中にNを侵入させる手段とし
ては、仕上げ焼鈍昇温過程での雰囲気ガスからのNの侵
入を利用するか、脱炭焼鈍後段領域或いは脱炭焼鈍完了
後のストリップを連続ラインでNH3 等の窒化源となる
雰囲気ガスを用いて行う方法が知られている。
[0005] Such a high-temperature slab can be manufactured at a relatively low heating temperature, for example, Japanese Patent Laid-Open No. 62-403.
There is a technique disclosed in Japanese Patent Publication No. 15 (i.e., an inhibitor required for secondary recrystallization) in which an inhibitor necessary for secondary recrystallization is formed after completion of decarburization annealing and before secondary recrystallization occurs in finish annealing. The means is to form (Al, Si) N which functions as an inhibitor by injecting N into steel. As a means for infiltrating N into the steel, N intrusion from the atmosphere gas in the step of raising the temperature of the finish annealing is used, or a strip after the decarburizing annealing or the strip after the completion of the decarburizing annealing is connected to a continuous line with NH 3 or the like. A method is known in which an atmosphere gas serving as a nitriding source is used.

【0006】[0006]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的にはしているが、
当然のことながら良好な磁気特性を安定して得る技術で
なければ、工業化できない。 以上の技術においては通
常、熱延後に組識の均一化、析出処理等を目的として熱
延板焼鈍が行われている。方向性電磁鋼板はその後引き
続き冷間圧延、脱炭焼鈍、仕上げ焼鈍を行って製品とさ
れる。このように多岐にわたる工程のため多量のエネル
ギーを消費し、また製造コストも高いものとなってい
る。これに対する工程簡略化として熱延板焼鈍を省略す
る技術が開示されている。例えば特公昭59−4573
0号公報には、熱延の巻取り温度を700〜1100℃
と高くして保熱する、いわゆる自己焼鈍を施すことによ
り、熱延板焼鈍を省略する技術が開示されている。
The method using low-temperature slab heating is originally aimed at reducing the manufacturing cost.
As a matter of course, it cannot be industrialized unless a technique for stably obtaining good magnetic properties is achieved. In the above technology, usually, hot-rolled sheet annealing is performed after hot rolling for the purpose of homogenizing a structure, a precipitation treatment, and the like. The grain-oriented electrical steel sheet is subsequently subjected to cold rolling, decarburizing annealing, and finish annealing to obtain a product. Such a wide variety of processes consume a large amount of energy, and the manufacturing cost is high. In order to simplify the process, a technique of omitting hot-rolled sheet annealing is disclosed. For example, Japanese Patent Publication No. 59-4573
No. 0 discloses a hot rolling temperature of 700 to 1100 ° C.
A technique has been disclosed in which so-called self-annealing is performed to maintain heat at a high temperature, thereby omitting hot-rolled sheet annealing.

【0007】本発明の目的は、低温スラブ加熱で、か
つ、熱延板焼鈍を省略して、なお良好な磁気特性を有す
る低コスト一方向性電磁鋼板の製造方法を提供すること
にある。しかしながら、単純に熱延板焼鈍を省略すると
スラブ加熱時の温度むら或いは熱延時のコイル内時間差
を起因とする析出の不均一性を内在しており、製品のコ
イル長手方向の位置によって磁気特性の変動が生じる。
これを解決するために、例えば、AlとNの含有量を規
制する特開平7−118745号公報に開示された技
術、或いは仕上げ熱延の開始温度のコイル内偏差をAl
とNの含有量に応じて規制する特開平7−138641
号公報に開示された技術が提案されている。本発明は当
然これらの方法を考慮しているが、しかしこれらの技術
のみでは安定製造する上で十分とは言えない。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a low-cost unidirectional magnetic steel sheet having low-temperature slab heating and omitting hot-rolled sheet annealing and still having good magnetic properties. However, if the hot-rolled sheet annealing is simply omitted, unevenness in precipitation due to temperature unevenness during slab heating or time difference in the coil during hot rolling is inherent, and the magnetic properties of the product depend on the position in the longitudinal direction of the coil. Fluctuations occur.
In order to solve this problem, for example, a technique disclosed in Japanese Patent Application Laid-Open No. Hei 7-118745 for regulating the contents of Al and N, or a deviation in the coil of the starting temperature of the finish hot rolling by Al
Japanese Patent Application Laid-Open No. H7-138641, which regulates according to the contents of N and N
The technology disclosed in Japanese Patent Laid-Open Publication No. H10-26095 has been proposed. The present invention naturally takes these methods into account, but these techniques alone are not sufficient for stable production.

【0008】本発明の目的は、低温スラブ加熱で、且
つ、熱延板焼鈍を省略して、なお良好な磁気特性を有す
る低コスト一方向性電磁鋼板の製造方法を提供すること
にある。
An object of the present invention is to provide a method for producing a low-cost unidirectional magnetic steel sheet having low-temperature slab heating and omitting hot-rolled sheet annealing and still having good magnetic properties.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記の通りである。 (1)重量%で、C:0.020〜0.075%、S
i:2.5〜4.5%、Mn:0.05〜0.45%、
S或いはSeを単独又は複合で≦0.015%、酸可溶
性Al:0.010〜0.050%、B:0.0005
〜0.0040%、N≦0.0100%、Cr:0.0
3〜0.20%、Sn:0.02〜0.15%、残部F
e及び不可避的不純物からなるスラブを、1280℃以
下の温度に加熱後熱延し、圧下率80%以上の冷間圧延
をし、次いで脱炭焼鈍をし、次いで、鋼板の窒素量が1
20ppm以上となるように窒化処理を行い、その後仕
上げ焼鈍を行う一方向性電磁鋼板の製造方法において、
熱延に際し、累積圧下率60%以上の粗圧延後に行う仕
上げ熱延開始温度を900〜1100℃とし、かつ、ス
ラブのB含有量(ppm)、仕上げ熱延の開始温度のコ
イル偏差ΔF0T(℃)を下記式の範囲に制御すること
を特徴とする一方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) By weight%, C: 0.020-0.075%, S
i: 2.5 to 4.5%, Mn: 0.05 to 0.45%,
S or Se alone or in combination ≦ 0.015%, acid-soluble Al: 0.010 to 0.050%, B: 0.0005
0.0040%, N ≦ 0.0100%, Cr: 0.0
3 to 0.20%, Sn: 0.02 to 0.15%, balance F
e and a slab composed of unavoidable impurities are heated to a temperature of 1280 ° C. or lower, hot-rolled, cold-rolled at a reduction of 80% or more, then decarburized, and then the steel sheet has a nitrogen content of 1%.
In the method for producing a grain-oriented electrical steel sheet, which performs a nitriding treatment so as to have a concentration of 20 ppm or more and then performs a finish annealing,
At the time of hot rolling, the finish hot rolling start temperature to be performed after the rough rolling at a cumulative draft of 60% or more is 900 to 1100 ° C., the B content of the slab (ppm), and the coil deviation ΔFOT (° C.) of the finish hot rolling start temperature. ) Is controlled within the range of the following expression.

【0010】ΔF0T(℃)≦1.25・B+50 (2)重量%で、Cuを0.03〜0.30%を更に含
有させることを特徴とする請求項1ないし3記載の一方
向性電磁鋼板の製造方法。 (3)窒化処理として、ストリップを走行せしめる状態
下で、水素、窒素、アンモニアの混合ガス中で650〜
850℃の範囲で処理することを特徴とする請求項1な
いし4記載の一方向性電磁鋼板の製造方法。
4. The unidirectional electromagnetic device according to claim 1, further comprising 0.03 to 0.30% of Cu, wherein .DELTA.FOT (.degree. C.). Ltoreq.1.25.B + 50. Steel plate manufacturing method. (3) As a nitriding treatment, 650 to 650 in a mixed gas of hydrogen, nitrogen, and ammonia in a state where the strip is run.
The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the treatment is performed at a temperature of 850 ° C. 5.

【0011】[0011]

【発明の実施の形態】以下本発明を詳細に説明する。本
発明が対象としている一方向性電磁鋼板は、実質的にA
lNのみをインヒビター成分とし、通常用いられている
製鋼法で得られた溶鋼を連続鋳造法あるいは造塊法で鋳
造し、必要に応じて分塊工程をはさんでスラブとし、引
き続き熱間圧延して熱延板とし、熱延板を焼鈍すること
なく酸洗し、圧延率80%以上となる最終冷延を施し、
次いで脱炭焼鈍、窒化処理、仕上焼鈍を順次行うことに
よって製造される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The grain-oriented electrical steel sheet to which the present invention is directed is substantially A
Only 1N is used as an inhibitor component, and molten steel obtained by a commonly used steelmaking method is cast by a continuous casting method or an ingot making method, and if necessary, a slab is sandwiched by a sizing process, and then hot-rolled. Hot rolled sheet, pickled without annealing the hot rolled sheet, and subjected to final cold rolling at a rolling reduction of 80% or more,
Next, it is manufactured by sequentially performing decarburizing annealing, nitriding treatment, and finish annealing.

【0012】本発明者らは、熱延板焼鈍を省略した1回
冷延法で低温スラブ加熱材を処理する場合における磁気
特性の変動の第1の原因は、AlNの析出状態にあると
考えている。スラブ加熱時のスラブ内温度差あるいは熱
延時のコイル内温度差は、はそのままAlNの溶解、析
出の不均一となるに影響することは公知の事実である。
熱延コイル内にAlNの不均一析出があると、脱炭焼鈍
後の一次再結晶粒径およびその集合組織が変化し、二次
再結晶に影響を与え、その結果として磁性変動が起こる
のである。
The present inventors believe that the first cause of the fluctuation of the magnetic properties when the low-temperature slab heating material is processed by the single cold rolling method omitting the hot-rolled sheet annealing is the precipitation state of AlN. ing. It is a known fact that the temperature difference in the slab during slab heating or the temperature difference in the coil during hot rolling directly affects the dissolution and precipitation of AlN.
If there is uneven precipitation of AlN in the hot-rolled coil, the primary recrystallized grain size and its texture after decarburizing annealing will change, affecting the secondary recrystallization, and as a result, magnetic fluctuations will occur. .

【0013】このような磁性変動を抑制する方策とし
て、仕上げ熱延前のコイル内温度差を一定範囲に抑制す
ることに加えて、発明者らはBを添加することを検討し
た。B添加の狙いは主にγ相中の固溶窒素をBNとして
析出させることにより、微細AlNの析出を抑え、一次
再結晶粒のスラブ加熱温度依存性を小さくすることと同
時にBNを二次再結晶時のインヒビターとして利用する
ことによって、高B8化を果たすことにある。
As a measure for suppressing such magnetic fluctuations, the present inventors have studied adding B in addition to suppressing the temperature difference in the coil before finishing hot rolling to a certain range. The purpose of adding B is mainly to precipitate the solid solution nitrogen in the γ phase as BN, thereby suppressing the precipitation of fine AlN, reducing the dependence of the primary recrystallized grains on the slab heating temperature, and simultaneously reducing the BN secondary. The object is to achieve higher B8 by using as an inhibitor during crystallization.

【0014】そして本発明者らは、B添加量に応じて仕
上げ熱延開始前温度を一定範囲に調整することで、良好
な磁気特性を得られることを知見したものである。以下
に本発明を実験結果に基づき説明する。先ず、供試材と
して、重量比でC:0.041%、Si:3.0%、M
n:0.10%、S:0.007%、酸可溶性Al:
0.030%、Cr:0.12%、Sn:0.05%、
N:0.0065〜0.0075%を基本成分とし、こ
れにB添加を、添加なし、0.0010%、0.001
8%、0.0027%、と4水準変化させた厚さ250
mmの10tスラブを鋳造した。
The present inventors have found that good magnetic properties can be obtained by adjusting the temperature before the start of finishing hot rolling to a certain range in accordance with the amount of B added. Hereinafter, the present invention will be described based on experimental results. First, as test materials, C: 0.041%, Si: 3.0%, M
n: 0.10%, S: 0.007%, acid-soluble Al:
0.030%, Cr: 0.12%, Sn: 0.05%,
N: 0.0065% to 0.0075% as a basic component, to which B is added and not added, 0.0010%, 0.001%
8 thickness, 0.0027%, thickness 250 changed by 4 levels
A 10 t slab of mm was cast.

【0015】このスラブを1050〜1150℃の温度
に約120分保持した後、7パスで粗熱延を行って40
mm厚とし、次いで6パスで仕上熱延を行って厚さ2.
8mmの熱延板とした。粗熱延と仕上げ熱延の間の時間
を変更し、仕上げ熱延開始温度を広範囲にとった。この
熱延板の各コイル内で仕上げ熱延開始温度が最高の部分
と最低の部分から試料を切り出し、熱延板焼鈍を施すこ
となく約88%の圧延率で冷延し0.34mmに仕上げ
た。この後、850℃の温度で150秒間の脱炭焼鈍を
施し、次いで750℃の温度で30秒間の窒化処理をし
て鋼板の窒化量を220〜240ppmに調整した。こ
の後、MgOを主成分とする焼鈍分離剤を塗布し、12
00℃で20時間の仕上げ焼鈍を行った。その後、同一
熱延条件の熱延板の熱延開始温度の最高温度部と最低温
度部の磁束密度の差ΔB8を求めた。
After maintaining the slab at a temperature of 1050 to 1150 ° C. for about 120 minutes, it was subjected to rough hot rolling in 7 passes to obtain a slab of 40 ° C.
mm thick, and then hot-rolled in 6 passes to give a thickness of 2.
An 8 mm hot rolled plate was used. The time between the rough hot rolling and the finishing hot rolling was changed, and the finishing hot rolling starting temperature was set in a wide range. In each coil of this hot-rolled sheet, samples were cut from the highest and lowest hot-rolling start temperatures and cold rolled at a rolling rate of about 88% without performing hot-rolled sheet annealing and finished to 0.34 mm. Was. Thereafter, decarburizing annealing was performed at a temperature of 850 ° C. for 150 seconds, and then a nitriding treatment was performed at a temperature of 750 ° C. for 30 seconds to adjust the nitriding amount of the steel sheet to 220 to 240 ppm. Thereafter, an annealing separator containing MgO as a main component is applied, and 12
Finish annealing was performed at 00 ° C. for 20 hours. Thereafter, the difference ΔB8 between the magnetic flux densities of the highest temperature portion and the lowest temperature portion of the hot rolling start temperature of the hot rolled sheet under the same hot rolling condition was determined.

【0016】図1に、スラブのB(ppm)、仕上げ熱
延開始温度の最高と最低の差ΔF0T(℃)と製品の磁
気特性の関係を示す。図1から明らかなように、ΔF0
T(℃)≦1.25・B+50 の範囲で、ΔB8≦
0.02Tとなり、安定した磁気特性が得られているこ
とが分かる。次に本発明の限定理由について説明する。
FIG. 1 shows the relationship between the slab B (ppm), the difference ΔF0T (° C.) between the highest and the lowest of the hot-rolling start temperature and the magnetic properties of the product. As is apparent from FIG.
ΔB8 ≦ within the range of T (° C.) ≦ 1.25 · B + 50
0.02T, indicating that stable magnetic characteristics were obtained. Next, the reasons for limitation of the present invention will be described.

【0017】本発明において出発材とする電磁鋼スラブ
の成分組成の限定理由は、以下の通りである。 C:Cは0.020〜0.075%とした。0.020
%未満では高い磁束密度が得られず、一方0.075%
を超えても良好な特性は得られず、加えて脱炭焼鈍時間
が長くなり経済的ではない。
The reasons for limiting the component composition of the magnetic steel slab used as the starting material in the present invention are as follows. C: C was set to 0.020 to 0.075%. 0.020
%, A high magnetic flux density cannot be obtained, while 0.075%
However, good characteristics cannot be obtained even if the temperature exceeds the above, and the decarburization annealing time is prolonged, which is not economical.

【0018】Si:Siはその含有量が2.5%未満に
なると、良好な鉄損が得られない。また、4.5%を超
えると、脆性のために冷延が困難になる。 Al:AlはNと結合してAlNを形成するが、本発明
においては、後工程即ち一次再結晶完了後に鋼を窒化す
ることにより、(Al,Si)Nを形成せしめことを必
須としているから、フリ−のAlが一定量以上必要であ
る。そのため、酸可溶性Alとして、0.010〜0.
050%添加する。
Si: If the content of Si is less than 2.5%, good iron loss cannot be obtained. On the other hand, if it exceeds 4.5%, cold rolling becomes difficult due to brittleness. Al: Al combines with N to form AlN, but in the present invention, it is essential to form (Al, Si) N by nitriding the steel after the completion of the primary recrystallization in the subsequent step. , Free Al must be at least a certain amount. Therefore, as acid soluble Al, 0.010-0.
Add 050%.

【0019】N:Nは0.0100%を超えるとブリス
ターと呼ばれる鋼板の膨れが発生するので制限される。
下限については、熱延板焼鈍を省略する本発明において
は少ないほど熱延板でのAlN析出量が少なくなり好ま
しいので特に設けないが、少なくするほど精練コストが
上がるので適宜決定される。 B:B添加量は0.0005%以下では効果がなく、一
方0.0040%を超えても更なる効果は認められな
い。好ましくは0.0010〜0.0030%である。
N: If N exceeds 0.0100%, blistering of the steel plate called blister occurs, so that it is limited.
The lower limit is not particularly set in the present invention, in which the hot rolled sheet annealing is omitted, since the smaller the amount, the smaller the amount of AlN precipitated in the hot rolled sheet. B: No effect is obtained when the added amount of B is 0.0005% or less, and no further effect is observed when the added amount exceeds 0.0040%. Preferably it is 0.0010 to 0.0030%.

【0020】Mn:Mnは、その含有量が0.05%未
満では二次再結晶が不安定になり、一方、0.45%よ
り多すぎると磁束密度を低下させるので好ましくない。 S及びSe:S及びSeは、0.015%以下がよい。
S及びSeはMnS或いはMnSeを生成する。本プロ
セスにおいては脱炭焼鈍において、一次再結晶粒径を一
定の大きさにコントロ−ルすることが重要である。この
ためMnS,MnSe等が多量に存在することは一次再
結晶粒の成長を妨げるので好ましくない。
Mn: If the content of Mn is less than 0.05%, the secondary recrystallization becomes unstable. On the other hand, if the content is more than 0.45%, the magnetic flux density is lowered, which is not preferable. S and Se: S and Se are preferably 0.015% or less.
S and Se generate MnS or MnSe. In this process, it is important to control the primary recrystallized grain size to a certain size in the decarburization annealing. Therefore, the presence of a large amount of MnS, MnSe, or the like is not preferable because it hinders the growth of primary recrystallized grains.

【0021】Cr:Crは脱炭焼鈍時の酸化を促進する
元素である。このCrの適量は0.03〜0.45%、
好ましくは0.05〜0.15%である。さらにSnと
複合添加することで、仕上げ焼鈍後の皮膜形成がより安
定化する。 Sn:Snは脱炭焼鈍後の集合組織を改善し、ひいては
二次再結晶を改善し皮膜の安定化と相俟って鉄損改善に
効果が大きい。Snの適量は0.02〜0.15%であ
る。0.02%より少ないと効果が弱く、一方、0.1
5%より多いと窒化が困難になり二次再結晶粒が発達し
難くなる。
Cr: Cr is an element that promotes oxidation during decarburizing annealing. The appropriate amount of this Cr is 0.03 to 0.45%,
Preferably it is 0.05 to 0.15%. Furthermore, the film formation after the finish annealing is further stabilized by adding the compound with Sn. Sn: Sn improves the texture after decarburizing annealing, thereby improving the secondary recrystallization, and has a great effect on iron loss improvement together with the stabilization of the film. An appropriate amount of Sn is 0.02 to 0.15%. If less than 0.02%, the effect is weak, while 0.1
If it exceeds 5%, nitriding becomes difficult and secondary recrystallized grains hardly develop.

【0022】Cu:Cuは被膜形成の安定化と磁束密度
の向上に有効である。0.03%未満では効果がなく
0.30%を超えると酸洗性が悪くなる。 次に、本発明の製造プロセスについて説明する。転炉、
電気炉、等で得られた電磁鋼スラブはスラブ加熱炉で1
280℃以下の温度でで加熱した後、熱延をして所定の
板厚の熱延板とする。このスラブ加熱温度が1280℃
を超えると、一次再結晶粒の粒径コントロ−ルが困難に
なり好ましくない。好ましくは1100℃〜1200℃
である。加熱されたスラブは引き続き熱延される。熱延
工程は通常100〜300mm厚のスラブを加熱した
後、いずれも複数回のパスで行う粗熱延と仕上げ熱延よ
りなる。この粗熱延の累積圧下率を60%以上とする必
要がある。60%以上においてα相中のAlNの析出促
進が図られる。
Cu: Cu is effective for stabilizing the film formation and improving the magnetic flux density. If it is less than 0.03%, there is no effect, and if it exceeds 0.30%, the pickling property deteriorates. Next, the manufacturing process of the present invention will be described. Converter,
Electromagnetic steel slabs obtained in an electric furnace, etc.
After heating at a temperature of 280 ° C. or less, hot rolling is performed to obtain a hot-rolled sheet having a predetermined thickness. The slab heating temperature is 1280 ° C
If the ratio exceeds 1, the control of the particle size of the primary recrystallized grains becomes difficult, which is not preferable. Preferably 1100 ° C to 1200 ° C
It is. The heated slab is subsequently hot rolled. The hot rolling step usually comprises a rough hot rolling and a finishing hot rolling performed in a plurality of passes after heating a slab having a thickness of 100 to 300 mm. The cumulative rolling reduction of the rough hot rolling needs to be 60% or more. At 60% or more, precipitation of AlN in the α phase is promoted.

【0023】仕上げ熱延開始温度は900〜1100℃
と規定した。1100℃超では、熱延におけるAlNの
析出が不十分となり好ましくない。また900℃未満で
は、仕上げ熱延での再結晶が不十分となり、好ましくな
い。また仕上げ熱延開始温度偏差ΔF0T(℃)につい
ては、図1の結果からΔF0T≦1.25・B+50と
規定した。図1に示すようにこの範囲にすることで、磁
気特性の変動を小さくすることができる。仕上げ熱延開
始温度偏差を上記範囲に調整する方法については特に限
定するものではない。特願平5−281181号公報に
示すAl,Nの含有量によって規定する方法、あるいは
スラブ温度を温度傾斜等で調整する方法、粗熱延終了時
の板厚を圧延方向位置で変える方法、粗熱延のパス間時
間の調整等を併用して実施することができる。仕上げ熱
延は通常4〜10パスの高速連続圧延で行われる。
Finish hot rolling start temperature is 900 to 1100 ° C.
It was specified. If it exceeds 1100 ° C., precipitation of AlN in hot rolling becomes insufficient, which is not preferable. On the other hand, when the temperature is lower than 900 ° C., recrystallization by hot rolling becomes insufficient, which is not preferable. The final hot-rolling start temperature deviation ΔFOT (° C.) is defined as ΔFOT ≦ 1.25 · B + 50 based on the results of FIG. By setting this range as shown in FIG. 1, fluctuations in magnetic characteristics can be reduced. The method for adjusting the finish hot rolling start temperature deviation to the above range is not particularly limited. Japanese Patent Application No. 5-281181 discloses a method defined by the contents of Al and N, a method of adjusting the slab temperature by a temperature gradient or the like, a method of changing the sheet thickness at the end of rough hot rolling in a rolling direction position, Adjustment of the time between passes of hot rolling can be performed in combination. Finish hot rolling is usually performed by high-speed continuous rolling of 4 to 10 passes.

【0024】この熱延板は次いで、熱延板焼鈍を施すこ
となく圧下率80%以上の最終冷延を行う。最終冷延の
圧下率を80%以上としたのは、脱炭焼鈍板において先
鋭な[ 110] <001>方位粒と、これに蚕食されや
すい対応方位粒([ 111]<112>方位粒等)を適
正量得ることが出来、磁束密度を高める上で好ましいか
らである。かかる冷延後の鋼板は、通常の方法で脱炭焼
鈍、窒化処理、焼鈍分離剤塗布、最終仕上焼鈍を施され
て最終製品となる。脱炭焼鈍においては一次再結晶粒径
を一定の大きさに調整することが重要である。通常は平
均粒径18〜30μm程度に調整している。この範囲に
おいて良好な磁気特性が得られやすい。
This hot rolled sheet is then subjected to final cold rolling at a rolling reduction of 80% or more without performing hot rolled sheet annealing. The reduction rate of the final cold rolling was set to 80% or more because sharp [110] <001> orientation grains and corresponding orientation grains ([111] <112> orientation grains, etc.) which are easily eroded by silkworms in the decarburized annealed sheet. ) Can be obtained in an appropriate amount, which is preferable in increasing the magnetic flux density. The steel sheet after such cold rolling is subjected to decarburizing annealing, nitriding treatment, application of an annealing separating agent, and final finish annealing by a usual method, and becomes a final product. In decarburization annealing, it is important to adjust the primary recrystallized grain size to a certain size. Usually, the average particle size is adjusted to about 18 to 30 μm. In this range, good magnetic characteristics are easily obtained.

【0025】脱炭焼鈍後に行う窒化処理は、仕上げ焼鈍
の前段で窒素雰囲気とする方法や、焼鈍分離剤に窒化性
物質を混合して塗布する方法もあるが、650℃〜85
0℃の温度で水素、窒素、アンモニアの混合ガス中でス
トリップを通板せしめる状態で行うのが均一な窒化状態
を得るために好ましい。鋼板の窒素量は少なくとも12
0ppm以上となるようにする。120ppmより少な
いと二次再結晶の発達が悪くなる。この後MgO,Ti
2 を主成分とするスラリを塗布し1100℃以上の温
度で仕上げ焼鈍を行う。この仕上焼鈍昇温過程の二次再
結晶開始温度域前後の昇温速度は5〜15℃/hが望ま
しい。
The nitriding treatment to be performed after the decarburizing annealing includes a method in which a nitrogen atmosphere is used before the final annealing, and a method in which a nitriding substance is mixed with an annealing separating agent and applied.
It is preferable to carry out the strip at a temperature of 0 ° C. in a mixed gas of hydrogen, nitrogen and ammonia in a state where the strip is passed to obtain a uniform nitriding state. The steel sheet has a nitrogen content of at least 12
It should be 0 ppm or more. If the amount is less than 120 ppm, the development of secondary recrystallization becomes poor. After this, MgO, Ti
A slurry mainly composed of O 2 is applied and finish annealing is performed at a temperature of 1100 ° C. or more. It is desirable that the rate of temperature rise before and after the secondary recrystallization start temperature range in the finish annealing temperature rise process is 5 to 15 ° C./h.

【0026】[0026]

【実施例】〔実施例1〕C:0.045%、Si:3.
0%、Mn:0.10%、S:0.010%、P:0.
025%、Cr:0.12%、酸可溶性Al:0.02
9%、Sn:0.05%、N:0.0072%を含み更
にB を表1に示す如く添加したスラブを1100℃で加
熱し、熱延し2.6mmの熱延板を造った。この熱延開
始温度のコイル内偏差はほぼ65℃であった。これを酸
洗し0.29mmに冷間圧延した。これを860℃の温度
で150秒の脱炭焼鈍を湿水素、窒素の混合ガス中で行
った。この後、750℃の温度で30秒の窒化処理を水
素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素
量をほぼ230ppmに調整した。次いで、MgO、T
iO2 を主成分とする焼鈍分離剤を塗布し1200℃の
温度で20時間の仕上げ焼鈍を行った。この後、所定の
処理をして磁気特性を測定した。結果を表2に示す。
[Example 1] C: 0.045%, Si: 3.
0%, Mn: 0.10%, S: 0.010%, P: 0.
025%, Cr: 0.12%, acid-soluble Al: 0.02
A slab containing 9%, Sn: 0.05%, and N: 0.0072% and further containing B as shown in Table 1 was heated at 1100 ° C. and hot rolled to produce a 2.6 mm hot rolled sheet. The in-coil deviation of the hot rolling start temperature was approximately 65 ° C. This was pickled and cold rolled to 0.29 mm. The decarburization annealing was performed at a temperature of 860 ° C. for 150 seconds in a mixed gas of wet hydrogen and nitrogen. Thereafter, nitriding treatment was performed at a temperature of 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the amount of nitrogen in the steel sheet to approximately 230 ppm. Then, MgO, T
An annealing separator containing iO 2 as a main component was applied, and finish annealing was performed at a temperature of 1200 ° C. for 20 hours. Thereafter, predetermined processing was performed to measure magnetic characteristics. Table 2 shows the results.

【0027】表2から分かるように、Bを添加すること
によりB8のばらつきが小さくなる上、高いB8の製品
が得られた。
As can be seen from Table 2, by adding B, the dispersion of B8 was reduced and a high B8 product was obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】〔実施例2〕C:0.045%、Si:
3.10%、Mn:0.10%、S:0.007%、
P:0.020%、Cr:0.12%、酸可溶性Al:
0.031%、Sn:0.05%、N:0.0078、
B:0.0025%、を含んだ溶鋼にCu添加を無添
加、0.10%、0.20%と3水準変化させたスラブ
を1100℃で加熱後熱延し2.6mmの熱延板を造っ
た。この熱延開始温度のコイル内偏差は約60℃であっ
た。
Example 2 C: 0.045%, Si:
3.10%, Mn: 0.10%, S: 0.007%,
P: 0.020%, Cr: 0.12%, acid-soluble Al:
0.031%, Sn: 0.05%, N: 0.0078,
B: A molten steel containing 0.0025% without any addition of Cu, a slab having three levels changed to 0.10% and 0.20%, heated at 1100 ° C., and then hot-rolled to a 2.6 mm hot-rolled sheet. Was built. The in-coil deviation of the hot rolling start temperature was about 60 ° C.

【0031】これを酸洗し0.27mmに冷間圧延した。
次いで860℃の温度で120秒の脱炭焼鈍を湿水素、
窒素の混合ガス中で行った。この後、750℃の温度で
30秒の窒化処理を水素、窒素、アンモニアの混合ガス
中で行い、鋼板の窒素量をほぼ230ppmに調整し
た。次いで、MgO,TiO2 を主成分とする焼鈍分離
剤を塗布し1200℃の温度で20時間の仕上げ焼鈍を
行った。この後、所定の処理をして磁気特性を測定し
た。結果を表3に示す。表3から分かるように、Cu添
加により磁束密度が更に向上し、またフォルステライト
皮膜の形成は均一かつ緻密なものであった。なおコイル
内の磁束密度の変動はほぼ0.01Tであった。
This was pickled and cold rolled to 0.27 mm.
Then, decarburizing annealing for 120 seconds at a temperature of 860 ° C.
The test was performed in a mixed gas of nitrogen. Thereafter, nitriding treatment was performed at a temperature of 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the amount of nitrogen in the steel sheet to approximately 230 ppm. Next, an annealing separator containing MgO and TiO2 as main components was applied and finish annealing was performed at a temperature of 1200 DEG C. for 20 hours. Thereafter, predetermined processing was performed to measure magnetic characteristics. Table 3 shows the results. As can be seen from Table 3, the magnetic flux density was further improved by the addition of Cu, and the formation of the forsterite film was uniform and dense. The fluctuation of the magnetic flux density in the coil was approximately 0.01T.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】以上説明したように、本発明は、一方向
性電磁鋼板の成分におけるB 量と仕上げ熱延開始温度の
コイル内偏差を規定することにより、低温スラブ加熱で
且つ熱延板焼鈍を省略しても、なお良好な磁気特性を有
する低コスト一方向性電磁鋼板を得ることができる。
As described above, the present invention provides low-temperature slab heating and hot-rolled sheet annealing by defining the in-coil deviation between the amount of B in the component of the grain-oriented electrical steel sheet and the finish hot-rolling start temperature. , A low-cost unidirectional magnetic steel sheet having good magnetic properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】B添加量、仕上げ熱延開始温度のコイル内偏差
と磁束密度の変動の関係を表すグラフである。
FIG. 1 is a graph showing the relationship between the amount of B added, the deviation in the coil of the finish hot rolling start temperature, and the variation in magnetic flux density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大畑 喜史 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 藤井 宣憲 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 横内 仁 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 Fターム(参考) 4K028 AA02 AB01 AC08 4K033 AA02 BA01 BA02 CA02 CA06 CA07 CA09 FA01 FA02 HA02 JA04 5E041 AA02 AA19 CA02 HB05 HB07 HB11 NN01 NN17 NN18  ──────────────────────────────────────────────────続 き Continued on the front page (72) Yoshifumi Ohata 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Noriyoshi Fujii Tobata, Kitakyushu-shi, Fukuoka 1-1 Nippon Steel Corporation, Yawata Steel Works (72) Inventor Hitoshi Yokouchi 1-1 Niwata Town, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (72) Invention Katsuro Kuroki 59-46 Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka F-term in Nippon Steel Plant Design Co., Ltd. (Reference) NN01 NN17 NN18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.020〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.050%、 N≦0.0100%、 B:0.0005〜0.0040%、 Mn:0.05〜0.45%、 S或いはSeを単独又は複合で≦0.015%、 Cr:0.03〜0.20%、 Sn:0.02〜0.15%、 残部Fe及び不可避的不純物からなるスラブを、128
0℃以下の温度に加熱後熱延し、圧下率80%以上の冷
間圧延をし、次いで脱炭焼鈍をし、次いで鋼板の窒素量
が120ppm以上となるように窒化処理を行い、その
後仕上げ焼鈍を行う一方向性電磁鋼板の製造方法におい
て、熱延に際し、累積圧下率60%以上の粗圧延後に行
う仕上げ熱延開始温度を900〜1100℃とし、か
つ、スラブのB含有量(ppm)、仕上げ熱延の開始温
度のコイル偏差ΔF0T(℃)を下記式の範囲に制御す
ることを特徴とする一方向性電磁鋼板の製造方法。 ΔF0T(℃)≦1.25・B+50
1. wt%, C: 0.020-0.075%, Si: 2.5-4.5%, acid-soluble Al: 0.010-0.050%, N ≦ 0.0100% B: 0.0005 to 0.0040%, Mn: 0.05 to 0.45%, S or Se alone or in combination ≦ 0.015%, Cr: 0.03 to 0.20%, Sn: A slab consisting of 0.02 to 0.15%, the balance Fe and unavoidable impurities was 128
After hot-rolling to a temperature of 0 ° C or less, hot rolling is performed at a rolling reduction of 80% or more, then decarburizing annealing, and then nitriding is performed so that the nitrogen content of the steel sheet becomes 120 ppm or more, and then finishing In the method for producing a grain-oriented electrical steel sheet subjected to annealing, in hot rolling, the finish hot rolling start temperature to be performed after rough rolling at a cumulative draft of 60% or more is 900 to 1100 ° C, and the B content of the slab (ppm). And controlling the coil deviation ΔFOT (° C.) of the starting temperature of the finish hot rolling in the range of the following equation. ΔF0T (° C) ≦ 1.25 · B + 50
【請求項2】 重量%で、Cuを0.03〜0.30%
を更に含有させることを特徴とする請求項1記載の一方
向性電磁鋼板の製造方法。
2. Cu is 0.03 to 0.30% by weight.
The method for producing a grain-oriented electrical steel sheet according to claim 1, further comprising:
【請求項3】 窒化処理として、ストリップを走行せし
める状態下で、水素、窒素、アンモニアの混合ガス中で
650〜850℃の範囲で処理することを特徴とする請
求項1ないし2記載の一方向性電磁鋼板の製造方法。
3. The unidirectional nitriding treatment according to claim 1, wherein the nitriding treatment is carried out in a mixed gas of hydrogen, nitrogen and ammonia at a temperature of 650 to 850 ° C. while the strip is running. Manufacturing method of conductive electrical steel sheet.
JP8591499A 1999-03-29 1999-03-29 Manufacture of grain oriented silicon steel sheet Pending JP2000282142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8591499A JP2000282142A (en) 1999-03-29 1999-03-29 Manufacture of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8591499A JP2000282142A (en) 1999-03-29 1999-03-29 Manufacture of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JP2000282142A true JP2000282142A (en) 2000-10-10

Family

ID=13872087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8591499A Pending JP2000282142A (en) 1999-03-29 1999-03-29 Manufacture of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP2000282142A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406420B1 (en) * 1999-12-27 2003-11-20 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet with high permeability
KR100825631B1 (en) * 2001-11-09 2008-04-25 주식회사 포스코 Method for manufacturing low carbon cold rolled sheet excellent in dent resistance and formability
JP2012144776A (en) * 2011-01-12 2012-08-02 Nippon Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2012144777A (en) * 2011-01-12 2012-08-02 Nippon Steel Corp Raw material for electromagnetic steel sheet and method of manufacturing grain-oriented electromagnetic steel sheet
US8366836B2 (en) 2009-07-13 2013-02-05 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
CN104220607A (en) * 2012-03-29 2014-12-17 杰富意钢铁株式会社 Method for manufacturing oriented magnetic steel sheet
JP2015537112A (en) * 2012-09-27 2015-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド Manufacturing method of high magnetic flux density general-purpose directional silicon steel
CN106661656A (en) * 2014-09-04 2017-05-10 杰富意钢铁株式会社 Method for manufacturing grain-oriented electrical steel sheet, and nitriding apparatus
US10208372B2 (en) 2011-01-12 2019-02-19 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
CN114645207A (en) * 2022-03-22 2022-06-21 包头钢铁(集团)有限责任公司 Manufacturing method of acquired inhibitor high-magnetic-induction oriented silicon steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406420B1 (en) * 1999-12-27 2003-11-20 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet with high permeability
KR100825631B1 (en) * 2001-11-09 2008-04-25 주식회사 포스코 Method for manufacturing low carbon cold rolled sheet excellent in dent resistance and formability
US8366836B2 (en) 2009-07-13 2013-02-05 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
JP2012144776A (en) * 2011-01-12 2012-08-02 Nippon Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2012144777A (en) * 2011-01-12 2012-08-02 Nippon Steel Corp Raw material for electromagnetic steel sheet and method of manufacturing grain-oriented electromagnetic steel sheet
US10208372B2 (en) 2011-01-12 2019-02-19 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
CN104220607B (en) * 2012-03-29 2016-03-02 杰富意钢铁株式会社 The manufacture method of orientation electromagnetic steel plate
CN104220607A (en) * 2012-03-29 2014-12-17 杰富意钢铁株式会社 Method for manufacturing oriented magnetic steel sheet
JP2015537112A (en) * 2012-09-27 2015-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド Manufacturing method of high magnetic flux density general-purpose directional silicon steel
CN106661656A (en) * 2014-09-04 2017-05-10 杰富意钢铁株式会社 Method for manufacturing grain-oriented electrical steel sheet, and nitriding apparatus
EP3196320A4 (en) * 2014-09-04 2017-08-09 JFE Steel Corporation Method for manufacturing directional magnetic steel sheet, and nitriding treatment equipment
CN106661656B (en) * 2014-09-04 2019-05-28 杰富意钢铁株式会社 The manufacturing method and nitrogen treatment equipment of orientation electromagnetic steel plate
US10900113B2 (en) 2014-09-04 2021-01-26 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet, and nitriding apparatus
US11761074B2 (en) 2014-09-04 2023-09-19 Jfe Steel Corporation Nitriding apparatus for manufacturing a grain-oriented electrical steel sheet
CN114645207A (en) * 2022-03-22 2022-06-21 包头钢铁(集团)有限责任公司 Manufacturing method of acquired inhibitor high-magnetic-induction oriented silicon steel

Similar Documents

Publication Publication Date Title
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH08295937A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JPH11279642A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH02259017A (en) Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property
JPH09194941A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080214

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080321