JPH11269717A - Polypropylene fiber and its production - Google Patents

Polypropylene fiber and its production

Info

Publication number
JPH11269717A
JPH11269717A JP36662698A JP36662698A JPH11269717A JP H11269717 A JPH11269717 A JP H11269717A JP 36662698 A JP36662698 A JP 36662698A JP 36662698 A JP36662698 A JP 36662698A JP H11269717 A JPH11269717 A JP H11269717A
Authority
JP
Japan
Prior art keywords
fiber
crystalline
melt
polypropylene
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36662698A
Other languages
Japanese (ja)
Other versions
JP4266247B2 (en
Inventor
Hirofumi Yashiro
弘文 矢代
Yuki Meguro
祐樹 目黒
Toshimasa Matsunaga
年正 松永
Shinji Ota
信次 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP36662698A priority Critical patent/JP4266247B2/en
Publication of JPH11269717A publication Critical patent/JPH11269717A/en
Application granted granted Critical
Publication of JP4266247B2 publication Critical patent/JP4266247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide PP fibers having high knot strength and readily producible in a low cost and a method for producing the fibers. SOLUTION: The objective polypropylene fibers are made of a crystalline polypropylene having (20-45)×10<4> weight-average molecular weight and >= g/d knot strength and are obtained by using a first crystalline polypropylene having 0.1-10 melt flow rate and a second crystalline polypropylene having 10-40 melt flow rate as raw materials, blending them so as a weight ratio of the second crystalline polypropylene to the first crystalline polypropylene to be <=50 wt.%, and subjecting the resultant blend to melt spinning so as a melt flow rate after the melt spinning to be 2-30 to obtain undrawn filaments, drawing the undrawn filaments to >=5 times and >=70% of a breaking draw ratio at 120-180 deg.C by using a drawing tank comprising a vessel containing a pressurized steam as a drawing medium and having both ends sealed with a pressurized water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリプロピレン繊維
およびその製造方法に係り、特に、結節強度の高いポリ
プロピレン繊維およびその製造方法に関する。
The present invention relates to a polypropylene fiber and a method for producing the same, and more particularly, to a polypropylene fiber having a high knot strength and a method for producing the same.

【0002】[0002]

【従来の技術】ポリプロピレン(以下、ポリプロピレン
を「PP」と略記する。)繊維は、比重が小さい(軽
い),耐薬品性に著しく優れている,強力が強い,耐摩
耗性に優れている,弾性的性質に優れている等の利点を
有していることから、衣料,資材,インテリア,濾材
等、種々の用途に利用されている。
2. Description of the Related Art Polypropylene (hereinafter, polypropylene is abbreviated as "PP") fiber has a small specific gravity (light), is extremely excellent in chemical resistance, has strong strength, is excellent in abrasion resistance, Since it has advantages such as excellent elastic properties, it is used for various uses such as clothing, materials, interiors, and filter media.

【0003】上記の利点を有しているPP繊維は一般に
溶融紡糸法またはゲル紡糸法によって製造されており、
その製造条件および製造方法については、実用上使用す
ることができる原料の分子量等に応じて、所望の物性を
有するPP繊維が得られるように適宜選定されている。
[0003] PP fibers having the above advantages are generally produced by a melt spinning method or a gel spinning method.
The production conditions and the production method are appropriately selected according to the molecular weight of the raw material that can be used practically so that PP fibers having desired physical properties can be obtained.

【0004】例えば、溶融紡糸法によってPP繊維を製
造しようとする場合には、溶融紡糸時における原料のメ
ルトフローレート(以下、メルトフローレートを「MF
R」と略記する。)が小さいとその流動性が低下し、ま
た、溶融紡糸後のMFRが小さいと延伸性が低下し、こ
れらに伴って生産性や得られるPP繊維の物性が低下す
るので、MFRが概ね10〜40の原料を用いて所望の
物性を有するPP繊維が得られるように、その製造条件
が選定されている。その結果として、従来の溶融紡糸法
によって工業的に製造されるPP繊維、すなわち、概ね
50m/分以上の生産速度の下に製造されるPP繊維
は、重量平均分子量が概ね10万〜30万のPPに必要
に応じて光安定剤や酸化防止剤等の添加剤を含有させた
ものによって形成されている。
For example, when a PP fiber is to be produced by a melt spinning method, the melt flow rate of the raw material during melt spinning (hereinafter referred to as “MF” is referred to as “MF”).
R ". ) Is small, the fluidity is reduced, and the MFR after melt-spinning is small, the drawability is reduced, and the productivity and the physical properties of the obtained PP fiber are reduced. The production conditions are selected so that PP fibers having desired physical properties can be obtained using 40 raw materials. As a result, PP fibers produced industrially by the conventional melt spinning method, that is, PP fibers produced at a production speed of approximately 50 m / min or more, have a weight average molecular weight of approximately 100,000 to 300,000. It is formed by adding additives such as a light stabilizer and an antioxidant to PP as needed.

【0005】一方、ゲル紡糸法によってPP繊維を製造
しようとする場合には、重量平均分子量が概ね100万
以上の原料を用いて所望の物性を有するPP繊維が得ら
れるように、その製造条件が選定されている。その結果
として、従来のゲル紡糸法によって製造されるPP繊維
は、重量平均分子量が概ね100万以上のPPによって
形成されている。
On the other hand, when the PP fiber is to be produced by the gel spinning method, the production conditions are set so that the PP fiber having desired physical properties can be obtained using a raw material having a weight average molecular weight of about 1,000,000 or more. Selected. As a result, PP fibers produced by the conventional gel spinning method are formed of PP having a weight average molecular weight of about 1,000,000 or more.

【0006】ところで、PP繊維を用いてロープ,ネッ
ト,織物あるいは濾布等のように繊維同士が湾曲あるい
は屈曲状態で使用される製品を得るにあたっては、当該
製品の信頼性,耐久性等をより向上させるうえから結節
強度の高いPP繊維を得ることが望まれるわけである
が、従来の溶融紡糸法によって工業的に製造し得るPP
繊維の結節強度は概ね7g/d以下である。一方、特開
昭60−231743号公報には、ゲル紡糸法によって
得られた結節強度8.3g/dのPP繊維が開示されて
いる。このPP繊維は、重量平均分子量が250万のP
Pを原料として用いてゲル紡糸法によって未延伸糸を得
た後、この未延伸糸を15倍を超える倍率で延伸するこ
とによって得られたものである。
By the way, in obtaining a product in which fibers are used in a curved or bent state, such as a rope, a net, a woven fabric or a filter cloth, using PP fiber, the reliability and durability of the product must be improved. It is desired to obtain a PP fiber having a high knot strength in order to improve the PP. However, PP that can be industrially produced by a conventional melt spinning method is desired.
The knot strength of the fiber is generally not more than 7 g / d. On the other hand, JP-A-60-231743 discloses a PP fiber having a knot strength of 8.3 g / d obtained by a gel spinning method. This PP fiber has a weight average molecular weight of 2.5 million P
It is obtained by obtaining an undrawn yarn by a gel spinning method using P as a raw material, and then drawing the undrawn yarn at a magnification exceeding 15 times.

【0007】[0007]

【発明が解決しようとする課題】上述のように、ゲル紡
糸法によれば溶融紡糸法によるよりも結節強度の高いP
P繊維を得ることが可能である。しかしながら、ゲル紡
糸法によってPP繊維を製造する場合には、下記(1) ,
(2) 等の理由から、溶融紡糸法によってPP繊維を製造
する場合よりも製造コストが非常に高くなるという難点
がある。
As described above, the gel spinning method has a higher knot strength than the melt spinning method.
It is possible to obtain P fibers. However, when producing PP fibers by the gel spinning method, the following (1),
(2) For the reasons such as above, there is a drawback that the production cost is much higher than when PP fiber is produced by the melt spinning method.

【0008】(1) 原料を特定の溶媒に溶解させて使用
し、かつ、前記の溶媒を最終的にはPP繊維から除去す
る必要があるので、生産効率が低い。 (2) PP繊維から上記の溶媒を除去した後、当該溶媒を
無害化して廃棄するか、または、再生処理して再利用し
なければならないので、そのための処理設備が必要にな
る。
(1) Since the raw material is used after being dissolved in a specific solvent, and the solvent must be finally removed from the PP fiber, the production efficiency is low. (2) After removing the solvent from the PP fiber, the solvent must be detoxified and discarded, or the solvent must be regenerated and reused, so a processing facility for that is required.

【0009】本発明の目的は、結節強度が高く、かつ、
低コストの下に製造することが容易なPP繊維およびそ
の製造方法を提供することにある。
An object of the present invention is to provide a high knot strength,
An object of the present invention is to provide a PP fiber which can be easily manufactured at low cost and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成する本
発明のPP繊維は、重量平均分子量が20万〜45万の
結晶性PPからなり、結節強度が8g/d以上であるこ
とを特徴とするものである。
Means for Solving the Problems The PP fiber of the present invention, which achieves the above object, is characterized by comprising crystalline PP having a weight average molecular weight of 200,000 to 450,000 and a knot strength of 8 g / d or more. It is assumed that.

【0011】また、上記の目的を達成する本発明のPP
繊維の製造方法は、メルトフローレートが0.1〜10
である第1の結晶性ポリプロピレンとメルトフローレー
トが10〜40である第2の結晶性ポリプロピレンとを
原料として用い、前記第1の結晶性ポリプロピレンに対
する前記第2の結晶性ポリプロピレンの重量比率の値が
50%以下となるようにしてこれらの結晶性ポリプロピ
レンが混合されている混合物を溶融紡糸後のメルトフロ
ーレートが2〜30となるように溶融紡糸して未延伸糸
を得た後、両端が加圧水でシールされた容器内に延伸媒
体としての加圧水蒸気が入れられている延伸槽を使用し
て、120〜180℃の延伸温度下で前記の未延伸糸を
5倍以上に、なおかつ破断倍率の70%以上に延伸し
て、重量平均分子量が20万〜45万の結晶性ポリプロ
ピレンからなり、結節強度が8g/d以上であるポリプ
ロピレン繊維を得ることを特徴とするものである(以
下、この方法を「方法I」という。)。
Further, the PP of the present invention for achieving the above object
The fiber production method is such that the melt flow rate is 0.1 to 10
Using the first crystalline polypropylene as a raw material and the second crystalline polypropylene having a melt flow rate of 10 to 40 as a raw material, and the value of the weight ratio of the second crystalline polypropylene to the first crystalline polypropylene Is 50% or less, and a mixture in which these crystalline polypropylenes are mixed is melt-spun so that the melt flow rate after melt-spinning is 2 to 30 to obtain an undrawn yarn. Using a draw tank in which pressurized steam as a draw medium is put in a container sealed with pressurized water, the undrawn yarn is stretched at a stretching temperature of 120 to 180 ° C. to 5 times or more, and a breaking ratio of It is drawn to 70% or more to obtain a polypropylene fiber composed of crystalline polypropylene having a weight average molecular weight of 200,000 to 450,000 and having a knot strength of 8 g / d or more. And it is characterized in bets (hereinafter, this method "Method I".).

【0012】そして、上記の目的を達成する本発明のP
P繊維の他の製造方法は、メルトフローレートが0.1
〜10の結晶性ポリプロピレンを原料として用い、この
結晶性ポリプロピレンを溶融紡糸後のメルトフローレー
トが2〜30になるように溶融紡糸して未延伸糸を得た
後、両端が加圧水でシールされた容器内に延伸媒体とし
ての加圧水蒸気が入れられている延伸槽を使用して、1
20〜180℃の延伸温度下で前記の未延伸糸を5倍以
上に、なおかつ破断倍率の70%以上に延伸して、重量
平均分子量が20万〜45万の結晶性ポリプロピレンか
らなり、結節強度が8g/d以上であるポリプロピレン
繊維を得ることを特徴とするものである(以下、この方
法を「方法II」という。)。
The P of the present invention that achieves the above object is
Another method for producing P-fibers has a melt flow rate of 0.1
After using a crystalline polypropylene as a raw material, an undrawn yarn was obtained by melt-spinning this crystalline polypropylene so that the melt flow rate after melt-spinning was 2 to 30, and both ends were sealed with pressurized water. Using a stretching tank containing pressurized steam as a stretching medium in a container,
The unstretched yarn is stretched 5 times or more at a stretching temperature of 20 to 180 ° C. and 70% or more of the breaking ratio, and is made of crystalline polypropylene having a weight average molecular weight of 200,000 to 450,000. Is 8 g / d or more (hereinafter, this method is referred to as "method II").

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。まず、本発明のPP繊維について説
明する。本発明のPP繊維は、前述したように重量平均
分子量が20万〜45万の結晶性PPからなり、結節強
度が8g/d以上のものである。
Embodiments of the present invention will be described below in detail. First, the PP fiber of the present invention will be described. As described above, the PP fiber of the present invention is composed of crystalline PP having a weight average molecular weight of 200,000 to 450,000 and has a knot strength of 8 g / d or more.

【0014】ここで、本発明のPP繊維を形成している
上記の結晶性PPは、重量平均分子量が20万〜45万
でありさえすれば、(1) 1種類のPPホモポリマーから
なるものであってもよいし、(2) 2種以上のPPホモポ
リマー同士の混合物からなるもの、(3) PPとαオレフ
ィン(例えばエチレン,ブテン−1等)とを共重合させ
てなる1種類の共重合体からなるもの、または、(4) 前
記(3) の共重合体の2種以上同士の混合物からなるも
の、であってもよい。
Here, the above-mentioned crystalline PP forming the PP fiber of the present invention, if it has a weight-average molecular weight of 200,000 to 450,000, is (1) made of one kind of PP homopolymer. Or (2) one consisting of a mixture of two or more PP homopolymers, and (3) one kind obtained by copolymerizing PP with an α-olefin (eg, ethylene, butene-1 or the like). It may be a copolymer or (4) a mixture of two or more copolymers of the above (3).

【0015】また、PP繊維においては一般に光安定
剤,酸化防止剤,顔料等の添加剤が必要に応じて使用さ
れるわけであるが、本発明のPP繊維においても、これ
らの添加剤を必要に応じて添加することができる。さら
に、後述するように本発明のPP繊維を得るにあたって
は原料の分子量を調整するための分子量調整剤、例えば
2,5−ジメチル−2,5−ジ(t−ブチルペルオキ
シ)ヘキサン等の過酸化物や、金属石鹸(例えばステア
リン酸亜鉛,ステアリン酸アルミニウム)等が必要に応
じて使用されるわけであるが、本発明のPP繊維には、
前記の分子量調整剤またはその熱分解生成物が不可避的
に残存していてもよい。
In addition, additives such as light stabilizers, antioxidants, pigments and the like are generally used as necessary in the PP fiber, and these additives are also required in the PP fiber of the present invention. It can be added according to. Further, as described later, in obtaining the PP fiber of the present invention, a peroxide such as 2,5-dimethyl-2,5-di (t-butylperoxy) hexane for adjusting the molecular weight of the raw material is used. Products, metal soaps (eg, zinc stearate, aluminum stearate) and the like are used as needed.
The above-mentioned molecular weight modifier or its thermal decomposition product may inevitably remain.

【0016】したがって、本発明のPP繊維についてい
う「重量平均分子量が20万〜45万の結晶性PPから
なる」とは、重量平均分子量が20万〜45万である前
述の結晶性PPのみからなることの他に、前述の結晶性
PPに上述した添加剤や分子量調整剤もしくはその熱分
解生成物を含有させたものからなることをも意味するも
のとする。
Therefore, "comprising crystalline PP having a weight-average molecular weight of 200,000 to 450,000" as referred to with respect to the PP fiber of the present invention means only the crystalline PP having a weight-average molecular weight of 200,000 to 450,000. In addition to the above, it also means that the above-mentioned crystalline PP contains the above-mentioned additive, molecular weight modifier or thermal decomposition product thereof.

【0017】一方、本発明でいうPP繊維の結節強度と
は、JIS L 1015の結節強さに準じて測定した
ものを意味する。
On the other hand, the knot strength of the PP fiber referred to in the present invention means a value measured according to the knot strength of JIS L1015.

【0018】本発明のPP繊維は、上述したように重量
平均分子量が20万〜45万の結晶性PPからなるもの
であるので、従来のゲル紡糸法によって得ることはでき
ない。また、当該PP繊維は結節強度が8g/d以上の
ものであるので、従来の溶融紡糸法によっても得ること
ができない。しかしながら、後述する本発明の方法Iま
たは方法IIによれば従来の延伸方法よりも延伸倍率を上
げられるため、工業的な生産速度、すなわち50m/分
以上の生産速度の下に容易に得ることができる。
Since the PP fiber of the present invention is composed of crystalline PP having a weight average molecular weight of 200,000 to 450,000 as described above, it cannot be obtained by a conventional gel spinning method. Further, since the PP fiber has a knot strength of 8 g / d or more, it cannot be obtained by the conventional melt spinning method. However, according to the method I or the method II of the present invention described later, since the stretching ratio can be increased as compared with the conventional stretching method, it can be easily obtained at an industrial production speed, that is, at a production speed of 50 m / min or more. it can.

【0019】このように、本発明のPP繊維は結節強度
が高く、かつ、工業的な生産速度の下に容易に得ること
ができるものであるので、ロープ,ネット,織物あるい
は濾布等のように繊維同士が湾曲あるいは屈曲状態で使
用される製品の信頼性,耐久性等を向上させるととも
に、当該製品を安価に提供するうえで有用である。さら
に、当該PP繊維は概ね11g/d以上という高い繊維
強度を有しているので、例えばセメント補強用単繊維,
布等を得るうえでも有用である。なお、本発明のPP繊
維の繊度は、その用途に応じて概ね0.5〜100dの
範囲内で適宜選択可能である。
As described above, since the PP fiber of the present invention has a high knot strength and can be easily obtained at an industrial production speed, it can be used as a rope, a net, a woven fabric, a filter cloth or the like. In addition to improving the reliability and durability of a product used in a state where fibers are curved or bent, it is useful in providing the product at low cost. Furthermore, since the PP fiber has a high fiber strength of about 11 g / d or more, for example, a single fiber for cement reinforcement,
It is also useful for obtaining cloth and the like. In addition, the fineness of the PP fiber of the present invention can be appropriately selected within a range of approximately 0.5 to 100 d according to the use.

【0020】次に、本発明の方法Iについて説明する。
本発明の方法Iは、上述した本発明のPP繊維を工業的
な生産速度の下に製造するうえで有用な方法であり、当
該方法Iでは、前述したように、MFRが0.1〜10
である第1の結晶性PPと、MFRが10〜40である
第2の結晶性PPとを原料として用いる。そして、上記
第1の結晶性PPに対する上記第2の結晶性PPの重量
比率の値が50%以下となるようにして混合されている
混合物を溶融紡糸後のMFRが2〜30となるように溶
融紡糸して、未延伸糸を得る。
Next, the method I of the present invention will be described.
The method I of the present invention is a method useful for producing the above-described PP fiber of the present invention at an industrial production rate. In the method I, as described above, the MFR is 0.1 to 10
And the second crystalline PP having an MFR of 10 to 40 are used as raw materials. Then, the MFR after melt-spinning the mixture mixed so that the value of the weight ratio of the second crystalline PP to the first crystalline PP is 50% or less is 2 to 30. Melt spinning is performed to obtain an undrawn yarn.

【0021】ここで、方法Iおよび後述する方法IIでい
う「MFR」とは、JIS K 7210に基づいて試
験荷重2.16kgf,測定温度230℃の条件の下に
測定したものを意味する。
Here, "MFR" in the method I and the method II described later means a value measured under the conditions of a test load of 2.16 kgf and a measurement temperature of 230 ° C. based on JIS K7210.

【0022】また、方法Iでいう「結晶性PP」とは、
前述した本発明のPP繊維におけるのと同様に、(1) 1
種類のPPホモポリマーからなるものであってもよい
し、(2) 2種以上のPPホモポリマー同士の混合物から
なるもの、(3) PPとαオレフィン(例えばエチレン,
ブテン−1等)とを共重合させてなる1種類の共重合体
からなるもの、または、(4) 前記(3) の共重合体の2種
以上同士の混合物からなるもの、であってもよい。そし
て、使用する原料は上記第1の結晶性PPおよび上記第
2の結晶性PPの2つのみであってもよいが、これらの
結晶性PP以外に、本発明のPP繊維についての説明の
中で述べた添加剤や分子量調整剤を必要に応じて併用し
てもよい。
The “crystalline PP” referred to in the method I is:
As in the PP fiber of the present invention described above, (1) 1
Types of PP homopolymers, (2) a mixture of two or more types of PP homopolymers, and (3) PP and α-olefin (for example, ethylene,
Butene-1 etc.) or (4) a mixture of two or more copolymers of the above (3). Good. The raw materials used may be only the first crystalline PP and the second crystalline PP, but in addition to these crystalline PP, the description of the PP fiber of the present invention will be omitted. The additives and molecular weight regulators described in the above may be used in combination as needed.

【0023】溶融紡糸後のMFR(未延伸糸のMFR)
は、紡糸温度を調整することによって、あるいは、適量
の分子量調整剤を使用することによって制御することが
できる。勿論、適量の分子量調整剤を使用すると共に紡
糸温度を調整することによっても制御することができ
る。
MFR after melt spinning (MFR of undrawn yarn)
Can be controlled by adjusting the spinning temperature or by using an appropriate amount of molecular weight regulator. Of course, it can also be controlled by using an appropriate amount of molecular weight modifier and adjusting the spinning temperature.

【0024】ただし、たとえ溶融紡糸後のMFRが2〜
30であっても、原料として使用する混合物が上記の要
件を満たさない場合には、目的とする物性を有するPP
繊維を50m/分以上の生産速度の下に製造することが
困難になる。なお、後述する延伸時において結晶性PP
の重量平均分子量が低下するということは実質的にない
ので、上記の溶融紡糸は重量平均分子量が20万〜45
万の結晶性PPからなる未延伸糸が得られるように行わ
れる。
However, even if the MFR after melt spinning is 2
Even if it is 30, when the mixture used as a raw material does not satisfy the above requirements, the PP having desired physical properties
It becomes difficult to produce fibers at production speeds of 50 m / min or more. In addition, at the time of stretching described later, crystalline PP
The weight average molecular weight of the above melt-spun is 200,000 to 45, because the weight average molecular weight of the
This is performed so as to obtain an undrawn yarn composed of 10,000 crystalline PP.

【0025】本発明の方法Iでは、上述の溶融紡糸によ
って未延伸糸を得た後、両端が加圧水でシールされた容
器内に延伸媒体としての加圧水蒸気が入れられている延
伸槽を使用して、120〜180℃の延伸温度下で前記
の未延伸糸を5倍以上に、なおかつ破断倍率の70%以
上に延伸する。
In the method I of the present invention, after the unstretched yarn is obtained by the above-mentioned melt spinning, a stretching tank in which pressurized steam as a stretching medium is put in a container sealed at both ends with pressurized water is used. The unstretched yarn is stretched 5 times or more at a stretching temperature of 120 to 180 ° C and 70% or more of the breaking ratio.

【0026】ここで、本発明でいう「破断倍率」とは、
本発明の方法Iまたは後述する本発明の方法IIに基づい
てPP繊維を製造する際の延伸条件(ただし、延伸倍率
は除く。)下で未延伸を延伸したときに、延伸糸が破断
する最小の延伸倍率を意味する。
Here, the “rupture ratio” in the present invention means:
When the undrawn fiber is drawn under the drawing conditions (excluding the draw ratio) for producing PP fiber based on the method I of the present invention or the method II of the present invention described below, the minimum value at which the drawn yarn breaks is obtained. Means the stretching ratio.

【0027】方法Iにおける延伸温度(延伸槽内の雰囲
気温度を意味する。)が120℃未満では、5倍以上の
延伸倍率の下に目的とするPP繊維を50m/分以上の
生産速度の下に製造することが困難になる。一方、延伸
温度が155℃を超えると、目的とする物性を有するP
P繊維を得ることが困難になるが、例えばスピンドロー
法等を適用することによって生産速度をより高速化する
ことにより、延伸温度を例えば180℃という高温にし
ても、目的とする物性を有するPP繊維を得ることが可
能になる。延伸温度は概ね130℃以上とすることが好
ましく、概ね140℃以上とすることがより好ましい。
When the stretching temperature (meaning the atmosphere temperature in the stretching tank) in method I is lower than 120 ° C., the target PP fiber can be produced at a stretching rate of 5 times or more at a production speed of 50 m / min or more. It becomes difficult to manufacture. On the other hand, if the stretching temperature exceeds 155 ° C., P having desired physical properties
Although it is difficult to obtain a P fiber, for example, by applying a spin draw method or the like to increase the production speed, even if the drawing temperature is increased to, for example, 180 ° C., PP having desired physical properties is obtained. It becomes possible to obtain fibers. The stretching temperature is preferably about 130 ° C. or higher, and more preferably about 140 ° C. or higher.

【0028】また、延伸時における延伸槽内の湿度は、
延伸槽の端をシールしている上記の加圧水中を通って延
伸槽内に導かれた未延伸糸が乾燥しないように、すなわ
ち、延伸槽内に導かれた未延伸糸が延伸されて延伸槽外
へ引き出されるまでの間に前記の水分が蒸発によって消
失してしまわないように設定される。
The humidity in the stretching tank during stretching is
The undrawn yarn guided into the drawing tank through the above-described pressurized water sealing the end of the drawing tank is not dried, that is, the undrawn yarn guided into the drawing tank is drawn and drawn. The setting is made so that the water does not disappear by evaporation before being pulled out.

【0029】延伸媒体として絶対圧が2.0〜10.2
kg/cm2 の加圧飽和水蒸気を用いれば、当該加圧飽
和水蒸気の温度が120℃(絶対圧2.0kg/cm2
のとき)〜180℃(絶対圧10.2kg/cm2 のと
き)であることから、上記の延伸温度要件および湿度要
件を容易に満たすことができる。また、延伸槽あるいは
蒸気供給側にヒーターを付設すれば、飽和状態にない加
圧水蒸気を用いたとしても上記の延伸温度要件および湿
度要件を容易に満たすことが可能になる。
The stretching medium has an absolute pressure of 2.0 to 10.2
The use of pressurized saturated steam kg / cm 2, the temperature of the pressurized saturated steam 120 ° C. (absolute pressure 2.0 kg / cm 2
) To 180 ° C. (when the absolute pressure is 10.2 kg / cm 2 ), so that the above stretching temperature requirement and humidity requirement can be easily satisfied. In addition, if a heater is attached to the stretching tank or the steam supply side, the above-mentioned stretching temperature requirement and humidity requirement can be easily satisfied even if non-saturated pressurized steam is used.

【0030】上記の延伸温度要件および加圧水蒸気の湿
度要件を満たす条件下で前記の未延伸糸を延伸しても、
その延伸倍率が5倍未満または破断倍率の70%未満で
は目的とする物性を有するPP繊維を50m/分以上の
生産速度の下に製造することが困難になるので、方法I
では未延伸糸の延伸倍率を5倍以上に、なおかつ破断倍
率の70%以上にする。当該延伸倍率は破断倍率の80
%以上とすることがより好ましい。
Even if the undrawn yarn is drawn under conditions satisfying the above drawing temperature requirements and the humidity requirements of pressurized steam,
If the draw ratio is less than 5 times or less than 70% of the breaking ratio, it becomes difficult to produce PP fibers having desired physical properties at a production speed of 50 m / min or more.
In this case, the stretching ratio of the undrawn yarn is set to 5 times or more and 70% or more of the breaking ratio. The stretching ratio is 80 at the breaking ratio.
% Is more preferable.

【0031】上述した延伸まで行うことにより目的とす
るPP繊維、すなわち、重量平均分子量が20万〜45
万の結晶性PPからなり、結節強度が8g/d以上であ
る本発明のPP繊維を50m/分以上の生産速度の下に
得ることができる。
By performing the above-described drawing, the target PP fiber, that is, the weight average molecular weight is from 200,000 to 45
The PP fiber of the present invention comprising 10,000 crystalline PPs and having a knot strength of 8 g / d or more can be obtained at a production speed of 50 m / min or more.

【0032】方法Iによって上記のPP繊維が得られる
理由は、下記のように推察される。すなわち、方法Iで
使用される延伸槽の槽内は、場所的にも経時的にも均一
な温度雰囲気下にある。また、加圧水蒸気を延伸媒体と
して使用しているため、単繊維一本一本について均一な
加熱が可能になる。さらに、前述した湿度要件下では、
延伸槽内の未延伸糸および延伸過程の糸(以下、これら
の糸を本段落においては「繊維」と総称する。)に水分
が常に付着しており、この状態下で前記の繊維が延伸さ
れる結果として、延伸時のドラフト変形によって内部発
熱が生じても繊維の温度が高温になりすぎることが抑制
されるので、繊維表面が溶融状態になりにくい。
The reason why the above PP fiber is obtained by the method I is presumed as follows. That is, the inside of the stretching tank used in the method I is under a uniform temperature atmosphere both locally and over time. Further, since the pressurized steam is used as the drawing medium, uniform heating of each single fiber can be achieved. Furthermore, under the humidity requirements mentioned above,
Moisture always adheres to the undrawn yarn in the drawing tank and the yarn in the drawing process (hereinafter, these yarns are collectively referred to as “fiber” in this paragraph), and the fiber is drawn in this state. As a result, even if internal heat is generated due to draft deformation during drawing, the temperature of the fiber is prevented from becoming too high, so that the fiber surface is less likely to be in a molten state.

【0033】このため、前述した未延伸糸を従来の延伸
方法によって延伸する場合よりも高倍率で延伸すること
が可能になり、これによって、従来よりも物性値が向上
したPP繊維を得ることが可能になる。そして、加圧水
蒸気を延伸媒体とする延伸槽を使用して高温条件下で未
延伸糸を延伸するので、未延伸糸内部の温度を短時間の
うちに所望温度にまで昇温させることが可能になり、そ
の結果として、目的とするPP繊維を工業的な生産速
度、すなわち50m/分以上の生産速度の下に容易に得
ることが可能になる。
For this reason, it is possible to draw the undrawn yarn at a higher magnification than in the case of drawing by the conventional drawing method, whereby it is possible to obtain a PP fiber having improved physical property values as compared with the conventional one. Will be possible. Then, since the undrawn yarn is drawn under high temperature conditions using a drawing tank using pressurized steam as a drawing medium, the temperature inside the undrawn yarn can be raised to a desired temperature in a short time. As a result, the desired PP fiber can be easily obtained at an industrial production speed, that is, at a production speed of 50 m / min or more.

【0034】次に、本発明の方法IIについて説明する。
本発明の方法IIは、前述した本発明のPP繊維を工業的
な生産速度の下に製造するうえで有用な他の方法であ
り、当該方法IIでは、前述したように、MFRが0.1
〜10の結晶性PPを原料として用いる。
Next, the method II of the present invention will be described.
The method II of the present invention is another method useful for producing the above-described PP fiber of the present invention at an industrial production rate. In the method II, as described above, the MFR is 0.1%.
Crystalline PP of 10 to 10 is used as a raw material.

【0035】ここで、方法IIでいう「結晶性PP」と
は、前述した本発明のPP繊維あるいは上述した本発明
の方法IIにおけるのと同様に、(1) 1種類のPPホモポ
リマーからなるものであってもよいし、(2) 2種以上の
PPホモポリマー同士の混合物からなるもの、(3) PP
とαオレフィン(例えばエチレン,ブテン−1等)とを
共重合させてなる1種類の共重合体からなるもの、また
は、(4) 前記(3) の共重合体の2種以上同士の混合物か
らなるもの、であってもよい。また、使用する原料は上
記の結晶性PPのみであってもよいが、当該結晶性PP
以外に、本発明のPP繊維についての説明の中で述べた
添加剤や分子量調整剤を必要に応じて併用してもよい。
The term “crystalline PP” used in the method II means, as in the above-mentioned PP fiber of the present invention or the above-mentioned method II of the present invention, (1) one kind of PP homopolymer. Or (2) a mixture of two or more PP homopolymers, (3) PP homopolymer.
Consisting of one type of copolymer obtained by copolymerizing α and an olefin (eg, ethylene, butene-1, etc.), or (4) from a mixture of two or more types of the copolymer of the above (3). May be. Further, the raw material used may be only the above-mentioned crystalline PP,
In addition, the additives and molecular weight modifiers described in the description of the PP fiber of the present invention may be used in combination as needed.

【0036】本発明の方法IIと前述した本発明の方法I
との最大の差異は使用する原料が異なるという点にあ
り、溶融紡糸条件や延伸条件は方法Iにおけるこれらの
条件と実質的に同じである。したがって、ここではこれ
らの条件についての説明を省略する。なお、たとえ溶融
紡糸条件が方法IIで規定する条件を満たしたとしても、
原料として使用する結晶性PPが上記の要件を満たさな
い場合や延伸条件が方法IIで規定する条件を満たさない
場合には、目的とする物性を有するPP繊維を50m/
分以上の生産速度の下に製造することが困難になる。
The method II of the present invention and the method I of the present invention described above.
The biggest difference is that the raw materials used are different, and the melt spinning conditions and drawing conditions are substantially the same as those conditions in Method I. Therefore, description of these conditions is omitted here. Note that even if the melt spinning conditions satisfy the conditions specified in Method II,
When the crystalline PP used as a raw material does not satisfy the above requirements or when the drawing conditions do not satisfy the conditions specified in Method II, the PP fiber having the desired physical properties is reduced to 50 m / m.
It becomes difficult to manufacture at a production speed of more than a minute.

【0037】[0037]

【実施例】以下、本発明の実施例について説明する。 実施例1(方法IによるPP繊維の製造) (1)溶融紡糸 まず、MFRが1である第1の結晶性PP(グランドポ
リマー(株)製のB101)と、MFRが22である第
2の結晶性PP(日本ポリケム(株)製のSA1HA)
とを用意した。そして、前記第1の結晶性PPに対する
前記第2の結晶性PPの重量比率が80/20である混
合物を調製し、ホール径が0.3mmφ、ホール数が1
60である紡糸ノズルを備えた溶融紡糸装置によって紡
糸温度330℃の条件の下に前記の混合物を溶融紡糸し
て、単糸繊度が20dの未延伸糸を得た。このとき、溶
融紡糸後のMFRは6.7g/10分であった。
Embodiments of the present invention will be described below. Example 1 (Production of PP Fiber by Method I) (1) Melt Spinning First, a first crystalline PP having an MFR of 1 (B101 manufactured by Grand Polymer Co., Ltd.) and a second crystalline PP having an MFR of 22 Crystalline PP (SA1HA manufactured by Nippon Polychem Co., Ltd.)
And prepared. Then, a mixture is prepared in which the weight ratio of the second crystalline PP to the first crystalline PP is 80/20, and the hole diameter is 0.3 mmφ and the number of holes is 1
The above mixture was melt-spun under a condition of a spinning temperature of 330 ° C. by a melt-spinning apparatus having a spinning nozzle of No. 60 to obtain an undrawn yarn having a single yarn fineness of 20d. At this time, the MFR after melt spinning was 6.7 g / 10 minutes.

【0038】(2)延伸 筒体の両端および内部(計4箇所)に所定形状のシリコ
ーンゴムパッキン、すなわち、中央部に透孔を有するシ
リコーンゴムパッキンを配置することによって当該筒体
を第1の加圧水槽部,延伸槽部(全長12.5m)およ
び第2の加圧水槽部に区画し、さらに、第1の加圧水槽
の外側に未延伸糸送出用のローラを、また第2の加圧水
槽の外側に繊維引き取り用のローラをそれぞれ配設する
ことによって構成された延伸装置を予め用意した。この
延伸装置においては、未延伸糸は一旦第1の加圧水槽内
に導かれた後に延伸槽部内に入り、その後、延伸槽部内
から第2の加圧水槽内を経由し、冷却されて引き取られ
る。
(2) Stretching The silicone rubber packing having a predetermined shape, that is, a silicone rubber packing having a through hole in the center portion, is disposed at both ends and inside (total of four places) of the cylindrical body, thereby forming the first cylindrical body. It is divided into a pressurized water tank section, a drawing tank section (12.5 m in total length) and a second pressurized water tank section. Further, a roller for sending undrawn yarn is provided outside the first pressurized water tank, and a second pressurized water tank is provided. A drawing device was prepared in advance by arranging a fiber take-up roller on the outside. In this drawing device, the undrawn yarn is once guided into the first pressurized water tank, then enters the drawn tank portion, and then cooled and taken from the drawn tank portion through the second pressurized water tank.

【0039】上記(1)で得た未延伸をこの延伸装置を
用いて延伸するにあたり、延伸槽部に絶対圧が3.7k
g/cm2 の加圧飽和水蒸気(温度140℃)を充填
し、当該延伸槽部の内圧よりわずかに高い圧力の高圧水
を第1の加圧水槽部および第2の加圧水槽部にそれぞれ
貯留させた後、引き取り速度が50m/分となるように
して前記の未延伸糸を延伸して、目的とするPP繊維を
得た。なお、このときの延伸倍率は8.0倍であった。
When the unstretched obtained in the above (1) is stretched using this stretching apparatus, an absolute pressure of 3.7 k is applied to the stretching tank.
g / cm 2 of pressurized saturated steam (temperature: 140 ° C.), and high-pressure water having a pressure slightly higher than the internal pressure of the stretching tank is stored in the first pressurized water tank and the second pressurized water tank, respectively. After that, the undrawn yarn was drawn at a take-up speed of 50 m / min to obtain a target PP fiber. The stretching ratio at this time was 8.0 times.

【0040】実施例2(方法IによるPP繊維の製造) 実施例1(1)と同条件で未延伸糸を作製し、延伸倍率
を7.0倍とした以外は実施例1(2)におけるのと同
条件で当該未延伸糸を延伸して、目的とするPP繊維を
得た。
Example 2 (Production of PP Fiber by Method I) An undrawn yarn was produced under the same conditions as in Example 1 (1) and the drawing ratio was changed to 7.0 times in Example 1 (2). The undrawn yarn was drawn under the same conditions as described above to obtain the desired PP fiber.

【0041】比較例1 実施例1(1)と同条件で未延伸糸を作製し、金属ロー
ルと板状ヒーターとを備えた接触加熱延伸機を使用して
延伸温度140℃,延伸速度10m/分の条件の下に前
記の未延伸糸を3.5倍に延伸して、PP繊維を得た。
Comparative Example 1 An undrawn yarn was prepared under the same conditions as in Example 1 (1), and a drawing temperature of 140 ° C. and a drawing speed of 10 m / m were measured using a contact heating drawing machine equipped with a metal roll and a plate heater. The undrawn yarn was drawn 3.5 times under the same conditions to obtain a PP fiber.

【0042】実施例3(方法IによるPP繊維の製造) 紡糸温度を340℃とした以外は実施例1(1)と同条
件で溶融紡糸を行って単糸繊度が20dの未延伸糸を
得、延伸倍率を9.0倍とした以外は実施例1(2)に
おけるのと同条件で前記の未延伸糸を延伸して、目的と
するPP繊維を得た。なお、溶融紡糸後のMFR(未延
伸糸のMFR)は12.5g/10分であった。
Example 3 (Production of PP Fiber by Method I) Melt spinning was carried out under the same conditions as in Example 1 (1) except that the spinning temperature was changed to 340 ° C. to obtain an undrawn yarn having a single yarn fineness of 20 d. The undrawn yarn was drawn under the same conditions as in Example 1 (2) except that the draw ratio was set to 9.0 times to obtain a target PP fiber. The MFR after melt spinning (MFR of undrawn yarn) was 12.5 g / 10 minutes.

【0043】実施例4(方法IによるPP繊維の製造) (1)溶融紡糸 第1の結晶性PPに対する第2の結晶性PPの重量比率
を90/10としてこれらの混合物を調製した以外は実
施例1(1)におけるのと同条件で溶融紡糸を行って、
単糸繊度が20dの未延伸糸を得た。このとき、溶融紡
糸後のMFRは4.7g/10分であった。 (2)延伸 絶対圧が4.2kg/cm2 の加圧飽和水蒸気(温度1
45℃)を延伸媒体として使用し、かつ、延伸倍率を
6.0倍とした以外は実施例1(2)におけるのと同条
件で上記の未延伸糸を延伸して、目的とするPP繊維を
得た。
Example 4 (Production of PP Fibers by Method I) (1) Melt spinning The procedure was carried out except that the weight ratio of the second crystalline PP to the first crystalline PP was 90/10 to prepare a mixture thereof. Melt spinning was performed under the same conditions as in Example 1 (1),
An undrawn yarn having a single yarn fineness of 20d was obtained. At this time, the MFR after melt spinning was 4.7 g / 10 minutes. (2) Stretching Pressurized saturated steam having an absolute pressure of 4.2 kg / cm 2 (temperature 1
45 ° C.) as a drawing medium, and drawing the undrawn yarn under the same conditions as in Example 1 (2), except that the drawing ratio was 6.0 times, to obtain the desired PP fiber I got

【0044】実施例5(方法IによるPP繊維の製造) 第1の結晶性PPに対する第2の結晶性PPの重量比率
を70/30としてこれらの混合物を調製した以外は実
施例1(1)におけるのと同条件で溶融紡糸を行って単
糸繊度が20dの未延伸糸を得、この未延伸糸を実施例
1(2)におけるのと同条件で延伸して、目的とするP
P繊維を得た。なお、溶融紡糸後のMFR(未延伸糸の
MFR)は23.8g/10分であった。
Example 5 (Production of PP Fiber by Method I) Example 1 (1) except that the weight ratio of the second crystalline PP to the first crystalline PP was 70/30 to prepare a mixture thereof. The melt-spinning was performed under the same conditions as in Example 1 to obtain an undrawn yarn having a single yarn fineness of 20d. The undrawn yarn was drawn under the same conditions as in Example 1 (2) to obtain the desired P.
P fiber was obtained. The MFR after melt spinning (MFR of undrawn yarn) was 23.8 g / 10 minutes.

【0045】実施例6(方法IによるPP繊維の製造) 第1の結晶性PPに対する第2の結晶性PPの重量比率
を50/50としてこれらの混合物を調製した以外は実
施例1(1)におけるのと同条件で溶融紡糸を行って単
糸繊度が20dの未延伸糸を得、延伸倍率を11.0倍
とした以外は実施例4(2)におけるのと同条件で前記
の未延伸糸を延伸して、目的とするPP繊維を得た。な
お、溶融紡糸後のMFR(未延伸糸のMFR)は28.
5g/10分であった。
Example 6 (Production of PP Fibers by Method I) Example 1 (1) except that the weight ratio of the second crystalline PP to the first crystalline PP was 50/50 to prepare these mixtures. The unstretched yarn having a single yarn fineness of 20d was obtained by performing melt spinning under the same conditions as in the above, and the unstretched under the same conditions as in Example 4 (2) except that the draw ratio was set to 11.0 times. The yarn was drawn to obtain a target PP fiber. The MFR after melt spinning (MFR of undrawn yarn) is 28.
It was 5 g / 10 minutes.

【0046】比較例2 第1の結晶性PPに対する第2の結晶性PPの重量比率
を本発明の方法Iにおける限定範囲外の値である20/
80としてこれらの混合物を調製し、かつ、紡糸温度を
250℃とした以外は実施例1(1)におけるのと同条
件で溶融紡糸を行って単糸繊度が20dの未延伸糸を
得、この未延伸糸を実施例4(2)におけるのと同条件
で延伸して、PP繊維を得た。なお、溶融紡糸後のMF
R(未延伸糸のMFR)は9.5g/10分であった。
Comparative Example 2 The weight ratio of the second crystalline PP to the first crystalline PP was 20 /, which is out of the limited range in the method I of the present invention.
These mixtures were prepared as 80, and melt-spinning was performed under the same conditions as in Example 1 (1) except that the spinning temperature was changed to 250 ° C. to obtain an undrawn yarn having a single-fiber fineness of 20d. The undrawn yarn was drawn under the same conditions as in Example 4 (2) to obtain a PP fiber. MF after melt spinning
R (MFR of undrawn yarn) was 9.5 g / 10 minutes.

【0047】実施例7(方法IによるPP繊維の製造) 実施例1(1)で用いた第1の結晶性PPに代えてMF
Rが0.35である結晶性PP(グランドポリマー
(株)製のZS633)を用いた以外は実施例1(1)
におけるのと同条件で溶融紡糸を行って単糸繊度が20
dの未延伸糸を得、延伸倍率を5.0倍とした以外は実
施例4(2)におけるのと同条件で前記の未延伸糸を延
伸して、目的とするPP繊維を得た。なお、溶融紡糸後
のMFR(未延伸糸のMFR)は2.8g/10分であ
った。
Example 7 (Production of PP Fiber by Method I) MF was used in place of the first crystalline PP used in Example 1 (1).
Example 1 (1) except that a crystalline PP having an R of 0.35 (ZS633 manufactured by Grand Polymer Co., Ltd.) was used.
The melt spinning was carried out under the same conditions as in
The unstretched yarn of d was obtained, and the unstretched yarn was stretched under the same conditions as in Example 4 (2) except that the stretching ratio was set to 5.0 times to obtain a target PP fiber. The MFR after melt spinning (MFR of undrawn yarn) was 2.8 g / 10 minutes.

【0048】実施例8(方法IによるPP繊維の製造) 実施例1(1)で用いた第1の結晶性PPに代えてMF
Rが0.65である結晶性PP(日本ポリケム(株)製
のEA9)を用いた以外は実施例1(1)におけるのと
同条件で溶融紡糸を行って単糸繊度が20dの未延伸糸
を得、延伸倍率を8.0倍とした以外は実施例4(2)
におけるのと同条件で前記の未延伸糸を延伸して、目的
とするPP繊維を得た。なお、溶融紡糸後のMFR(未
延伸糸のMFR)は5.8g/10分であった。
Example 8 (Production of PP Fiber by Method I) MF was used in place of the first crystalline PP used in Example 1 (1).
Melt spinning was performed under the same conditions as in Example 1 (1) except that a crystalline PP having an R of 0.65 (EA9 manufactured by Nippon Polychem Co., Ltd.) was used. Example 4 (2) except that a yarn was obtained and the draw ratio was set to 8.0 times.
The unstretched yarn was stretched under the same conditions as in 1) to obtain the desired PP fiber. The MFR after melt spinning (MFR of the undrawn yarn) was 5.8 g / 10 minutes.

【0049】実施例9(方法IによるPP繊維の製造) 実施例1(1)で用いた第2の結晶性PPに代えてMF
Rが14である結晶性PP(日本ポリケム(株)製のS
A2D)を用いた以外は実施例1(1)におけるのと同
条件で溶融紡糸を行って単糸繊度が20dの未延伸糸を
得、延伸倍率を8.0倍とした以外は実施例4(2)に
おけるのと同条件で前記の未延伸糸を延伸して、目的と
するPP繊維を得た。なお、溶融紡糸後のMFR(未延
伸糸のMFR)は7.6g/10分であった。
Example 9 (Production of PP Fiber by Method I) MF was used in place of the second crystalline PP used in Example 1 (1).
A crystalline PP having an R of 14 (manufactured by Nippon Polychem Co., Ltd.)
Except that A2D) was used, Example 4 was repeated except that melt spinning was performed under the same conditions as in Example 1 (1) to obtain an undrawn yarn having a single yarn fineness of 20d, and the draw ratio was set to 8.0 times. The undrawn yarn was drawn under the same conditions as in (2) to obtain the desired PP fiber. The MFR after melt spinning (MFR of undrawn yarn) was 7.6 g / 10 minutes.

【0050】実施例10(方法IによるPP繊維の製
造) 実施例1(1)で用いた第2の結晶性PPに代えてMF
Rが25である結晶性PP(グランドポリマー(株)製
のZS1337)を用いた以外は実施例1(1)におけ
るのと同条件で溶融紡糸を行って単糸繊度が20dの未
延伸糸を得、延伸倍率を8.5倍とした以外は実施例1
(2)におけるのと同条件で前記の未延伸糸を延伸し
て、目的とするPP繊維を得た。なお、溶融紡糸後のM
FR(未延伸糸のMFR)は9.5g/10分であっ
た。
Example 10 (Production of PP Fiber by Method I) MF was used in place of the second crystalline PP used in Example 1 (1).
Melt spinning was performed under the same conditions as in Example 1 (1) except that a crystalline PP having an R of 25 (ZS1337 manufactured by Grand Polymer Co., Ltd.) was used to obtain an undrawn yarn having a single yarn fineness of 20d. Example 1 except that the draw ratio was 8.5 times.
The undrawn yarn was drawn under the same conditions as in (2) to obtain the desired PP fiber. In addition, M after melt spinning
The FR (MFR of the undrawn yarn) was 9.5 g / 10 minutes.

【0051】実施例11(方法IIによるPP繊維の製
造) (1)溶融紡糸 まず、MFRが0.65である結晶性PP(日本ポリケ
ム(株)製のEA6)を用意した。また、分子量調整剤
として過酸化物(2,5−ジメチル−2,5−ジ(t−
ブチルペルオキシ)ヘキサン)を用意した。そして、前
記の過酸化物の濃度が1000ppmとなるように当該
過酸化物を上記の結晶性PPに添加することによって混
合物を調製し、紡糸温度を300℃とした以外は実施例
1(1)におけるのと同条件で前記の混合物を溶融紡糸
して、単糸繊度が20dの未延伸糸を得た。このとき、
溶融紡糸後のMFRは16.6g/10分であった。 (2)延伸 延伸倍率を6.5倍とした以外は実施例1(2)におけ
るのと同条件で上記の未延伸糸を延伸して、目的とする
PP繊維を得た。
Example 11 (Production of PP Fiber by Method II) (1) Melt Spinning First, crystalline PP (EA6 manufactured by Nippon Polychem Co., Ltd.) having an MFR of 0.65 was prepared. In addition, peroxide (2,5-dimethyl-2,5-di (t-
Butylperoxy) hexane). Then, a mixture was prepared by adding the peroxide to the above-mentioned crystalline PP such that the concentration of the peroxide became 1000 ppm, and Example 1 (1) except that the spinning temperature was set to 300 ° C. The above mixture was melt-spun under the same conditions as in the above to obtain an undrawn yarn having a single yarn fineness of 20d. At this time,
The MFR after melt spinning was 16.6 g / 10 minutes. (2) Stretching The unstretched yarn was stretched under the same conditions as in Example 1 (2) except that the stretching ratio was 6.5 times, to obtain a target PP fiber.

【0052】比較例3 (1)溶融紡糸 MFRが0.35である結晶性PP(グランドポリマー
(株)製のZS633)のみを原料として用い、この結
晶性PPを実施例1(1)におけるのと同条件で溶融紡
糸して、単糸繊度が20dの未延伸糸を得た。なお、溶
融紡糸後のMFR(未延伸糸のMFR)は、本発明の方
法IIで規定する範囲外となる1.5g/10分であっ
た。 (2)延伸 絶対圧が5.0kg/cm2 の加圧飽和水蒸気(温度1
51℃)を延伸媒体として使用し、かつ、延伸倍率を
3.5倍とした以外は実施例1(2)におけるのと同条
件で上記の未延伸糸を延伸して、PP繊維を得た。
Comparative Example 3 (1) Melt spinning Only crystalline PP having a MFR of 0.35 (ZS633 manufactured by Grand Polymer Co., Ltd.) was used as a raw material, and this crystalline PP was used in Example 1 (1). Melt spinning was performed under the same conditions as described above to obtain an undrawn yarn having a single yarn fineness of 20d. The MFR after melt spinning (MFR of the undrawn yarn) was 1.5 g / 10 minutes, which was out of the range specified in the method II of the present invention. (2) Stretching Pressurized saturated steam having an absolute pressure of 5.0 kg / cm 2 (temperature 1
(51 ° C.) as a drawing medium, and the undrawn yarn was drawn under the same conditions as in Example 1 (2) except that the draw ratio was 3.5 times, to obtain a PP fiber. .

【0053】比較例4 (1)溶融紡糸 MFRが22である結晶性PP(日本ポリケム(株)製
のSA1HA)のみを原料として用い、ホール径が0.
5mmφ、ホール数が120である紡糸ノズルを備えた
溶融紡糸装置によって紡糸温度260℃の条件の下に前
記の結晶性PPを溶融紡糸して、単糸繊度が25dの未
延伸糸を得た。このとき、溶融紡糸後のMFRは24.
2g/10分であった。なお、上記の結晶性PPのMF
Rは、本発明の方法IIにおける限定範囲外の値である。
すなわち、上記の原料は、本発明の方法IIで規定する要
件を満たしていない。 (2)延伸 延伸倍率を11.0倍とした以外は実施例4(2)にお
けるのと同条件で上記の未延伸糸を延伸して、PP繊維
を得た。
Comparative Example 4 (1) Melt-spinning Only crystalline PP having an MFR of 22 (SA1HA manufactured by Nippon Polychem Co., Ltd.) was used as a raw material, and the hole diameter was 0.1 mm.
The crystalline PP was melt-spun under a condition of a spinning temperature of 260 ° C. by a melt spinning apparatus having a spinning nozzle having a diameter of 5 mm and a number of holes of 120, to obtain an undrawn yarn having a single yarn fineness of 25d. At this time, the MFR after melt spinning was 24.
It was 2 g / 10 minutes. The MF of the above crystalline PP
R is a value outside the limited range in the method II of the present invention.
That is, the above raw materials do not satisfy the requirements specified in the method II of the present invention. (2) Stretching The unstretched yarn was stretched under the same conditions as in Example 4 (2) except that the stretching ratio was changed to 11.0 times to obtain a PP fiber.

【0054】比較例5 比較例4(1)と同条件で未延伸糸を作製し、延伸倍率
を6.0倍とした以外は実施例4(2)と同条件で前記
の未延伸糸を延伸して、PP繊維を得た。
Comparative Example 5 An undrawn yarn was produced under the same conditions as in Comparative Example 4 (1), and the undrawn yarn was prepared under the same conditions as in Example 4 (2), except that the draw ratio was 6.0. Drawing was performed to obtain a PP fiber.

【0055】比較例6 比較例6(1)と同条件で未延伸糸を作製し、延伸倍率
を4.0倍とした以外は実施例4(2)と同条件で前記
の未延伸糸を延伸して、PP繊維を得た。
Comparative Example 6 An undrawn yarn was produced under the same conditions as in Comparative Example 6 (1), and the undrawn yarn was prepared under the same conditions as in Example 4 (2) except that the draw ratio was set to 4.0. Drawing was performed to obtain a PP fiber.

【0056】比較例7 (1)溶融紡糸 MFRが14である結晶性PP(日本ポリケム(株)製
のSA2D)のみを原料として用い、この結晶性PPを
実施例1(1)におけるのと同条件で溶融紡糸して、単
糸繊度が20dの未延伸糸を得た。このとき、溶融紡糸
後のMFRは16.1g/10分であった。なお、上記
の結晶性PPのMFRは、本発明の方法IIにおける限定
範囲外の値である。すなわち、上記の原料は、本発明の
方法IIで規定する要件を満たしていない。 (2)延伸 延伸倍率を8.0倍とした以外は実施例4(2)におけ
るのと同条件で上記の未延伸糸を延伸して、PP繊維を
得た。
Comparative Example 7 (1) Melt Spinning Only crystalline PP having an MFR of 14 (SA2D manufactured by Nippon Polychem Co., Ltd.) was used as a raw material, and this crystalline PP was produced in the same manner as in Example 1 (1). Melt spinning was performed under the conditions to obtain an undrawn yarn having a single yarn fineness of 20d. At this time, the MFR after melt spinning was 16.1 g / 10 minutes. In addition, the MFR of the crystalline PP is a value outside the limited range in the method II of the present invention. That is, the above raw materials do not satisfy the requirements specified in the method II of the present invention. (2) Stretching The unstretched yarn was stretched under the same conditions as in Example 4 (2) except that the stretching ratio was set to 8.0, to obtain a PP fiber.

【0057】実施例12(方法IによるPP繊維の製
造) まず、延伸槽部の長さが18mである点を除いて実施例
1で使用した延伸装置と同一構造の延伸装置を用意し
た。また、実施例1と同じ条件で未延伸糸を得た。そし
て、この未延伸を上記の延伸装置を用いて延伸するにあ
たり、延伸槽部に絶対圧が6.0kg/cm2 の加圧飽
和水蒸気(温度158℃)を充填し、延伸糸の引き取り
速度が200m/分となるようにした以外は実施例1
(2)におけるのと同条件で前記の未延伸糸を延伸し
て、目的とするPP繊維を得た。なお、このときの延伸
倍率は7.5倍であった。
Example 12 (Production of PP Fiber by Method I) First, a drawing apparatus having the same structure as the drawing apparatus used in Example 1 was prepared except that the length of the drawing tank was 18 m. An undrawn yarn was obtained under the same conditions as in Example 1. Then, when this undrawn is drawn using the above drawing apparatus, the drawing tank is filled with pressurized saturated steam (temperature 158 ° C.) having an absolute pressure of 6.0 kg / cm 2 , and the drawing speed of the drawn yarn is reduced. Example 1 except that the speed was 200 m / min.
The undrawn yarn was drawn under the same conditions as in (2) to obtain the desired PP fiber. The stretching ratio at this time was 7.5 times.

【0058】実施例13(方法IによるPP繊維の製
造) 延伸媒体として絶対圧が6.9kg/cm2 の加圧飽和
水蒸気(温度163℃)を用い、延伸糸の引き取り速度
が400m/分となるようにした以外は実施例12にお
けるのと同条件で前記の未延伸糸を延伸して、目的とす
るPP繊維を得た。なお、このときの延伸倍率は7.0
倍であった。
Example 13 (Production of PP Fibers by Method I) Pressurized saturated steam (temperature: 163 ° C.) having an absolute pressure of 6.9 kg / cm 2 was used as a drawing medium, and the drawing speed of the drawn yarn was 400 m / min. The undrawn yarn was drawn under the same conditions as in Example 12 except that the target PP fiber was obtained. The stretching ratio at this time was 7.0.
It was twice.

【0059】物性値等の測定 実施例1〜実施例13および比較例1〜比較例7でそれ
ぞれ得たPP繊維について、その繊度,繊維強度,伸
度,重量平均分子量および結節強度を測定した。また、
実施例1〜実施例13でそれぞれ得たPP繊維について
本発明でいう破断倍率を求めると共に、比較例1〜比較
例7でそれぞれ得たPP繊維についても本発明でいう破
断倍率に相当するものを求めた。これらの結果を各PP
繊維の製造条件と共に表1〜表4に示す。
Measurement of Physical Properties, etc. The fineness, fiber strength, elongation, weight average molecular weight and knot strength of the PP fibers obtained in Examples 1 to 13 and Comparative Examples 1 to 7 were measured. Also,
The breakage ratio according to the present invention is determined for the PP fibers obtained in Examples 1 to 13, and the PP fibers obtained in Comparative Examples 1 to 7 are also equivalent to the breakage ratios according to the present invention. I asked. These results are referred to each PP
Tables 1 to 4 show the fiber production conditions.

【0060】なお、上記の繊度,繊維強度および伸度
は、それぞれJIS L 1015に基づいて下記のよ
うにして測定した。 (1) 繊度 簡便法により重量デニールを測定した。 (2) 繊維強度,伸度 つかみ間隔20mm,引張速度20mm/分の条件で単
繊維について引張破断試験を行って測定した。また、重
量平均分子量はGPC法(ゲル透過クロマトグラフィー
法)によって求めた。
The fineness, fiber strength and elongation described above were measured in accordance with JIS L 1015 as follows. (1) Fineness Denier was measured by a simple method. (2) Fiber strength and elongation Measured by performing a tensile break test on a single fiber under the conditions of a grip interval of 20 mm and a tensile speed of 20 mm / min. The weight average molecular weight was determined by GPC (gel permeation chromatography).

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【表4】 [Table 4]

【0065】表1〜表4に示したように、本発明の方法
Iまたは方法IIによって製造された実施例1〜実施例1
3の各PP繊維(これらはいづれも本発明のPP繊維の
1つである。)は、8.1〜10.6g/dという高い
結節強度を有している。また、これら実施例1〜実施例
11の各PP繊維は、10.6〜14.3g/dという
高い繊維強度をも有している。
As shown in Tables 1 to 4, Examples 1 to 1 prepared by the method I or II of the present invention were used.
Each of the PP fibers of No. 3 (each of which is one of the PP fibers of the present invention) has a high knot strength of 8.1 to 10.6 g / d. Each of the PP fibers of Examples 1 to 11 also has a high fiber strength of 10.6 to 14.3 g / d.

【0066】そして、比較例1〜比較例2から明らかな
ように、2種類の結晶性PPを原料として用いる場合に
は、当該原料,溶融紡糸条件および延伸条件のいずれか
1つでも本発明の方法Iで規定する要件から外れると、
本発明のPP繊維を得ることが困難になる。また、比較
例3〜比較例7から明らかなように、1種類の結晶性P
Pを原料として用いる場合には、当該原料,溶融紡糸条
件および延伸条件のいずれか1つでも本発明の方法IIで
規定する要件から外れると、本発明のPP繊維を得るこ
とが困難になる。
As is evident from Comparative Examples 1 and 2, when two types of crystalline PP are used as raw materials, any one of the raw materials, the melt spinning conditions and the stretching conditions can be used in the present invention. Deviating from the requirements specified in Method I,
It becomes difficult to obtain the PP fiber of the present invention. Further, as is apparent from Comparative Examples 3 to 7, one type of crystalline P
When P is used as a raw material, it becomes difficult to obtain the PP fiber of the present invention if any one of the raw material, melt spinning conditions and drawing conditions deviates from the requirements specified in the method II of the present invention.

【0067】[0067]

【発明の効果】以上説明したように、本発明の方法によ
れば、ゲル紡糸法によらずとも溶融紡糸法によって結節
強度の高い本発明のPP繊維を得ることが可能になる。
したがって、本発明によれば低コストの下に結節強度の
高いPP繊維を提供することが可能になる。
As described above, according to the method of the present invention, the PP fiber of the present invention having a high knot strength can be obtained by the melt spinning method without using the gel spinning method.
Therefore, according to the present invention, it is possible to provide PP fiber having high knot strength at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 信次 岐阜県岐阜市薮田西2丁目1番1号 宇部 日東化成株式会社内 ──────────────────────────────────────────────────続 き Continued from the front page (72) Inventor Shinji Ota 2-1-1 Yabuta Nishi, Gifu City, Gifu Prefecture Ube Nitto Kasei Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量が20万〜45万の結晶
性ポリプロピレンからなり、結節強度が8g/d以上で
あることを特徴とするポリプロピレン繊維。
1. A polypropylene fiber comprising a crystalline polypropylene having a weight average molecular weight of 200,000 to 450,000 and a knot strength of 8 g / d or more.
【請求項2】 メルトフローレートが0.1〜10であ
る第1の結晶性ポリプロピレンとメルトフローレートが
10〜40である第2の結晶性ポリプロピレンとを原料
として用い、前記第1の結晶性ポリプロピレンに対する
前記第2の結晶性ポリプロピレンの重量比率の値が50
%以下となるようにしてこれらの結晶性ポリプロピレン
が混合されている混合物を溶融紡糸後のメルトフローレ
ートが2〜30となるように溶融紡糸して未延伸糸を得
た後、両端が加圧水でシールされた容器内に延伸媒体と
しての加圧水蒸気が入れられている延伸槽を使用して、
120〜180℃の延伸温度下で前記の未延伸糸を5倍
以上に、なおかつ破断倍率の70%以上に延伸して、重
量平均分子量が20万〜45万の結晶性ポリプロピレン
からなり、結節強度が8g/d以上であるポリプロピレ
ン繊維を得ることを特徴とするポリプロピレン繊維の製
造方法。
2. The method according to claim 1, wherein the first crystalline polypropylene having a melt flow rate of 0.1 to 10 and the second crystalline polypropylene having a melt flow rate of 10 to 40 are used as raw materials. The value of the weight ratio of the second crystalline polypropylene to the polypropylene is 50.
% Or less, and a mixture in which these crystalline polypropylenes are mixed is melt-spun so that the melt flow rate after melt-spinning is 2 to 30 to obtain an undrawn yarn. Using a stretching tank in which pressurized steam as a stretching medium is placed in a sealed container,
The unstretched yarn is stretched 5 times or more at a stretching temperature of 120 to 180 ° C. and 70% or more of the breaking ratio, and is made of crystalline polypropylene having a weight average molecular weight of 200,000 to 450,000. A method for producing a polypropylene fiber, characterized in that a polypropylene fiber having a ratio of 8 g / d or more is obtained.
【請求項3】 メルトフローレートが0.1〜10の結
晶性ポリプロピレンを原料として用い、この結晶性ポリ
プロピレンを溶融紡糸後のメルトフローレートが2〜3
0になるように溶融紡糸して未延伸糸を得た後、両端が
加圧水でシールされた容器内に延伸媒体としての加圧水
蒸気が入れられている延伸槽を使用して、120〜18
0℃の延伸温度下で前記の未延伸糸を5倍以上に、なお
かつ破断倍率の70%以上に延伸して、重量平均分子量
が20万〜45万の結晶性ポリプロピレンからなり、結
節強度が8g/d以上であるポリプロピレン繊維を得る
ことを特徴とするポリプロピレン繊維の製造方法。
3. A crystalline polypropylene having a melt flow rate of 0.1 to 10 is used as a raw material, and the crystalline polypropylene has a melt flow rate of 2 to 3 after melt spinning.
After obtaining an undrawn yarn by melt-spinning to 0, using a drawing tank containing pressurized steam as a drawing medium in a container sealed at both ends with pressurized water, 120 to 18
At a stretching temperature of 0 ° C., the unstretched yarn is stretched 5 times or more and at a breaking ratio of 70% or more, and is made of crystalline polypropylene having a weight average molecular weight of 200,000 to 450,000 and a knot strength of 8 g. A method for producing a polypropylene fiber, comprising obtaining a polypropylene fiber having a ratio of / d or more.
【請求項4】 請求項2または請求項3に記載の方法に
よって製造されたことを特徴とするポリプロピレン繊
維。
4. A polypropylene fiber produced by the method according to claim 2 or 3.
JP36662698A 1997-12-26 1998-12-24 Production method of polypropylene fiber Expired - Fee Related JP4266247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36662698A JP4266247B2 (en) 1997-12-26 1998-12-24 Production method of polypropylene fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-359528 1997-12-26
JP35952897 1997-12-26
JP36662698A JP4266247B2 (en) 1997-12-26 1998-12-24 Production method of polypropylene fiber

Publications (2)

Publication Number Publication Date
JPH11269717A true JPH11269717A (en) 1999-10-05
JP4266247B2 JP4266247B2 (en) 2009-05-20

Family

ID=26580984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36662698A Expired - Fee Related JP4266247B2 (en) 1997-12-26 1998-12-24 Production method of polypropylene fiber

Country Status (1)

Country Link
JP (1) JP4266247B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123322A (en) * 1999-10-15 2001-05-08 Ube Nitto Kasei Co Ltd Polypropylene-based drawn fiber, nonwoven fabric and method for producing the drawn fiber
JP2002180330A (en) * 2000-12-14 2002-06-26 Ube Nitto Kasei Co Ltd Stretched conjugated fiber
US7247372B2 (en) 2002-04-09 2007-07-24 Toyo Boseki Kabushiki Kaisha Polyethylene filament and a process for producing the same
JP2013223575A (en) * 2012-04-20 2013-10-31 Pilot Ink Co Ltd Hair material for toy
CN108744715A (en) * 2018-07-16 2018-11-06 江苏鼎盛滤袋有限公司 A kind of production method of PPS filter clothes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123322A (en) * 1999-10-15 2001-05-08 Ube Nitto Kasei Co Ltd Polypropylene-based drawn fiber, nonwoven fabric and method for producing the drawn fiber
JP2002180330A (en) * 2000-12-14 2002-06-26 Ube Nitto Kasei Co Ltd Stretched conjugated fiber
JP4544600B2 (en) * 2000-12-14 2010-09-15 宇部日東化成株式会社 Drawn composite fiber
US7247372B2 (en) 2002-04-09 2007-07-24 Toyo Boseki Kabushiki Kaisha Polyethylene filament and a process for producing the same
US7736564B2 (en) 2002-04-09 2010-06-15 Toyo Boseki Kabushiki Kaisha Process of making a high strength polyolefin filament
JP2013223575A (en) * 2012-04-20 2013-10-31 Pilot Ink Co Ltd Hair material for toy
CN108744715A (en) * 2018-07-16 2018-11-06 江苏鼎盛滤袋有限公司 A kind of production method of PPS filter clothes
CN108744715B (en) * 2018-07-16 2024-01-30 江苏鼎盛滤袋有限公司 Production method of PPS filter cloth

Also Published As

Publication number Publication date
JP4266247B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
EP0077590B1 (en) Process for the production of polymer filaments having high tensile strength and modulus
JPS6385107A (en) Production of filament high in modulus and tensile strength
WO1986004936A1 (en) Polyethylene multifilament yarn
JP3130288B2 (en) Stretching method and stretched product
JP4544600B2 (en) Drawn composite fiber
US2692875A (en) Methacrylonitrile-acrylonitrile copolymers and fibers thereof
JPH11269717A (en) Polypropylene fiber and its production
JPS59100710A (en) Production of yarn having high toughness
KR100394131B1 (en) Drawing method and drawn material
US2842532A (en) Process of reducing the viscosity of polymers
JP2003268622A (en) Drawn polyolefin fiber and method for producing the same
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JP3997613B2 (en) High-strength polypropylene fiber and method for producing the same
JP6458873B2 (en) Polyolefin fiber and method for producing the same
JP2730193B2 (en) Polyamide monofilament and method for producing the same
JPH07238416A (en) Production of high-strength polyethylene fiber
JPS61215708A (en) Production of multifilament yarn
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JP4081338B2 (en) Polypropylene-based fluid disturbed fiber and method for producing the same
JP2006214019A (en) Sheath core type polyolefin-based composite fiber and method for producing the same
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JP3140261B2 (en) Method for drawing mixed spun fibers
TWI290936B (en) Method for producing polytrimethylene terephthalate resin
US3157459A (en) Process of alkylating shaped, oriented linear polymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees