JPH11260412A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH11260412A
JPH11260412A JP10057043A JP5704398A JPH11260412A JP H11260412 A JPH11260412 A JP H11260412A JP 10057043 A JP10057043 A JP 10057043A JP 5704398 A JP5704398 A JP 5704398A JP H11260412 A JPH11260412 A JP H11260412A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
secondary battery
battery
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10057043A
Other languages
Japanese (ja)
Inventor
Masaki Shikoda
将貴 志子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10057043A priority Critical patent/JPH11260412A/en
Publication of JPH11260412A publication Critical patent/JPH11260412A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a 1.5 V class nonaqueous solvent secondary battery with excellent charge/discharge cycle life characteristics. SOLUTION: A nonaqueous solvent secondary battery has a positive electrode 6 having a positive mix whose active material is represented by Li4/3 Ti5/3 O4 , and a negative electrode 4 having a negative mixture containing a carbon material in which Li is absorbed, the working potential of the positive electrode 6 regularly shows 1.0 V or higher vs normal electrode potential of Li, and discharge is finished at the point when the working potential of the negative electrode 4 beings to rise.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水溶媒二次電池に
関し、更に詳しくは、放電時の電圧が約1.5Vであ
り、過放電時や過充電時における容量劣化が抑制される
Li二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly, to a lithium secondary battery having a discharge voltage of about 1.5 V and capable of suppressing capacity deterioration during overdischarge and overcharge. Next battery.

【0002】[0002]

【従来の技術】最近、各種のポータブルな電気・電子機
器の多様化,小型化,軽量化の進展に伴い、その駆動源
として使用される二次電池に対しても、多様化,小型
化,軽量化の要望が強まっている。そのような二次電池
としては、従来から、作動電圧が1.5V級であるNi
/Cd二次電池が主流になっている。しかしながら、こ
のNi/Cd二次電池は電解液が水溶液であるため、使
用環境の温度によっては充分な電流を取り出せない等の
問題がある。例えば環境温度が0℃より低くなると電解
液の凍結などが起こりはじめ、電流を取り出すことはほ
とんど不可能になる。また、長期安定性も劣る。
2. Description of the Related Art Recently, with the progress of diversification, miniaturization, and weight reduction of various portable electric and electronic devices, diversification, miniaturization, and rechargeable batteries used as driving sources thereof have been increasing. The demand for weight reduction is increasing. Conventionally, as such a secondary battery, Ni having an operating voltage of 1.5 V class has been used.
/ Cd secondary batteries are the mainstream. However, since the Ni / Cd secondary battery has an electrolytic solution as an aqueous solution, there is a problem that a sufficient current cannot be taken out depending on the temperature of the use environment. For example, when the ambient temperature is lower than 0 ° C., the electrolyte starts to freeze, and it is almost impossible to extract a current. In addition, long-term stability is poor.

【0003】一方、有機電解液を用いた非水溶媒二次電
池の研究・開発が、最近盛んに行われており、その一部
は既に実用化されている。この非水溶媒二次電池は、一
般に、高エネルギー密度を有し、貯蔵・保管時における
自己放電も少なく、また環境温度が−20〜60℃とい
う広い範囲でも電流を取り出すことができるという利点
を備えている。
On the other hand, research and development of non-aqueous solvent secondary batteries using an organic electrolyte have been actively conducted recently, and some of them have already been put to practical use. This non-aqueous solvent secondary battery generally has the advantage that it has a high energy density, less self-discharge during storage and storage, and can take out current even in a wide range of environmental temperatures of −20 to 60 ° C. Have.

【0004】しかしながら他方では、非水溶媒二次電池
は、電解液が水溶液である電池に比べると、単位面積当
たりの充放電電流の最大値が低いという問題がある。こ
のことは、駆動源としての二次電池の小型化が進展して
いる昨今の状況下においては、水溶液系電池に比べて不
利な問題になっている。例えば、対象とする電池がコイ
ン型電池であった場合、電池反応に寄与する反応面積は
非常に小さくなるので微小電流しか流すことができない
ことになり、仮に大電流で充放電を行うと、活物質の利
用率低下や充放電サイクル寿命特性の劣化が引き起こさ
れることになるからである。
[0004] On the other hand, however, non-aqueous solvent secondary batteries have a problem that the maximum value of the charge / discharge current per unit area is lower than that of batteries in which the electrolyte is an aqueous solution. This is a disadvantage in comparison with the aqueous battery under the recent situation where the size of the secondary battery as the driving source is progressing. For example, if the target battery is a coin-type battery, the reaction area contributing to the battery reaction becomes very small, so that only a very small current can be passed. This is because a reduction in the utilization rate of the substance and a deterioration in the charge / discharge cycle life characteristics are caused.

【0005】この非水溶媒二次電池の代表例としてLi
二次電池がある。そして、Li二次電池の正極活物質と
しては、例えば、V25やMn酸化物のようにその結晶
構造内に直接Li+が可逆的に出入りできるような材料
や、LiCoO2,LiNiO 2,LiMnO2のよう
に、充放電に関与するLi源がLi+として配位結合し
た状態にあるスピネル型の結晶構造を有する材料などが
検討されており、その一部は既に実用化されている。
A typical example of this non-aqueous solvent secondary battery is Li
There is a secondary battery. And the positive electrode active material of the Li secondary battery
For example, VTwoOFiveOr its crystal like Mn oxide
Li directly in the structure+That can reversibly enter and exit
Or LiCoOTwo, LiNiO Two, LiMnOTwoAs
In addition, the Li source involved in charging and discharging is Li+Coordinated as
Materials with a spinel-type crystal structure
It has been studied and some of them have already been put to practical use.

【0006】しかしながら、上記した材料は、いずれ
も、Liの標準単極電位(以後、Li +/Li電位とい
う)を基準にして3.0〜4.0V前後の放電電位を示す
ので、これら材料を用いたLi二次電池はその作動電圧
が1.5Vにならず前記したNi/Cd二次電池との互
換性を有していないことになる。ところで、スピネル型
結晶構造を有する材料のうち、LixTiy4で示され
る材料の放電電位はLi+/Li電位に対して1.5V付
近にあることが知られている。とくに、x=4/3,y
=5/3の材料、すなわちLi4/3Ti5/34の放電電
位は、Li+/Li電位を基準にして1.5Vを示すこと
が知られている。そして、この材料は、充放電を100
サイクル以上反復した場合であっても、95%以上の放
電維持率を確保し、またLi+/Li電位に対して3.0
V以上の電位を印加する過充電状態にあっても、その結
晶構造の変化は起こらないという特性を備えている。そ
のため、この材料は、長寿命のLi二次電池用の電池材
料としての期待を集めている。
[0006] However, the above-mentioned materials
Is also the standard monopolar potential of Li (hereinafter, Li +/ Li potential
The discharge potential is about 3.0 to 4.0 V with reference to
Therefore, Li secondary batteries using these materials are
Does not reach 1.5 V, and is not compatible with the aforementioned Ni / Cd secondary battery.
It does not have interchangeability. By the way, spinel type
Among materials having a crystal structure, LixTiyOFourIndicated by
The discharge potential of the material is Li+1.5V to / Li potential
It is known to be nearby. In particular, x = 4/3, y
= 5/3 material, ie Li4/3Ti5/3OFourDischarge electricity
The rank is Li+/1.5V based on Li potential
It has been known. This material has a charge and discharge of 100
95% or more release even if repeated over cycles
To maintain the power+/3.0 with respect to Li potential
Even if the battery is overcharged by applying a potential of V or more,
It has the property that the crystal structure does not change. So
Therefore, this material is a battery material for long-life Li secondary batteries
It is gathering expectations as a fee.

【0007】このようなことから、LixTiy4を用
いたLi二次電池が提案されている。例えば、特開平6
−275263号公報には、Li+/Li電位に対して
2.0V以上の放電電位を示す正極と負極にはLixTi
y4を用いたLi二次電池が提案されている。そしてま
た、特開平7−320784号公報には、Li2MnO3
やLiMnO2を正極に用い、負極にはLi4/3Ti5/3
4またはLiTi2 4を用いたLi二次電池が提案さ
れている。
For these reasons, LixTiyOFourFor
Li secondary batteries have been proposed. For example, Japanese Unexamined Patent Publication
-275263 discloses Li+/ Li potential
The positive and negative electrodes exhibiting a discharge potential of 2.0 V or more are LixTi
yOFourLi secondary batteries using the same have been proposed. And
Japanese Patent Application Laid-Open No. 7-320784 discloses LiTwoMnOThree
And LiMnOTwoFor the positive electrode and Li for the negative electrode.4/3Ti5/3
OFourOr LiTiTwoO FourRechargeable Lithium Battery
Have been.

【0008】しかしながら、上記した電池の場合、Li
xTiy4はいずれも負極用の材料として用いられてお
り、しかも、正極活物質の特性が電池性能を強く規制し
てしまい、LixTiy4が備えている充放電サイクル
寿命特性,過充電特性,充放電時の電位変化の平坦性な
どの優れた特性を充分に生かせないという問題がある。
However, in the case of the above-mentioned battery, Li
x Ti y O 4 is used as a material for the negative electrode, and the characteristics of the positive electrode active material strongly regulate the battery performance, and the charge-discharge cycle life characteristics of Li x Ti y O 4 are provided. There is a problem that excellent characteristics such as overcharge characteristics and flatness of potential change during charging and discharging cannot be sufficiently utilized.

【0009】なお、LixTiy4を正極に用いたLi
二次電池の場合は、理論的には、当該LixTiy4
働きによって優れた過充電特性の発揮が期待されるにも
かかわらず、いまだ実用化された事例はほとんどない。
これは次の理由に基づく。例えば、負極としてLi箔を
用いたとすると、充放電の反復過程で当該Li箔が微細
化したり、またLi箔の表面にLiの樹枝状突起が成長
してそれがセパレータを突き破って正極と接触して内部
短絡が発生したりして、電池の充放電サイクル特性の劣
化を引き起こし、電池の使用寿命が短くなってしまうか
らである。
Note that Li x Ti y O 4 used as a positive electrode
In the case of a secondary battery, theoretically, despite the fact that excellent overcharge characteristics are expected to be exhibited by the action of Li x Ti y O 4 , there have been few practical applications.
This is based on the following reasons. For example, if a Li foil is used as the negative electrode, the Li foil becomes finer in the course of repeated charging and discharging, or dendrites of Li grow on the surface of the Li foil, which break through the separator and come into contact with the positive electrode. This may cause an internal short circuit or cause deterioration of the charge / discharge cycle characteristics of the battery, thereby shortening the service life of the battery.

【0010】このような問題に対しては、Li−Al合
金を負極に用いることが知られている。しかしながら、
Li−Al合金の放電電位はLi+/Li電位を基準に
して約0.4Vであるため、結局、そのLi二次電池の
作動電圧は1.1V(1.5V−0.4V)程度となって
しまい、その電池は1.5V級の電池としては不適切で
ある。
[0010] To solve such a problem, it is known to use a Li-Al alloy for the negative electrode. However,
Since the discharge potential of the Li-Al alloy is about 0.4 V based on the Li + / Li potential, the operating voltage of the Li secondary battery is about 1.1 V (1.5 V-0.4 V). This makes the battery unsuitable as a 1.5V class battery.

【0011】[0011]

【発明が解決しようとする課題】本発明は、正極にLi
xTiy4を用いたLi二次電池における上記した問題
を解決し、作動電圧が約1.5Vである非水溶媒二次電
池、具体的には、Li二次電池の提供を目的とする。ま
た、本発明は、大電流の充放電時においても活物質の利
用率低下が起こりづらく、したがって充放電サイクル寿
命特性の劣化も起こりづらい非水溶媒二次電池の提供を
目的とする。
SUMMARY OF THE INVENTION The present invention relates to a method of producing a positive electrode comprising Li
An object of the present invention is to solve the above-mentioned problems in a Li secondary battery using x Ti y O 4 and provide a non-aqueous solvent secondary battery having an operating voltage of about 1.5 V, specifically, a Li secondary battery. I do. Another object of the present invention is to provide a non-aqueous solvent secondary battery in which a reduction in the utilization rate of an active material is unlikely to occur even during charge / discharge with a large current, and therefore, deterioration in charge / discharge cycle life characteristics is unlikely to occur.

【0012】[0012]

【課題を解決するための手段】本発明者は上記した目的
を達成するために鋭意研究を重ねる過程で、Li4/3
5/34はLi+/Li電位を基準にしてその放電電位
が1.5V前後であり、またその単位重量当たりの容量
として175mAh/gを得ることができ、しかも充放電
時におけるLi+の出入りの可逆性に優れ、かつ安価に
合成することができるという点に着目し、この材料を正
極活物質として選定した。
In order to achieve the above-mentioned object, the present inventor has conducted intensive studies and found that Li 4/3 T
i 5/3 O 4 has a discharge potential of about 1.5 V based on the Li + / Li potential, and can obtain a capacity per unit weight of 175 mAh / g. Focusing on its excellent reversibility of + ingress and egress, and its inexpensive synthesis, this material was selected as the positive electrode active material.

【0013】一方、負極の選定に当たっては、従来から
多用されているLi箔は前記したように充放電の反復過
程における樹枝状突起の成長に基づく内部短絡を招いて
電池寿命を短くする虞があることを考えて選定の対象か
ら除外した。そして、炭素材はLi+/Li電位を基準
にするとその放電電位が約0Vであり、また多孔構造で
もあるという事実に着目し、この炭素材にLiを吸蔵さ
せた材料を負極活物質として選定した。
On the other hand, when selecting the negative electrode, the Li foil, which has been frequently used, may cause an internal short circuit due to the growth of dendrites during the repetitive charging / discharging process, thereby shortening the battery life. Considering this, it was excluded from the selection. Focusing on the fact that the carbon material has a discharge potential of about 0 V on the basis of the Li + / Li potential and also has a porous structure, a material obtained by inserting Li into this carbon material is selected as a negative electrode active material. did.

【0014】そして、Li4/3Ti5/34を正極活物質
とし、Liを吸蔵させた炭素材を負極活物質として1.
5V級の非水溶媒二次電池の研究を続けた。そして、そ
の過程で次のような知見を得るに至った。すなわち、L
4/3Ti5/34は、ある条件では、用いた有機電解液
と反応するという事実である。
Then, Li 4/3 Ti 5/3 O 4 is used as a positive electrode active material, and a carbon material having occluded Li is used as a negative electrode active material.
Research on a 5V class non-aqueous solvent secondary battery was continued. In the process, the following findings were obtained. That is, L
The fact is that i 4/3 Ti 5/3 O 4 reacts with the organic electrolyte used under certain conditions.

【0015】具体的には、Li4/3Ti5/34をLi+
Li電位に対して1.0Vより低くなるまで放電させる
と、Li4/3Ti5/34は有機電解液を分解してその表
面抵抗は上昇し、かつ有機電解液が枯渇しはじめて電池
容量の低下が引き起こされたという事実である。また、
Li4/3Ti5/34の過放電状態、すなわちLi4/3Ti
5/34に多量のLiがインターカレートする状態を持続
させると、電池容量の低下が激しく進むという事実であ
る。
Specifically, Li 4/3 Ti 5/3 O 4 is converted to Li + /
When the battery is discharged to a voltage lower than 1.0 V with respect to the Li potential, Li 4/3 Ti 5/3 O 4 decomposes the organic electrolyte to increase its surface resistance, and the organic electrolyte starts to be depleted and the battery begins to deplete. It is the fact that a reduction in capacity was caused. Also,
The overdischarged state of Li 4/3 Ti 5/3 O 4 , that is, Li 4/3 Ti
This is the fact that when the state where a large amount of Li is intercalated into 5/3 O 4 is maintained, the battery capacity is drastically reduced.

【0016】本発明者は、上記した不都合な現象への対
応策を考察する過程で、正極の容量を負極の容量よりも
大きく設定することにより、正極の作動電位がLi+
Li電位に対して1.0V以上の電位にすることがで
き、もって有機電解液の前記した分解を抑制して電池容
量の低下を防止することができるとの着想を抱いた。同
時に、正極活物質であるLi4/3Ti5/34の比表面積
を適正化することにより有機電解液の分解を促進する反
応性を抑制した状態で、電池反応における実質的な有効
面積を大きくして大電流による充放電特性の向上を実現
できるとの着想を抱いた。
The inventor of the present invention has set the capacity of the positive electrode to be larger than the capacity of the negative electrode in the course of studying a countermeasure against the above-mentioned inconvenient phenomenon, so that the operating potential of the positive electrode is Li + /
The idea is that the potential can be set to 1.0 V or more with respect to the Li potential, so that the above-mentioned decomposition of the organic electrolytic solution can be suppressed and the battery capacity can be prevented from lowering. At the same time, by optimizing the specific surface area of Li 4/3 Ti 5/3 O 4 , which is a positive electrode active material, while suppressing the reactivity that promotes the decomposition of the organic electrolyte, the effective effective area in the battery reaction is reduced. The idea was that the charge / discharge characteristics could be improved by a large current by increasing.

【0017】本発明者は、以上の知見と以上の着想に基
づき更に研究を重ねた結果、本発明の非水溶媒二次電池
を開発するに至った。すなわち、本発明の非水溶媒二次
電池は、活物質がLi4/3Ti5/34である正極合剤を
有する正極と、Liが吸蔵された炭素材を含む負極合剤
を有する負極とを具備する非水溶媒二次電池であって、
前記正極の作動電位は、Liの標準単極電位を基準にし
て、常時、1.0V以上の値を示し、かつ前記負極の作
動電位が上昇しはじめた時点をもって放電が終了するこ
とを特徴とし、好ましくは、前記正極合剤と前記負極合
剤との電気容量比が、1.05〜1.20になっており、
前記Li4/3Ti5/34の比表面積が1.0〜3.0m2
gである。
The present inventor has conducted further research based on the above findings and the above ideas, and as a result, has come to develop a non-aqueous solvent secondary battery of the present invention. That is, the nonaqueous solvent secondary battery of the present invention has a positive electrode having a positive electrode mixture whose active material is Li 4/3 Ti 5/3 O 4 and a negative electrode mixture containing a carbon material in which Li has been occluded. A non-aqueous solvent secondary battery comprising a negative electrode,
The operating potential of the positive electrode, with reference to a standard monopolar potential of Li, always shows a value of 1.0 V or more, and the discharge is terminated when the operating potential of the negative electrode starts to increase. Preferably, the electric capacity ratio of the positive electrode mixture and the negative electrode mixture is 1.05 to 1.20,
The specific surface area of the Li 4/3 Ti 5/3 O 4 is 1.0 to 3.0 m 2 /
g.

【0018】[0018]

【発明の実施の形態】本発明の非水溶媒二次電池は、正
極活物質がLi4/3Ti5/34である正極合剤を有する
正極と、炭素材にLiが吸蔵されている負極活物質を有
する負極とが、保液性と電気絶縁性を有するセパレータ
を介して積層されて発電要素を構成し、この発電要素が
有機電解液と一緒に電池缶の中に密封された構造になっ
ている。
BEST MODE FOR CARRYING OUT THE INVENTION A non-aqueous solvent secondary battery according to the present invention comprises a positive electrode having a positive electrode mixture whose positive electrode active material is Li 4/3 Ti 5/3 O 4 and a carbon material in which Li is occluded. A negative electrode having a negative electrode active material and a negative electrode having a negative electrode active material are laminated via a separator having a liquid retaining property and an electrical insulating property to form a power generating element, and the power generating element is sealed in a battery can together with an organic electrolyte. It has a structure.

【0019】まず、正極活物質はLi+/Li電位に対
して1.5Vの放電電位を示すLi4/ 3Ti5/34から成
り、また負極活物質はLi+/Li電位に対して約0V
の放電電位を示す炭素材にLiを吸蔵させたものであ
る。したがって、負極の作動電位は約0Vになるため、
この電池の作動電圧は1.5Vを示す。ここで、正極
は、上記した活物質であるLi4/3Ti5/34の粉末
と、例えばカーボンブラックのような導電材と、例えば
PTFEのような結着剤とを所定の割合で混練して成る
正極合剤を所定の形状に加圧成形して製造される。
Firstly, the positive electrode active material consists of Li 4/3 Ti 5/3 O 4 showing discharge potential of 1.5V relative to Li + / Li potential, also with respect to the negative electrode active material is Li + / Li potential About 0V
Is obtained by inserting Li into a carbon material having a discharge potential of. Therefore, the operating potential of the negative electrode is about 0 V,
The operating voltage of this battery is 1.5V. Here, the positive electrode is composed of a powder of Li 4/3 Ti 5/3 O 4 as the active material, a conductive material such as carbon black, and a binder such as PTFE at a predetermined ratio. It is manufactured by press-molding the kneaded positive electrode mixture into a predetermined shape.

【0020】また、負極は、例えば炭素粉末,黒鉛粉末
のような多孔構造の炭素材と、例えばスチレン・ブタジ
エンゴムのような結着剤とを混練して成る負極合剤を所
定の形状に加圧成形したのち、電池の組み立て時に、前
記成形体に例えば金属Liの箔を圧着することにより製
造される。この金属Li箔は電池の組み立て後に、有機
電解液に溶解して前記炭素材の空隙部に吸蔵される。
The negative electrode is formed by kneading a negative electrode mixture formed by kneading a porous carbon material such as carbon powder or graphite powder and a binder such as styrene-butadiene rubber into a predetermined shape. After the pressure molding, when the battery is assembled, it is manufactured by press-bonding, for example, a metal Li foil to the molded body. After assembling the battery, the metal Li foil is dissolved in the organic electrolyte and occluded in the voids of the carbon material.

【0021】有機電解液としては、例えば、エチレンカ
ーボネート(EC),プロピレンカーボネート(P
C),ブチレンカーボネート(BC),γ−ブチロラク
トン(γ−BL),1,2−ジエトキシエタン(DE
E),1,2−ジメトキシエタン(DME),ジエチル
カーボネート(DEC)のような非水溶媒の1種または
2種以上の混合溶媒に、例えばLiClO4,LiB
4,LiCF3SO3,LiPF 6,LiN(CF3
2)2のような電解質の所定量を溶解せしめたものが用
いられる。その場合、目的とする電池の要求特性との関
係で用いる有機電解液が適宜に選択されるが、例えば、
充放電サイクル特性や保存特性を高めようとする場合
は、電解質としてLiPF6やLiN(CF3SO2)2
用いることが好適である。
As the organic electrolyte, for example, ethylene carbonate
-Carbonate (EC), propylene carbonate (P
C), butylene carbonate (BC), γ-butyrolact
Ton (γ-BL), 1,2-diethoxyethane (DE
E), 1,2-dimethoxyethane (DME), diethyl
One of non-aqueous solvents such as carbonate (DEC) or
In a mixed solvent of two or more, for example, LiClOFour, LiB
FFour, LiCFThreeSOThree, LiPF 6, LiN (CFThreeS
OTwo)TwoIt is necessary to dissolve a predetermined amount of electrolyte such as
Can be. In that case, the relationship with the required characteristics of the target battery
The organic electrolyte used in the process is appropriately selected, for example,
When trying to improve charge / discharge cycle characteristics and storage characteristics
Is LiPF as electrolyte6And LiN (CFThreeSOTwo)TwoTo
It is preferred to use.

【0022】本発明の非水溶媒二次電池は、正極の作動
電位がLi+/Li電位に対して、すなわち負極の作動
電位に対して常に1.0V以上になっている状態で動作
し、負極の作動電位が0Vより上昇した時点で放電が停
止する。このような挙動は、正極合剤の容量を負極合剤
の容量よりも大きくすることによって実現される。具体
的には正極合剤の容量と負極合剤の容量との比を1.0
5〜1.20の範囲内に設定することにより実現させる
ことができる。
The non-aqueous solvent secondary battery of the present invention operates in a state where the operating potential of the positive electrode is always 1.0 V or higher with respect to the Li + / Li potential, that is, the operating potential of the negative electrode. The discharge stops when the operating potential of the negative electrode rises above 0V. Such behavior is realized by making the capacity of the positive electrode mixture larger than the capacity of the negative electrode mixture. Specifically, the ratio of the capacity of the positive electrode mixture to the capacity of the negative electrode mixture was 1.0.
It can be realized by setting within the range of 5 to 1.20.

【0023】この容量比を1.05より小さくすると、
大電流放電時に正極内のLi4/3Ti 5/34におけるL
+の拡散速度が低下して負極近傍に位置するLi4/3
5/34の放電電位がLi+/Li電位に対して1.0V
より低くなり、そのため、有機電解液の分解を惹起して
電池容量の低下が起こる。また、前記容量比を1.20
より大きくすると、それはそもそもが負極の容量が低く
なっている状態であるため、電池の高容量化を阻害する
ことになる。
When this capacity ratio is smaller than 1.05,
Li in the positive electrode during large current discharge4/3Ti 5/3OFourL in
i+Diffusion rate decreases and Li located near the negative electrode4/3T
i5/3OFourDischarge potential of Li+/ Li potential 1.0V
Lower, thus causing decomposition of the organic electrolyte
Battery capacity drops. Further, the capacity ratio is 1.20.
If it is larger, it means that the capacity of the negative electrode is lower in the first place.
Is in a state where the battery capacity is high.
Will be.

【0024】この容量比は、正極合剤へのLi4/3Ti
5/34の配合量と、負極合剤中における炭素材へのLi
の吸蔵量とをそれぞれ調整することにより上記範囲内に
設定することができる。例えば所定の容量(これをC1
とする)に相当する質量のLiを炭素材に吸蔵せしめて
負極活物質を調製する。そして、この炭素材を用いて負
極合剤を調製すると、当該負極合剤の容量(これをC2
とする)は、前記炭素材が希釈された状態になっている
のでC2<C1を満たすある値になる。
This capacity ratio is determined by the Li 4/3 Ti
5/3 O 4 compounding amount and Li to carbon material in negative electrode mixture
And the amount of occlusion can be adjusted within the above range. For example, a predetermined capacity (this is C1
) Is inserted into a carbon material to prepare a negative electrode active material. When a negative electrode mixture is prepared using this carbon material, the capacity of the negative electrode mixture (this is
Is a certain value that satisfies C2 <C1 because the carbon material is in a diluted state.

【0025】また同様に、正極合剤の調製時に、配合す
るLi4/3Ti5/34(容量:175mAh/g)の量と導
電材や結着剤との量を適宜に選定すると、得られた正極
合剤の容量はLi4/3Ti5/34の容量が希釈されたあ
る値(これをC3とする)になる。したがって、前記し
た容量C2を一定とした場合、上記した容量C3が、
1.05≦C3/C2≦1.20の関係を満足するよう
に、Li4/3Ti5/34の量や、他の成分との割合を勘
案して正極合剤を調製すれば、この正極合剤と負極合剤
との容量比を1.05〜1.20の範囲内に位置させるこ
とができる。
Similarly, when preparing the positive electrode mixture, the amount of Li 4/3 Ti 5/3 O 4 (capacity: 175 mAh / g) and the amounts of the conductive material and the binder are appropriately selected. The capacity of the obtained positive electrode mixture becomes a value obtained by diluting the capacity of Li 4/3 Ti 5/3 O 4 (this is referred to as C3). Therefore, when the above-mentioned capacitance C2 is fixed, the above-mentioned capacitance C3 becomes
When the positive electrode mixture is prepared in consideration of the amount of Li 4/3 Ti 5/3 O 4 and the ratio with other components so as to satisfy the relationship of 1.05 ≦ C3 / C2 ≦ 1.20. The capacity ratio between the positive electrode mixture and the negative electrode mixture can be set within a range of 1.05 to 1.20.

【0026】実際問題としては、ある容量の正極合剤と
負極合剤を調製し、それぞれを用いて正極と負極を加工
成形するときに、それぞれの成形体の大きさや厚みを変
えることにより、上記した容量比を調整することができ
る。例えば、まず、ある一定値の容量の負極合剤を調製
してそれで所定の寸法形状の負極を成形する。この負極
は使用したLi量に対応するある一定の容量になってい
る。そして、正極合剤で正極を成形するときに、その成
形体の大きさや厚みを変えればよい。寸法形状が変化す
れば、その正極に含まれているLi4/3Ti5/34の量
も変化し、それに対応して正極としての容量も変化する
からである。
As a practical problem, when a certain volume of a positive electrode mixture and a certain amount of a negative electrode mixture are prepared, and the positive electrode and the negative electrode are processed and formed using each of them, the size and the thickness of each of the molded bodies are changed. The adjusted capacity ratio can be adjusted. For example, first, a negative electrode mixture having a certain capacity is prepared, and then a negative electrode having a predetermined size and shape is formed. This negative electrode has a certain capacity corresponding to the amount of Li used. Then, when forming the positive electrode with the positive electrode mixture, the size and thickness of the formed body may be changed. This is because if the size and shape change, the amount of Li 4/3 Ti 5/3 O 4 contained in the positive electrode also changes, and the capacity of the positive electrode changes accordingly.

【0027】なお、正極の製造に際しては、活物質であ
るLi4/3Ti5/34として比表面積が1.0〜3.0m2
/gのものを用いることが好ましい。比表面積が1.0
2/gより小さいものは、電池反応に寄与する有効面
積が小さいため、大電流による充放電時における活物質
としての利用率は低くなり、電池の充放電サイクル特性
の向上という課題として有効であるとはいえないからで
ある。しかし逆に、比表面積が3.0m2/gより大きく
なると、その表面活性が大きくなって有機電解液の分解
を誘発するようになるからである。
In the production of the positive electrode, the specific surface area is 1.0 to 3.0 m 2 as Li 4/3 Ti 5/3 O 4 as an active material.
/ G is preferably used. Specific surface area is 1.0
When the ratio is smaller than m 2 / g, the effective area contributing to the battery reaction is small, so that the utilization rate as an active material at the time of charging / discharging with a large current is low. This is because it cannot be said. However, conversely, if the specific surface area is larger than 3.0 m 2 / g, the surface activity is increased and the decomposition of the organic electrolyte is induced.

【0028】[0028]

【実施例】実施例1〜6,比較例1〜3 (1)正極の製造 LiOHとTiO2をモル比で4:5となるように混合
し、その混合物を空気中で表1に示した温度で12時間
焼成して、比表面積が異なるLi4/3Ti5/3 4粉末を
合成した。
EXAMPLES Examples 1 to 6 and Comparative Examples 1 to 3 (1) Production of positive electrode LiOH and TiOTwoAre mixed in a molar ratio of 4: 5
And the mixture is allowed to stand in air for 12 hours at the temperature indicated in Table 1.
Baking, Li with different specific surface area4/3Ti5/3O FourPowder
Synthesized.

【0029】このLi4/3Ti5/34粉末100重量部
に対し、カーボンブラック10重量部,PTFE粉末5
重量部を配合したのち撹拌し、得られた混合物を加圧成
形して、直径が16.0mmで、表1で示したように厚み
が異なる各種のペレットを製造した。ついで、これらペ
レットを温度150℃で5時間乾燥して正極とした。
For 100 parts by weight of this Li 4/3 Ti 5/3 O 4 powder, 10 parts by weight of carbon black and 5 parts by weight of PTFE powder
After mixing by weight, the mixture was stirred, and the resulting mixture was molded under pressure to produce various pellets having a diameter of 16.0 mm and different thicknesses as shown in Table 1. Next, these pellets were dried at a temperature of 150 ° C. for 5 hours to obtain a positive electrode.

【0030】[0030]

【表1】 [Table 1]

【0031】(2)負極前駆体の製造 メソフェーズピッチをN2雰囲気下で2800℃に焼成
して炭素材を製造した。この炭素材の粉末100重量部
に対し、スチレン・ブタジエンゴム5.3重量部を配合
したのち撹拌し、得られた混合物を加圧成形し、直径が
16.0mmで、表2で示したように厚みが異なり、した
がって理論容量も異なる各種のペレットを製造した。つ
いで、これらペレットを温度150℃で5時間乾燥して
負極前駆体とした。
(2) Production of Negative Electrode Precursor A mesophase pitch was fired at 2800 ° C. in an N 2 atmosphere to produce a carbon material. 5.3 parts by weight of styrene-butadiene rubber was added to 100 parts by weight of the powder of the carbon material, and the mixture was stirred. The resulting mixture was pressed and molded to have a diameter of 16.0 mm, as shown in Table 2. Various pellets having different thicknesses and thus different theoretical capacities were produced. Next, these pellets were dried at a temperature of 150 ° C. for 5 hours to obtain a negative electrode precursor.

【0032】[0032]

【表2】 [Table 2]

【0033】(3)電池の組み立て 表1で示した正極と表2で示した負極前駆体を表3で示
したように組み合わせて図1で示したコイン型Li二次
電池を次のようにして組み立てた。まず、ステンレス鋼
製の負極容器1の底面に、直径10mm,厚み0.05mm
のNi製エキスパンドメタル2を負極集電体として溶接
し、内壁部には絶縁ガスケット3を配置した。
(3) Assembly of Battery The positive electrode shown in Table 1 and the negative electrode precursor shown in Table 2 were combined as shown in Table 3 to obtain the coin-type Li secondary battery shown in FIG. Assembled. First, a diameter of 10 mm and a thickness of 0.05 mm were placed on the bottom of the negative electrode container 1 made of stainless steel.
Was welded as a negative electrode current collector, and an insulating gasket 3 was disposed on the inner wall.

【0034】ついで、負極集電体2の上に金属Li箔を
配置し、その上に、表2で示した負極前駆体4を着設し
た。なお、この金属Li箔は、電池組み立て後、負極前
駆体の炭素材に吸蔵されて活物質として機能する。な
お、このときの金属Li箔の寸法形状は、それに着設さ
せる負極前駆体2の理論容量に相当する容量となるよう
に設定した。
Next, a metal Li foil was disposed on the negative electrode current collector 2, and the negative electrode precursor 4 shown in Table 2 was mounted thereon. After the battery is assembled, the metal Li foil is occluded by the carbon material of the negative electrode precursor and functions as an active material. The dimensions and shape of the metal Li foil at this time were set so as to have a capacity corresponding to the theoretical capacity of the negative electrode precursor 2 attached to the metal Li foil.

【0035】ついで、EC:γ−BLが1:2(体積
比)である有機溶媒にLiBF4を1モル/Lの濃度と
なるように溶解して電解液を調製し、これをポリプロピ
レン不織布に含浸せしめたセパレータ5を前記負極前駆
体2の上に載置したのち、表1で示した正極6を載置し
た。そして最後に、内面にコロイダルカーボン7が塗布
されている正極容器8を嵌合し、全体に加締め加工を行
って外径20mm,高さ2.5mmの電池を組み立てた。こ
のときの正極と負極の電気容量比を表3に示した。
Next, LiBF 4 was dissolved in an organic solvent having an EC: γ-BL of 1: 2 (volume ratio) so as to have a concentration of 1 mol / L to prepare an electrolytic solution, which was then applied to a polypropylene nonwoven fabric. After placing the impregnated separator 5 on the negative electrode precursor 2, the positive electrode 6 shown in Table 1 was placed. Finally, a positive electrode container 8 coated with colloidal carbon 7 on the inner surface was fitted, and the whole was crimped to assemble a battery having an outer diameter of 20 mm and a height of 2.5 mm. Table 3 shows the electric capacity ratio between the positive electrode and the negative electrode at this time.

【0036】[0036]

【表3】 [Table 3]

【0037】(4)電池特性の測定 9種類の電池につき、0.5mAの定電流で電池の作動電
圧0.5Vから2.5Vまでの充放電を行った。各電池の
1サイクル目における放電曲線を図2に示した。また、
図3には、各電池の各サイクル時における放電容量を示
した。これらの結果から次のことが明らかである。
(4) Measurement of Battery Characteristics With respect to the nine types of batteries, the batteries were charged and discharged at a constant current of 0.5 mA from an operating voltage of 0.5 V to 2.5 V. FIG. 2 shows a discharge curve of the first cycle of each battery. Also,
FIG. 3 shows the discharge capacity of each battery at each cycle. The following is clear from these results.

【0038】1.図1で明らかなように、比較例1〜3
の電池の場合、電池電圧が0.9V付近になると放電曲
線に平坦部が現れている。これは、放電の過程で電解液
の分解が生起していることを示唆している現象である。
これに反し、本発明の電池は、上記したような現象を起
こすことなく、1.5Vの作動電圧が維持されている。
1. As is clear from FIG.
In the case of the battery of the above, when the battery voltage becomes around 0.9 V, a flat portion appears in the discharge curve. This is a phenomenon suggesting that decomposition of the electrolytic solution has occurred in the process of discharging.
In contrast, the battery of the present invention maintains an operating voltage of 1.5 V without causing the above-described phenomenon.

【0039】2.図3で明らかなように、比較例1〜3
の電池のサイクル寿命は短い。とくに比較例1,3の電
池は10数サイクル程度の充放電で寿命が尽きている。
これは、充放電の過程で電解液の分解が進んで電解液が
枯渇してしまうことを示している。これに反し、本発明
の電池は、いずれも、100サイクルの充放電経過後に
あっても良好な容量維持率を示し、その充放電サイクル
特性は優れたものになっている。なお、実施例4の電池
の放電容量は他の電池に比べて小さいが、これは正極活
物質の比表面積が0.5m2/gと小さいことに起因する
現象である。しかし、実用には充分耐える特性にはなっ
ている。
2. As is clear from FIG.
The battery has a short cycle life. In particular, the batteries of Comparative Examples 1 and 3 have reached the end of their life after about 10 cycles of charge and discharge.
This indicates that the decomposition of the electrolytic solution proceeds in the course of charging and discharging, and the electrolytic solution is depleted. On the other hand, the batteries of the present invention all show a good capacity retention ratio even after 100 cycles of charge and discharge, and have excellent charge and discharge cycle characteristics. Although the discharge capacity of the battery of Example 4 was smaller than that of the other batteries, this is a phenomenon caused by the specific surface area of the positive electrode active material being as small as 0.5 m 2 / g. However, it has characteristics that can withstand practical use.

【0040】[0040]

【発明の効果】以上の説明で明らかなように、本発明の
非水溶媒二次電池はその作動電圧が約1.5Vであり、
また正極と負極の容量を規制することにより、充放電時
における容量低下は小さく、過充放電時の容量低下も小
さく、1.5V級の水溶液系二次電池の代替品としてそ
の工業的価値は大である。
As apparent from the above description, the non-aqueous solvent secondary battery of the present invention has an operating voltage of about 1.5 V,
In addition, by regulating the capacity of the positive electrode and the negative electrode, the decrease in capacity during charge and discharge and the decrease in capacity during overcharge and discharge are small, and its industrial value as a substitute for a 1.5 V class aqueous secondary battery is Is big.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コイン型Li二次電池の1例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a coin-type Li secondary battery.

【図2】1サイクル目の放電容量と電池電圧との関係を
示すグラフである。
FIG. 2 is a graph showing a relationship between a discharge capacity in a first cycle and a battery voltage.

【図3】電池の各サイクル時における放電容量を示すグ
ラフである。
FIG. 3 is a graph showing a discharge capacity at each cycle of a battery.

【符号の説明】[Explanation of symbols]

1 負極容器 2 負極集電体 3 絶縁ガスケット 4 負極前駆体(組み立て後の負極) 5 セパレータ 6 正極 7 コロイダルカーボン 8 正極容器 Reference Signs List 1 negative electrode container 2 negative electrode current collector 3 insulating gasket 4 negative electrode precursor (negative electrode after assembly) 5 separator 6 positive electrode 7 colloidal carbon 8 positive electrode container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活物質がLi4/3Ti5/34である正極
合剤を有する正極と、Liが吸蔵された炭素材を含む負
極合剤を有する負極とを具備する非水溶媒二次電池であ
って、 前記正極の作動電位は、Liの標準単極電位に対し、常
時、1.0V以上の値を示し、かつ前記負極の作動電位
が上昇しはじめた時点をもって放電が終了することを特
徴とする非水溶媒二次電池。
1. A non-aqueous solvent comprising a positive electrode having a positive electrode mixture whose active material is Li 4/3 Ti 5/3 O 4 and a negative electrode having a negative electrode mixture containing a carbon material in which Li is occluded. In a secondary battery, the operating potential of the positive electrode always shows a value of 1.0 V or more with respect to a standard monopolar potential of Li, and discharge ends when the operating potential of the negative electrode starts to increase. Non-aqueous solvent secondary battery characterized by the following.
【請求項2】 前記正極合剤と前記負極合剤との電気容
量比が、1.05〜1.20になっている請求項1の非水
溶媒二次電池。
2. The non-aqueous solvent secondary battery according to claim 1, wherein an electric capacity ratio between the positive electrode mixture and the negative electrode mixture is 1.05 to 1.20.
【請求項3】 前記Li4/3Ti5/34の比表面積が1.
0〜3.0m2/gである請求項1の非水溶媒二次電池。
3. The Li 4/3 Ti 5/3 O 4 having a specific surface area of 1.
2. The non-aqueous solvent secondary battery according to claim 1, wherein the amount is from 0 to 3.0 m < 2 > / g.
JP10057043A 1998-03-09 1998-03-09 Nonaqueous solvent secondary battery Pending JPH11260412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10057043A JPH11260412A (en) 1998-03-09 1998-03-09 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10057043A JPH11260412A (en) 1998-03-09 1998-03-09 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH11260412A true JPH11260412A (en) 1999-09-24

Family

ID=13044430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10057043A Pending JPH11260412A (en) 1998-03-09 1998-03-09 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH11260412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2002100354A (en) * 2000-09-21 2002-04-05 Toshiba Battery Co Ltd Non aqueous electrolyte secondary battery
JP2006202552A (en) * 2005-01-19 2006-08-03 Sii Micro Parts Ltd Lithium cell and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2002100354A (en) * 2000-09-21 2002-04-05 Toshiba Battery Co Ltd Non aqueous electrolyte secondary battery
JP2006202552A (en) * 2005-01-19 2006-08-03 Sii Micro Parts Ltd Lithium cell and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US20120231341A1 (en) Positive active material, and electrode and lithium battery containing the positive active material
JP4310646B2 (en) Negative electrode and battery using the same
JPH07235291A (en) Secondary battery
JP2005317446A (en) Electrolyte and battery using the same
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP6246461B2 (en) Non-aqueous electrolyte battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
JP4310937B2 (en) Lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2002042890A (en) Nonaqueous electrolyte battery
JP2001135317A (en) Nonaqueous electrolytic secondary battery
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JPH10270079A (en) Nonaqueous electrolyte battery
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
JP2002015775A (en) Nonaqueous solvent secondary cell and positive active material for the same
JP6585141B2 (en) Non-aqueous electrolyte battery
JPH11260412A (en) Nonaqueous solvent secondary battery
JP2008300178A (en) Nonaqueous secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP4753690B2 (en) Organic electrolyte battery
JP3394020B2 (en) Lithium ion secondary battery
JP4088850B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090218