JP4088850B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery Download PDF

Info

Publication number
JP4088850B2
JP4088850B2 JP13831398A JP13831398A JP4088850B2 JP 4088850 B2 JP4088850 B2 JP 4088850B2 JP 13831398 A JP13831398 A JP 13831398A JP 13831398 A JP13831398 A JP 13831398A JP 4088850 B2 JP4088850 B2 JP 4088850B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
secondary battery
discharge
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13831398A
Other languages
Japanese (ja)
Other versions
JPH11329431A (en
Inventor
将貴 志子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP13831398A priority Critical patent/JP4088850B2/en
Publication of JPH11329431A publication Critical patent/JPH11329431A/en
Application granted granted Critical
Publication of JP4088850B2 publication Critical patent/JP4088850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非水溶媒二次電池に関し、更に詳しくは、作動電圧が約1.5Vであり、過放電時や過充電時における容量劣化が抑制され、充放電サイクル寿命特性が優れているコイン型Li二次電池に関する。
【0002】
【従来の技術】
最近、各種のポータブルな電気・電子機器の多様化,小型化,軽量化の進展に伴い、その駆動源として使用される二次電池に対しても、多様化,小型化,軽量化の要望が強まっている。
【0003】
そのような二次電池としては、従来から、作動電圧が1.5V級であるNi/Cd二次電池が主流になっている。しかしながら、このNi/Cd二次電池は電解液が水溶液であるため、使用環境の温度によっては充分な電流を取り出せない等の問題がある。例えば環境温度が0℃より低くなると電解液の凍結などが起こりはじめ、電流を取り出すことはほとんど不可能になる。
【0004】
一方、有機電解液を用いた非水溶媒二次電池の研究・開発が、最近盛んに行われており、その一部は既に実用化されている。この非水溶媒二次電池は、一般に、高エネルギー密度を有し、貯蔵・保管時における自己放電も少なく、また環境温度が−20〜60℃という広い範囲でも電流を取り出すことができるという利点を備えている。
【0005】
しかしながら他方では、非水溶媒二次電池は、電解液が水溶液である電池に比べると、単位面積当たりの充放電電流の最大値が低いという問題がある。このことは、駆動源としての二次電池の小型化が進展している昨今の状況下においては、水溶液系電池に比べて不利な問題になっている。
【0006】
例えば、活物質の粉末を導電材や結着剤と混合して成る混合粉末を加圧成形してペレット形状にしたものを正極として用いるコイン型二次電池の場合には、当該正極において電池反応に寄与する反応面積は非常に小さくなるので微小電流しか流すことができないことになり、仮に大電流で充放電を行うと、活物質の利用率低下や充放電サイクル寿命特性の劣化が引き起こされることになるからである。
【0007】
この非水溶媒二次電池の代表例としてLi二次電池がある。そして、Li二次電池の正極活物質としては、例えば、V25やMn酸化物のようにその結晶構造内に直接Li+が可逆的に出入りできるような材料や、LiCoO2,LiNiO2,LiMnO2のように、充放電に関与するLi源がLi+として配位結合した状態にあるスピネル型の結晶構造を有する材料などが検討されており、その一部は既に実用化されている。
【0008】
しかしながら、上記した材料は、いずれも、Liの標準単極電位(以後、Li+/Li電位という)を基準にして3.0〜4.0V前後の放電電位を示すので、これら材料を用いたLi二次電池はその作動電圧が1.5Vにならず前記したNi/Cd二次電池との互換性を有していないことになる。
【0009】
ところで、スピネル型結晶構造を有する材料のうち、LixTiy4で示される材料の放電電位はLi+/Li電位に対して1.5V付近にあることが知られている。とくに、x=4/3,y=5/3の材料、すなわちLi4/3Ti5/34の放電電位は、Li+/Li電位を基準にして1.5Vを示すことが知られている。そして、この材料は、充放電を100サイクル以上反復した場合であっても、95%以上の容量維持率を確保し、またLi+/Li電位に対して3.0V以上の電位を印加する過充電状態にあっても、その結晶構造の変化は起こらないという特性を備えている。そのため、この材料は、長寿命のLi二次電池用の正極材料としての期待を集めている。
【0010】
このようなことから、LixTiy4を用いたLi二次電池が提案されている。例えば、特開平6−275263号公報には、正極活物質としてLi+/Li電位に対して2.0V以上の放電電位を示す活物質をを用い、また負極にはLixTiy4を用いたLi二次電池が提案されている。そしてまた、特開平7−320784号公報には、Li2MnO3やLiMnO2を正極に用い、負極にはLi4/3Ti5/34またはLiTi24を用いたLi二次電池が提案されている。
【0011】
しかしながら、上記した電池の場合、LixTiy4はいずれも負極用の材料として用いられており、しかも、正極活物質の特性が電池性能を強く規制してしまい、LixTiy4が備えている充放電サイクル寿命特性,過充電特性,充放電時の電位変化の平坦性などの優れた特性を充分に生かせないという問題がある。
【0012】
なお、LixTiy4を正極に用いたLi二次電池の場合は、理論的には、当該LixTiy4の働きによって優れた過充電特性の発揮が期待されるにもかかわらず、いまだ実用化された事例は存在していない。
【0013】
これは次の理由に基づく。例えば、負極としてLi箔を用いたとすると、充放電の反復過程で当該Li箔が微細化したり、またLi箔の表面にLiの樹枝状突起が成長してそれがセパレータを突き破って正極と接触して内部短絡が発生したりして、電池の充放電サイクル特性の劣化を引き起こし、電池の使用寿命が短くなってしまうからである。
【0014】
このような問題に対しては、Li−Al合金を負極に用いることが知られている。しかしながら、Li−Al合金の放電電位はLi+/Li電位を基準にして約0.4Vであるため、結局、そのLi二次電池の作動電圧は1.1V(1.5V−0.4V)程度となってしまい、その電池は1.5V級の電池としては不適切である。
【0015】
【発明が解決しようとする課題】
本発明は、正極にLixTiy4を用いたLi二次電池における上記した問題を解決し、作動電圧が約1.5Vである非水溶媒二次電池、具体的には、Li二次電池の提供を目的とする。また、本発明は、大電流の充放電時においても活物質の利用率低下が起こりづらく、したがって充放電サイクル寿命特性の劣化も起こりづらい非水溶媒二次電池、とりわけコイン型Li二次電池の提供を目的とする。
【0016】
【課題を解決するための手段】
本発明者は上記した目的を達成するために鋭意研究を重ねる過程で、Li4/3Ti5/34はLi+/Li電位を基準にしてその放電電位が1.5V前後であり、またその単位重量当たりの容量として175mAh/gを得ることができ、しかも充放電時におけるLi+の出入りの可逆性に優れ、かつ安価に合成することができるという点に着目し、この材料を正極活物質として選定した。
【0017】
一方、負極の選定に当たっては、従来から多用されているLi箔は前記したように充放電の反復過程における樹枝状突起の成長に基づく内部短絡を招いて電池寿命を短くする虞があることを考えて選定の対象から除外した。そして、炭素材はLi+/Li電位を基準にするとその放電電位が約0Vであり、また多孔構造でもあるという事実に着目し、この炭素材にLiを吸蔵させた材料を負極活物質として選定した。
【0018】
そして、Li4/3Ti5/34を正極活物質とし、Liを吸蔵させた炭素材を負極活物質として1.5V級のコイン型Li二次電池の開発研究を続けた。
【0019】
そして、その過程で次のような知見を得るに至った。
【0020】
すなわち、充放電特性は、加圧成形体である正極を構成するLi4/3Ti5/34粉末の粒径や、また同時に配合される導電材,結着剤の種類や量、更には成形体(正極)の密度によって大きな影響を受けるという事実である。とくに、Li4/3Ti5/34粉末の粒径の大小は充放電特性を律速する重要な因子であるという事実を見出した。
【0021】
本発明者は上記した知見に基づいて更なる研究を続けた結果、上記各要素の最適条件を見出し、本発明の充放電特性が優れている非水溶媒二次電池、とりわけコイン型Li二次電池を開発するに至った。
【0022】
すなわち、本発明の非水溶媒二次電池は、2次粒子径が10〜100μmであるLi4/3Ti5/3粉末,炭素材粉末、およびフッ素系樹脂とを必須成分とする正極合剤を有する正極と、Liが吸蔵された炭素材を含む負極合剤を有する負極とを具備、前記正極合剤における炭素材粉末の含有量が5〜15重量%,フッ素系樹脂の含有量が3〜6重量%であり、前記正極の密度が1.95〜2.05g/cmであることを特徴とする
【0023】
【発明の実施の形態】
本発明の電池における正極の正極合剤は、Li4/3Ti5/34粉末と導電材と結着剤を必須成分として構成される。
【0024】
Li4/3Ti5/34粉末としては、その2次粒子径が10〜100μmであるものが用いられる。この2次粒子径が10μmより小さい場合には、例えばコイン型電池の正極ペレットを成形したときにペレットの強度低下を招き、例えば電池組み立て時における加締め圧力などを受けたときに崩壊することもあるからである。また2次粒子径が100μmより大きい場合には、このLi4/3Ti5/34は元来導電性に劣るため、活物質としての利用率が低下して大きな電流を取り出す放電ができなくなるからである。すなわち、Li4/3Ti5/34粉末の2次粒子径は10〜100μmであることが好ましく、同時に粒径にばらつきのない状態であることが好ましい。
【0025】
炭素材粉末は導電材として機能し、例えば黒鉛粉末やカーボンブラック、または焼成炭素の粉末などをあげることができる。正極における良好な導電性を得るためには黒鉛粉末を用いることが好ましい。
【0026】
この炭素材粉末の正極合剤における配合量は、5〜15重量%に設定する。5重量%よりも少ない場合には、正極における良好な導電性を得ることが困難になる。しかしながら、配合量が多くなりすぎると、炭素材粉末の表面での電解液の分解が起こってガスが発生し、電池の膨張が起こるようになる。とくに、放電末期に放電電位が0.8V付近になると上記した現象が起こりやすい。このようなことから炭素材粉末の配合量は15重量%を上限とする。
【0027】
正極合剤における他の必須成分であるフッ素系樹脂は、Li4/3Ti5/34粉末や炭素材粉末を結着するための結着剤として機能し、例えばPTFE粉末などをあげることができる。
【0028】
このフッ素系樹脂の正極合剤における配合量は、3〜6重量%に設定する。3重量%より少ない場合には、例えばコイン型電池の正極ペレットを形成したときに充分な強度のペレットにすることができず、また6重量%より多くすると、フッ素系樹脂の撥水性が強く作用して正極の内部にまで有機電解液が浸透しなくなり、電池の容量低下を招くようになる。好ましい配合量は4〜5重量%である。
【0029】
コイン型電池の正極の製造に際しては、上記した三成分を所定の割合で混合して正極合剤を調製し、それを例えば金型に充填したのち所定の圧力を印加して所定の寸法形状をしたペレットに成形する。このとき、加圧条件を調整することにより、成形されたペレット正極の密度を適正な値にすることが好ましい。
【0030】
正極の密度が低すぎると、ペレットの強度低下を招くとともに、活物質であるLi4/3Ti5/34粉末の量が少なくなって正極としての容量低下を招き、また密度が高すぎると、ペレット強度は高くなるとはいえ、全体が緻密化しすぎて有機電解液の浸透が実現しづらくなって、大電流放電時における活物質の利用率低下を引き起こすようになる。
【0031】
このようなことから、正極の密度は1.95〜2.05g/cmとなるように成形する。とくに、1.98〜2.02g/cmにすることが好ましい。
【0032】
一方、本発明の電池における負極としては、Liが吸蔵された炭素材を含む負極合剤を用いて製造される。
【0033】
具体的には、まず、黒鉛,焼成炭素の粉末などの多孔構造を有する炭素材粉末と、例えばスチレン・ブタジエンゴムのような結着剤を混合して負極合剤を調製したのちそれを成形し所定形状の負極前駆体にし、ついで、電池の組み立て時に、電池缶の中に前記負極前駆体を配置し、更にそれに例えば金属Liの箔を圧着して製造される。この金属Li箔は電池の組み立て後に、有機電解液に溶解して前記炭素材粉末の空隙部に吸蔵されて負極が構成される。
【0034】
本発明の電池における有機電解液としては、例えば、エチレンカーボネート(EC),プロピレンカーボネート(PC),ブチレンカーボネート(BC),γ−ブチロラクトン(γ−BL),1,2−ジエトキシエタン(DEE),1,2−ジメトキシエタン(DME),ジエチルカーボネート(DEC)のような非水溶媒の1種または2種以上の混合溶媒に、例えばLiClO4,LiBF4,LiCF3SO3,LiPF6,LiN(CF3SO2)2のような電解質の所定量を溶解せしめたものが用いられる。その場合、目的とする電池の要求特性との関係で用いる有機電解液が適宜に選択されるが、例えば、充放電サイクル特性や保存特性を高めようとする場合は、電解質としてLiPF6やLiN(CF3SO2)2を用いることが好適である。
【0035】
【実施例】
実施例1〜5,比較例1,2
(1)正極の製造
LiOHとTiO2をモル比で4:5となるように混合し、その混合物を空気中において温度800℃で24時間焼成してLi4/3Ti5/34を合成した。
【0036】
このLi4/3Ti5/34を粉砕したのち分級し、表1で示した2次粒子径の各種粉末にした。ついで、これら粉末と黒鉛粉末とPTFE粉末とを表1で示した割合で混合して正極合剤とし、これを加圧成形して直径15mm,厚み0.9mmの正極ペレットにした。なおこのとき、加圧条件を変えて正極ペレットの密度を変化させた。なお、比較例1の正極1は、Li4/3Ti5/34粉末の粒径が小さすぎて成形したペレットの強度低下が激しく、電池の組み立て時には破損して正極として組み込むことはできなかった。
【0037】
【表1】

Figure 0004088850
これら各正極ペレットを温度150℃で5時間乾燥して正極とした。
【0038】
(2)負極前駆体の製造
メソフェーズピッチをN2雰囲気下で2800℃に焼成して炭素材を製造した。この炭素材の粉末100重量部に対し、スチレン・ブタジエンゴム5.3重量部を配合したのち撹拌し、得られた混合物を圧5ton/cm2で加圧成形し、直径が16.0mm,厚み0.7mmのペレットを製造した。ついで、これらペレットを温度150℃で5時間乾燥して負極前駆体とした。
【0039】
(3)電池の組み立て
表1で示した正極と負極前駆体を組み合わせて図1で示した2025サイズのコイン型Li二次電池を次のようにして組み立てた。
【0040】
まず、ステンレス鋼製の負極容器1の底面に、直径10mm,厚み0.05mmのNi製エキスパンドメタル2を負極集電体として溶接し、外周縁には絶縁ガスケット3を配置した。
【0041】
ついで、負極集電体2の上に直径16.0mm,厚み0.18mmの金属Li箔を配置し、その上に、負極前駆体4を着設した。なお、この金属Li箔は、電池組み立て後、負極前駆体の炭素材に吸蔵されて活物質として機能する。
【0042】
ついで、EC:γ−BLが1:2(体積比)である有機溶媒にLiBF4を1モル/Lの濃度となるように溶解して電解液を調製し、これをポリプロピレン不織布に含浸せしめたセパレータ5を前記負極前駆体4の上に載置したのち、表1で示した正極6を載置した。
【0043】
そして最後に、正極容器7を嵌合し、全体を逆転したのち加締め加工を行って外径20mm,高さ2.5mmの電池を組み立てた。
【0044】
(4)電池特性の測定
種類の電池につき、0.25mA,0.5mA,1.0mA,2.0mAの定電流で電池の作動電圧が0.5Vになるまでの放電を行い、各電流値における放電容量を測定した、その結果を図2に示した。
【0045】
また、各電池につき、0.5mAの定電流で電池の作動電圧1.0〜2.0Vまでの充放電サイクルを反復し、各サイクル時における放電容量を測定し、それを1回目の放電容量で除算して容量維持率(%)を算出した。その結果を図3に示した。
【0046】
図2と図3から明らかなように、活物質であるLi4/3Ti5/34粉末の2次粒子径が10〜100μmの範囲にある正極が組み込まれている電池は、大きな電流を取り出すことができ、また容量維持率も高く、充放電サイクル寿命特性は良好である。
【0047】
これに反し、2次粒子径が150μmと100μmを超える比較例2の正極が組み込まれている電池は、大きな電流を取り出すことができず、また早い段階で電池寿命が尽きている。
【0048】
このようなことから、Li4/3Ti5/34粉末としては、その2次粒子径が10〜100μmのものを使用すべきことがわかる。
【0049】
実施例6,7,比較例3〜7
実施例1の場合と同様にして表2で示したような各種の正極を製造した。
【0050】
【表2】
Figure 0004088850
実施例1の場合と同様にしてこの正極を組み込んで2025サイズのコイン型Li二次電池を組み立てた。
【0051】
これらの電池全てにつき、0.25mA,0.5mA,1.0mA,2.0mAの定電流で電池の作動電圧が0.5Vになるまでの放電を行い、各電流値における放電容量を測定した、その結果を図4に示した。
【0052】
また、実施例6,実施例7,比較例4の電池につき、0.5mAの定電流で電池の作動電圧1.0〜2.0Vまでの充放電サイクルを反復し、各サイクル時における放電容量を測定し、それを1回目の放電容量で除算して容量維持率(%)を算出した。その結果を図5に示した。
図4,図5から次のことが明らかとなる。
【0053】
1.正極における黒鉛粉末の含有量が15重量%を超える正極11が組み込まれている比較例4は、活物質の相対量が少なくなっているので、放電容量と放電維持率はいずれも低下している。
【0054】
2.PTFE粉末の含有量が6重量%を超える正極13が組み込まれている比較例6は、正極への有機電解液の浸透が阻害されることに基因して放電容量は大幅に低下している。
【0055】
3.また、密度が2.05g/cm3を超えている正極14を組み込んだ比較例7は、他の要素は同じであっても、やはり放電容量の低下が認められる。
【0056】
4.このようなことから、黒鉛粉末の含有量は5〜15重量%,PTFE粉末の含有量は3〜6重量%にし、正極の密度は1.95〜2.05g/cm3にすることが好ましい。
【0057】
【発明の効果】
以上の説明で明らかなように、本発明の非水溶媒二次電池は、その作動電圧が約1.5Vであり、大きな放電電流を取り出すことができ、その容量維持率も高く、充放電サイクル寿命特性も優れている。本発明の電池は、充放電サイクル寿命特性が優れたコイン型Li二次電池としてその工業的価値は大である。
【図面の簡単な説明】
【図1】コイン型Li二次電池の1例を示す断面図である。
【図2】正極1〜7が組み込まれた電池における放電電流と放電容量との関係を示すグラフである。
【図3】正極1〜7が組み込まれた電池における充放電サイクル数と容量維持率との関係を示すグラフである。
【図4】正極8〜14が組み込まれた電池における放電電流と放電容量との関係を示すグラフである。
【図5】正極8,9,11が組み込まれた電池における充放電サイクル数と容量維持率との関係を示すグラフである。
【符号の説明】
1 負極容器
2 負極集電体
3 絶縁ガスケット
4 負極前駆体(組み立て後の負極)
5 セパレータ
6 正極
7 正極容器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous solvent secondary battery, and more specifically, a coin type having an operating voltage of about 1.5 V, capacity deterioration during overdischarge or overcharge being suppressed, and excellent charge / discharge cycle life characteristics. The present invention relates to a Li secondary battery.
[0002]
[Prior art]
Recently, with the progress of diversification, miniaturization, and weight reduction of various portable electric / electronic devices, there is a demand for diversification, miniaturization, and weight reduction for secondary batteries used as driving sources. It is getting stronger.
[0003]
As such a secondary battery, a Ni / Cd secondary battery having an operating voltage of 1.5 V class has been mainly used. However, this Ni / Cd secondary battery has a problem that a sufficient current cannot be taken out depending on the temperature of the usage environment because the electrolytic solution is an aqueous solution. For example, when the environmental temperature is lower than 0 ° C., the electrolyte solution begins to freeze, and it is almost impossible to extract current.
[0004]
On the other hand, research and development of non-aqueous solvent secondary batteries using organic electrolytes have been actively conducted recently, and some of them have already been put into practical use. This non-aqueous solvent secondary battery generally has an advantage that it has a high energy density, less self-discharge during storage and storage, and can take out current even in a wide range of environmental temperature of -20 to 60 ° C. I have.
[0005]
On the other hand, however, the non-aqueous solvent secondary battery has a problem that the maximum value of charge / discharge current per unit area is lower than that of a battery in which the electrolytic solution is an aqueous solution. This is a disadvantage compared to the aqueous battery in the current situation where the size of the secondary battery as a driving source is being reduced.
[0006]
For example, in the case of a coin-type secondary battery in which a mixed powder obtained by mixing a powder of an active material with a conductive material or a binder is pressed into a pellet shape and used as a positive electrode, a battery reaction occurs at the positive electrode. The reaction area that contributes to the current is so small that only a very small current can flow, and if charging / discharging with a large current is performed, the utilization rate of the active material is reduced and the charge / discharge cycle life characteristics are degraded. Because it becomes.
[0007]
A typical example of the non-aqueous solvent secondary battery is a Li secondary battery. As the positive electrode active material of the Li secondary battery, for example, a material such as V 2 O 5 or Mn oxide that allows Li + to reversibly enter and exit the crystal structure directly, LiCoO 2 , LiNiO 2 , LiMnO 2 and other materials having a spinel crystal structure in which the Li source involved in charge / discharge is coordinated as Li + have been studied, and some of them have already been put into practical use. .
[0008]
However, all of the materials described above exhibit discharge potentials around 3.0 to 4.0 V with reference to the standard unipolar potential of Li (hereinafter referred to as Li + / Li potential), so these materials were used. The Li secondary battery does not have an operating voltage of 1.5 V and is not compatible with the Ni / Cd secondary battery described above.
[0009]
By the way, it is known that among materials having a spinel crystal structure, the discharge potential of a material represented by Li x Ti y O 4 is in the vicinity of 1.5 V with respect to the Li + / Li potential. In particular, it is known that the discharge potential of a material of x = 4/3 , y = 5/3 , that is, Li 4/3 Ti 5/3 O 4 shows 1.5 V with respect to the Li + / Li potential. ing. This material secures a capacity maintenance rate of 95% or more even when charging and discharging are repeated for 100 cycles or more, and is applied with an electric potential of 3.0 V or more with respect to the Li + / Li potential. Even when in a charged state, the crystal structure does not change. Therefore, this material has been expected to be a positive electrode material for a long-life Li secondary battery.
[0010]
For this reason, a Li secondary battery using Li x Ti y O 4 has been proposed. For example, in JP-A-6-275263, an active material having a discharge potential of 2.0 V or higher with respect to the Li + / Li potential is used as the positive electrode active material, and Li x Ti y O 4 is used as the negative electrode. The Li secondary battery used has been proposed. Japanese Laid-Open Patent Publication No. 7-320784 discloses a Li secondary battery using Li 2 MnO 3 or LiMnO 2 as a positive electrode and Li 4/3 Ti 5/3 O 4 or LiTi 2 O 4 as a negative electrode. Has been proposed.
[0011]
However, in the case of the battery described above, Li x Ti y O 4 is used as a material for the negative electrode, and the characteristics of the positive electrode active material strongly restrict the battery performance, and Li x Ti y O 4. There is a problem that the excellent characteristics such as charge / discharge cycle life characteristics, overcharge characteristics, and flatness of potential change during charge / discharge cannot be fully utilized.
[0012]
Note that, in the case of a Li secondary battery using Li x Ti y O 4 as a positive electrode, theoretically, it is expected that excellent overcharge characteristics are exhibited by the action of the Li x Ti y O 4. There are no practical examples yet.
[0013]
This is based on the following reason. For example, if Li foil is used as the negative electrode, the Li foil becomes finer in the repeated charge / discharge process, or Li dendrite grows on the surface of the Li foil and breaks through the separator to contact the positive electrode. This is because an internal short circuit occurs, causing deterioration of charge / discharge cycle characteristics of the battery and shortening the service life of the battery.
[0014]
For such a problem, it is known to use a Li—Al alloy for the negative electrode. However, since the discharge potential of the Li—Al alloy is about 0.4 V based on the Li + / Li potential, the operating voltage of the Li secondary battery is 1.1 V (1.5 V−0.4 V) after all. Therefore, the battery is inappropriate as a battery of 1.5V class.
[0015]
[Problems to be solved by the invention]
The present invention solves the above-described problems in a Li secondary battery using Li x Ti y O 4 as a positive electrode, and is a non-aqueous solvent secondary battery having an operating voltage of about 1.5 V, specifically, Li 2 The purpose is to provide a secondary battery. Further, the present invention is a non-aqueous solvent secondary battery, in particular, a coin-type Li secondary battery, in which the utilization rate of the active material is difficult to decrease even during charging / discharging of a large current, and hence the charge / discharge cycle life characteristics are not easily deteriorated. For the purpose of provision.
[0016]
[Means for Solving the Problems]
In the process of intensive research in order to achieve the above-mentioned object, the present inventor has a discharge potential of about 1.5 V with respect to the Li + / Li potential in Li 4/3 Ti 5/3 O 4 . Also, paying attention to the fact that the capacity per unit weight can be obtained as 175 mAh / g, the reversibility of Li + during charging and discharging is excellent, and it can be synthesized at low cost. Selected as an active material.
[0017]
On the other hand, in selecting the negative electrode, the Li foil that has been widely used in the past, as mentioned above, may cause an internal short circuit based on the growth of dendrite in the repeated charge and discharge process, and may shorten the battery life. Excluded from selection. Focusing on the fact that the carbon material has a discharge potential of about 0 V based on the Li + / Li potential and also has a porous structure, a material in which Li is occluded by this carbon material is selected as the negative electrode active material. did.
[0018]
Then, research and development of a 1.5V class coin-type Li secondary battery was continued using Li 4/3 Ti 5/3 O 4 as a positive electrode active material and a carbon material occluded with Li as a negative electrode active material.
[0019]
In the process, the following findings were obtained.
[0020]
That is, the charge / discharge characteristics include the particle size of the Li 4/3 Ti 5/3 O 4 powder constituting the positive electrode that is a pressure-formed body, the type and amount of the conductive material and binder that are blended at the same time, Is the fact that it is greatly influenced by the density of the molded body (positive electrode). In particular, the present inventors have found that the size of the particle size of Li 4/3 Ti 5/3 O 4 powder is an important factor that determines charge / discharge characteristics.
[0021]
As a result of further research based on the above-described knowledge, the present inventor has found the optimum conditions for each of the above-described elements, and is a non-aqueous solvent secondary battery having excellent charge / discharge characteristics of the present invention, particularly a coin-type Li secondary. The battery has been developed.
[0022]
That is, the non-aqueous solvent secondary battery of the present invention is a positive electrode comprising, as essential components, Li 4/3 Ti 5/3 O 4 powder having a secondary particle size of 10 to 100 μm, carbon material powder, and fluororesin. a positive electrode having a mixture, Li is provided with a negative electrode having a negative electrode mixture containing a carbon material which is occluded, 5-15 wt% carbon content material powder in the positive electrode mixture, containing a fluorine-based resin the amount is 3-6 wt%, density before Symbol positive electrode characterized in that it is a 1.95~2.05g / cm 3.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The positive electrode mixture of the positive electrode in the battery of the present invention is composed of Li 4/3 Ti 5/3 O 4 powder, a conductive material and a binder as essential components.
[0024]
As the Li 4/3 Ti 5/3 O 4 powder, those having a secondary particle diameter of 10 to 100 μm are used. When the secondary particle diameter is smaller than 10 μm, for example, when a positive electrode pellet of a coin-type battery is formed, the strength of the pellet is reduced, and for example, it collapses when subjected to caulking pressure during battery assembly. Because there is. When the secondary particle size is larger than 100 μm, this Li 4/3 Ti 5/3 O 4 is inherently inferior in conductivity, so that the utilization rate as an active material is reduced and a large current can be discharged. Because it disappears. That is, the secondary particle diameter of the Li 4/3 Ti 5/3 O 4 powder is preferably 10 to 100 μm, and at the same time, it is preferable that there is no variation in particle diameter.
[0025]
The carbon material powder functions as a conductive material, and examples thereof include graphite powder, carbon black, and calcined carbon powder. In order to obtain good conductivity in the positive electrode, it is preferable to use graphite powder.
[0026]
The blending amount of the carbon material powder in the positive electrode mixture is set to 5 to 15% by weight. When it is less than 5% by weight, it is difficult to obtain good conductivity in the positive electrode. However, if the amount is too large, the electrolyte solution decomposes on the surface of the carbon material powder, gas is generated, and the battery expands. In particular, when the discharge potential reaches around 0.8 V at the end of discharge, the above phenomenon is likely to occur. The amount of the carbon material powder from such things shall be the upper limit of 15 wt%.
[0027]
The fluororesin, which is another essential component in the positive electrode mixture, functions as a binder for binding Li 4/3 Ti 5/3 O 4 powder and carbon material powder, such as PTFE powder. Can do.
[0028]
The compounding quantity in the positive electrode mixture of this fluororesin is set to 3 to 6 weight%. When the amount is less than 3% by weight, for example, when a positive electrode pellet of a coin-type battery is formed, the pellet cannot be sufficiently strong. When the amount is more than 6% by weight, the water repellency of the fluororesin is strong. As a result, the organic electrolyte does not penetrate into the positive electrode, leading to a reduction in battery capacity. A preferable blending amount is 4 to 5% by weight.
[0029]
When manufacturing the positive electrode of the coin-type battery, the above three components are mixed at a predetermined ratio to prepare a positive electrode mixture, and after filling the mold, for example, a predetermined pressure is applied to obtain a predetermined size and shape. To form pellets. At this time, it is preferable that the density of the formed pellet positive electrode is adjusted to an appropriate value by adjusting the pressurizing condition.
[0030]
If the density of the positive electrode is too low, the strength of the pellet will be reduced, and the amount of the active material Li 4/3 Ti 5/3 O 4 powder will decrease, leading to a decrease in capacity as the positive electrode, and the density will be too high. However, although the pellet strength is increased, the whole becomes too dense and it is difficult to achieve penetration of the organic electrolyte, causing a reduction in the utilization rate of the active material during large current discharge.
[0031]
For this reason, the density of the positive electrode that be molded so that the 1.95~2.05g / cm 3. In particular, it is preferably 1.98 to 2.02 g / cm 3 .
[0032]
On the other hand, the negative electrode in the battery of the present invention is manufactured using a negative electrode mixture containing a carbon material in which Li is occluded.
[0033]
Specifically, first, a negative electrode mixture is prepared by mixing a carbon material powder having a porous structure such as graphite or a powder of calcined carbon and a binder such as styrene-butadiene rubber, and then molding the mixture. A negative electrode precursor having a predetermined shape is formed, and then the negative electrode precursor is placed in a battery can at the time of battery assembly, and further, for example, a metal Li foil is pressure-bonded thereto. After assembling the battery, this metal Li foil is dissolved in the organic electrolyte and occluded in the voids of the carbon material powder to form a negative electrode.
[0034]
Examples of the organic electrolyte in the battery of the present invention include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γ-BL), 1,2-diethoxyethane (DEE). For example, LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiPF 6 , LiN may be used as a mixed solvent of one or more nonaqueous solvents such as 1,2,2-dimethoxyethane (DME) and diethyl carbonate (DEC). A solution in which a predetermined amount of an electrolyte such as (CF 3 SO 2 ) 2 is dissolved is used. In that case, the organic electrolyte used in relation to the required characteristics of the target battery is appropriately selected. For example, when the charge / discharge cycle characteristics and the storage characteristics are to be improved, LiPF 6 or LiN ( It is preferred to use CF 3 SO 2 ) 2 .
[0035]
【Example】
Examples 1 to 5, Comparative Examples 1 and 2
(1) Production of positive electrode LiOH and TiO2 were mixed at a molar ratio of 4: 5, and the mixture was fired in air at a temperature of 800 ° C. for 24 hours to synthesize Li 4/3 Ti 5/3 O 4 . did.
[0036]
The Li 4/3 Ti 5/3 O 4 was pulverized and classified to obtain various powders having secondary particle sizes shown in Table 1. Next, these powder, graphite powder and PTFE powder were mixed at the ratio shown in Table 1 to form a positive electrode mixture, which was pressure-molded to form a positive electrode pellet having a diameter of 15 mm and a thickness of 0.9 mm. At this time, the pressure condition was changed to change the density of the positive electrode pellet. The positive electrode 1 of Comparative Example 1 has a Li 4/3 Ti 5/3 O 4 powder whose particle size is too small and the strength of the molded pellet is severely reduced, and can be broken and assembled as a positive electrode during battery assembly. There wasn't.
[0037]
[Table 1]
Figure 0004088850
Each of these positive electrode pellets was dried at 150 ° C. for 5 hours to obtain a positive electrode.
[0038]
(2) Production of negative electrode precursor A mesophase pitch was fired at 2800 ° C in an N 2 atmosphere to produce a carbon material. After blending 5.3 parts by weight of styrene / butadiene rubber with 100 parts by weight of the carbon material powder, the mixture is stirred and the resulting mixture is pressure-molded at a pressure of 5 ton / cm 2 , having a diameter of 16.0 mm and a thickness. A 0.7 mm pellet was produced. Subsequently, these pellets were dried at a temperature of 150 ° C. for 5 hours to obtain negative electrode precursors.
[0039]
(3) Assembly of battery The positive electrode and negative electrode precursor shown in Table 1 were combined to assemble the 2025 size coin-type Li secondary battery shown in FIG. 1 as follows.
[0040]
First, a Ni expanded metal 2 having a diameter of 10 mm and a thickness of 0.05 mm was welded as a negative electrode current collector to the bottom surface of a stainless steel negative electrode container 1, and an insulating gasket 3 was disposed on the outer periphery.
[0041]
Next, a metal Li foil having a diameter of 16.0 mm and a thickness of 0.18 mm was disposed on the negative electrode current collector 2, and the negative electrode precursor 4 was attached thereon. In addition, this metal Li foil is occluded by the carbon material of a negative electrode precursor after battery assembly, and functions as an active material.
[0042]
Next, an electrolytic solution was prepared by dissolving LiBF 4 in an organic solvent having EC: γ-BL of 1: 2 (volume ratio) to a concentration of 1 mol / L, and this was impregnated into a polypropylene nonwoven fabric. After placing the separator 5 on the negative electrode precursor 4, the positive electrode 6 shown in Table 1 was placed.
[0043]
Finally, the positive electrode container 7 was fitted, the whole was reversed, and then crimping was performed to assemble a battery having an outer diameter of 20 mm and a height of 2.5 mm.
[0044]
(4) Measurement of battery characteristics
For each of the six types of batteries, discharging was performed at a constant current of 0.25 mA, 0.5 mA, 1.0 mA, and 2.0 mA until the battery operating voltage reached 0.5 V, and the discharge capacity at each current value was measured. The results are shown in FIG.
[0045]
In addition, for each battery, a charge / discharge cycle of a battery operating voltage of 1.0 to 2.0 V was repeated at a constant current of 0.5 mA, and the discharge capacity at each cycle was measured. The capacity retention rate (%) was calculated by dividing by. The results are shown in FIG.
[0046]
As is clear from FIG. 2 and FIG. 3, a battery incorporating a positive electrode having a secondary particle diameter of 10 to 100 μm of a Li 4/3 Ti 5/3 O 4 powder as an active material has a large current. In addition, the capacity retention rate is high, and the charge / discharge cycle life characteristics are good.
[0047]
On the other hand, the battery incorporating the positive electrode of Comparative Example 2 having a secondary particle diameter exceeding 150 μm and 100 μm cannot extract a large current, and the battery life is exhausted at an early stage.
[0048]
From this, it can be seen that the Li 4/3 Ti 5/3 O 4 powder should have a secondary particle diameter of 10 to 100 μm.
[0049]
Examples 6 and 7, Comparative Examples 3 to 7
In the same manner as in Example 1, various positive electrodes as shown in Table 2 were produced.
[0050]
[Table 2]
Figure 0004088850
In the same manner as in Example 1, this positive electrode was incorporated to assemble a 2025 size coin-type Li secondary battery.
[0051]
All of these batteries were discharged until the operating voltage of the battery became 0.5 V at constant currents of 0.25 mA, 0.5 mA, 1.0 mA, and 2.0 mA, and the discharge capacity at each current value was measured. The results are shown in FIG.
[0052]
For the batteries of Example 6, Example 7 and Comparative Example 4, the charge / discharge cycle of the battery operating voltage of 1.0 to 2.0 V was repeated at a constant current of 0.5 mA, and the discharge capacity at each cycle. Was measured and divided by the first discharge capacity to calculate the capacity retention rate (%). The results are shown in FIG.
The following becomes clear from FIGS.
[0053]
1. In Comparative Example 4 in which the positive electrode 11 in which the content of the graphite powder in the positive electrode exceeds 15% by weight is incorporated, the discharge capacity and the discharge retention ratio are both reduced because the relative amount of the active material is small. .
[0054]
2. In Comparative Example 6 in which the positive electrode 13 having a PTFE powder content of more than 6% by weight is incorporated, the discharge capacity is greatly reduced due to the inhibition of the penetration of the organic electrolyte into the positive electrode.
[0055]
3. Further, in Comparative Example 7 in which the positive electrode 14 having a density exceeding 2.05 g / cm 3 is incorporated, a decrease in the discharge capacity is recognized even though the other elements are the same.
[0056]
4). Therefore, the graphite powder content is preferably 5 to 15% by weight, the PTFE powder content is preferably 3 to 6% by weight, and the positive electrode density is preferably 1.95 to 2.05 g / cm 3. .
[0057]
【The invention's effect】
As is clear from the above description, the nonaqueous solvent secondary battery of the present invention has an operating voltage of about 1.5 V, can take out a large discharge current, has a high capacity maintenance rate, and has a charge / discharge cycle. Excellent life characteristics. The battery of the present invention has a great industrial value as a coin-type Li secondary battery having excellent charge / discharge cycle life characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a coin-type Li secondary battery.
FIG. 2 is a graph showing a relationship between a discharge current and a discharge capacity in a battery in which positive electrodes 1 to 7 are incorporated.
FIG. 3 is a graph showing the relationship between the number of charge / discharge cycles and the capacity retention rate in a battery incorporating positive electrodes 1 to 7;
FIG. 4 is a graph showing the relationship between discharge current and discharge capacity in a battery in which positive electrodes 8 to 14 are incorporated.
FIG. 5 is a graph showing the relationship between the number of charge / discharge cycles and the capacity retention rate in a battery incorporating positive electrodes 8, 9, and 11.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Negative electrode container 2 Negative electrode collector 3 Insulation gasket 4 Negative electrode precursor (negative electrode after an assembly)
5 Separator 6 Positive electrode 7 Positive electrode container

Claims (1)

2次粒子径が10〜100μmであるLi4/3Ti5/3粉末,炭素材粉末、およびフッ素系樹脂とを必須成分とする正極合剤を有する正極と、Liが吸蔵された炭素材を含む負極合剤を有する負極とを具備し、
前記正極合剤における炭素材粉末の含有量が5〜15重量%,フッ素系樹脂の含有量が3〜6重量%であり
前記正極の密度が1 . 95〜2 . 05g/ cm であることを特徴とする非水溶媒二次電池。
A positive electrode having a positive electrode mixture containing Li 4/3 Ti 5/3 O 4 powder having a secondary particle size of 10 to 100 μm, a carbon material powder, and a fluorine-based resin as essential components; and charcoal in which Li is occluded A negative electrode having a negative electrode mixture containing a material ,
The content of the carbon material powder in the positive electrode mixture is 5 to 15% by weight, the content of the fluororesin is 3 to 6% by weight ,
The density of the positive electrode 1. 95~2. 05g / cm 3 non-aqueous solvent secondary battery, which is a.
JP13831398A 1998-05-20 1998-05-20 Non-aqueous solvent secondary battery Expired - Fee Related JP4088850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13831398A JP4088850B2 (en) 1998-05-20 1998-05-20 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13831398A JP4088850B2 (en) 1998-05-20 1998-05-20 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH11329431A JPH11329431A (en) 1999-11-30
JP4088850B2 true JP4088850B2 (en) 2008-05-21

Family

ID=15218980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13831398A Expired - Fee Related JP4088850B2 (en) 1998-05-20 1998-05-20 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP4088850B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768901B2 (en) * 1999-06-03 2011-09-07 チタン工業株式会社 Lithium titanium composite oxide, method for producing the same, and use thereof
JP2001210325A (en) * 2000-01-25 2001-08-03 Toshiba Battery Co Ltd Nonaqueous electrolytic solution secondary battery

Also Published As

Publication number Publication date
JPH11329431A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JP4657403B2 (en) Nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2006294469A (en) Nonaqueous electrolyte secondary battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2002063940A (en) Nonaqueous electrolyte secondary battery
JP5995014B2 (en) Nonaqueous electrolyte secondary battery
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JPH08335465A (en) Nonaqueous electrolytic battery
JP2004031091A (en) Nonaqueous electrolyte secondary cell
JP2004063270A (en) Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP3268924B2 (en) Non-aqueous electrolyte battery
JP4088850B2 (en) Non-aqueous solvent secondary battery
JP2001135317A (en) Nonaqueous electrolytic secondary battery
JP2002042890A (en) Nonaqueous electrolyte battery
JP2002015775A (en) Nonaqueous solvent secondary cell and positive active material for the same
JPH10270079A (en) Nonaqueous electrolyte battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JP2000077099A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees