JPH11255907A - Discontinuous fiber-reinforced resin molding and molding material for discontinuous fiber-reinforced resin molding - Google Patents

Discontinuous fiber-reinforced resin molding and molding material for discontinuous fiber-reinforced resin molding

Info

Publication number
JPH11255907A
JPH11255907A JP5988098A JP5988098A JPH11255907A JP H11255907 A JPH11255907 A JP H11255907A JP 5988098 A JP5988098 A JP 5988098A JP 5988098 A JP5988098 A JP 5988098A JP H11255907 A JPH11255907 A JP H11255907A
Authority
JP
Japan
Prior art keywords
reinforced resin
molded product
resin molded
discontinuous fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5988098A
Other languages
Japanese (ja)
Other versions
JP3937560B2 (en
Inventor
Kenichi Yoshioka
健一 吉岡
Eisuke Wadahara
英輔 和田原
Soichi Ishibashi
壮一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP05988098A priority Critical patent/JP3937560B2/en
Publication of JPH11255907A publication Critical patent/JPH11255907A/en
Application granted granted Critical
Publication of JP3937560B2 publication Critical patent/JP3937560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an excellent discontinuous fiber-reinforced resin molding simultaneously having mechanical characteristics and a high electromagnetic wave-shielding property which are necessary for moldings, such as electronic equipment, requiring thin wall and light weight, and to provide a molding material for the discontinuous fiber-reinforced resin molding. SOLUTION: This discontinuous fiber-reinforced resin molding has a specific gravity of <=1.7 and a volume specific resistance of <=0.1 Ω cm. The discontinuous fibers contain conductive fibers having an average aspect ratio of >=30. The molding material for the discontinuous fiber-reinforced resin molded product comprises at least the following components [A], [B] and [C], which are arranged so that the component [C] is brought into contact with a composite material comprising the component [A] and the component [B]. [A]: conductive fiber bundles. [B]: a thermoplastic polymer having a weight-average mol.wt. of 200-50,000 and a lower melt viscosity than that of the component [C]. [C]: a thermoplastic resin having a weight-average mol.wt. of >=10,000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パーソナルコンピ
ュータ、ワードプロセッサ等の各種電子機器の内装部品
や筐体の材料として好適な不連続繊維強化樹脂成形品に
関し、特に軽量でかつ機械的特性や電磁波遮蔽性に優れ
た不連続繊維強化樹脂成形品および不連続繊維強化樹脂
成形品用成形材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discontinuous fiber reinforced resin molded product suitable as a material for an interior part or a housing of various electronic devices such as a personal computer and a word processor, and more particularly to a lightweight, mechanical characteristic and electromagnetic wave shielding. TECHNICAL FIELD The present invention relates to a discontinuous fiber reinforced resin molded product having excellent properties and a molding material for a discontinuous fiber reinforced resin molded product.

【0002】[0002]

【従来の技術】パーソナルコンピュータ等の各種電子機
器の内装部品や筐体の材料として、不連続繊維強化樹脂
が広く用いられてきている。不連続繊維強化樹脂は、射
出成形など生産性や設計自由度に優れた成形法が可能
で、しかも剛性や強度など機械的特性にも優れた成形品
が得られる利点がある。
2. Description of the Related Art Discontinuous fiber reinforced resins have been widely used as materials for interior parts and housings of various electronic devices such as personal computers. The discontinuous fiber reinforced resin has an advantage that a molding method excellent in productivity and design freedom such as injection molding can be performed, and a molded article excellent in mechanical properties such as rigidity and strength can be obtained.

【0003】ところで、電子機器の普及と高性能化が進
むとともに、機器相互の放射電磁波干渉による誤動作等
が懸念され、これを防止するための、機器の電磁的両立
性(Electro-magnetic Compatibility)が求められ、機
器の部品や筐体の材料として電磁波遮蔽性が重要となっ
てきている。しかも、電子機器の軽量化のために、従来
よりも薄肉、軽量でかつ十分な電磁波遮蔽性を有する材
料が求められている。かかる成形品の電磁波遮蔽性を高
くするためには、成形品の導電性を高くすればよい。す
なわち、物性値としては、成形品の体積固有抵抗が低い
方がよい。ところが、一般に不連続繊維強化樹脂成形品
は、炭素繊維など導電性繊維を使えば、ある程度の導電
性は有するものの、それだけでは必ずしも十分な電磁波
遮蔽性が得られないという問題があった。
By the way, with the spread of electronic devices and the advancement of performance, there is a concern that malfunctions due to radiated electromagnetic wave interference between the devices may occur, and the electromagnetic compatibility (Electro-magnetic Compatibility) of the devices may be reduced to prevent this. Electromagnetic wave shielding is becoming important as a component of equipment and a material of a housing. Moreover, in order to reduce the weight of electronic devices, there is a demand for a material that is thinner and lighter than conventional materials and has sufficient electromagnetic wave shielding properties. In order to enhance the electromagnetic wave shielding property of such a molded product, the conductivity of the molded product may be increased. That is, it is better that the physical properties of the molded product have a low volume resistivity. However, in general, a discontinuous fiber reinforced resin molded article has a problem that, when conductive fibers such as carbon fibers are used, the conductive fibers have a certain degree of conductivity, but sufficient electromagnetic wave shielding properties cannot be obtained by themselves.

【0004】本来、導電性を持たない樹脂成形品に導電
性を付与する方法としては、成形品表面に銅、ニッケ
ル、アルミニウム等の金属薄膜を無電解メッキ法や真空
蒸着法により生成する方法が知られ、広く用いられてい
るが、工程や設備に大きなコストがかかるうえ、成形品
の変形などに伴い、金属薄膜が脱落する問題もある。ま
た、類似の方法として、導電性塗料を塗布する方法もあ
るが、電磁波遮蔽性が必ずしも十分でなく、塗膜の脱落
という問題もある。
As a method of imparting conductivity to a resin molded product having no conductivity, a method of forming a metal thin film of copper, nickel, aluminum or the like on the surface of the molded product by electroless plating or vacuum deposition. Although it is known and widely used, there are problems that a large cost is required for processes and equipment, and that a thin metal film is dropped due to deformation of a molded product. As a similar method, there is a method of applying a conductive paint. However, there is a problem that the electromagnetic wave shielding property is not always sufficient and the coating film falls off.

【0005】一方、他の方法としては、金属粒子、炭素
繊維、導電処理無機繊維、金属繊維等の導電性フィラー
を樹脂中に添加することが知られている。そこで、不連
続繊維強化樹脂に、これらの導電性フィラーを添加する
ことで成形品の導電性を向上させ、必要な電磁波遮蔽性
を確保しようという試みがある。
On the other hand, as another method, it is known to add a conductive filler such as metal particles, carbon fibers, conductive treated inorganic fibers, and metal fibers to a resin. Therefore, there is an attempt to improve the conductivity of a molded article by adding these conductive fillers to the discontinuous fiber reinforced resin and to secure necessary electromagnetic wave shielding properties.

【0006】しかしながら、このうちカーボンブラック
を使う場合、十分な導電性を得るためには、大量に添加
しなければならず、そうすると溶融粘度が上昇し、成形
が困難になるばかりか、成形品の機械的特性が著しく低
下するという問題があり、たとえば、特開平9−874
17号公報においては、導電性繊維の平均長さを適当な
範囲としたうえでカーボンブラックを添加する方法が開
示されているが、この方法でも薄肉成形品での電磁波シ
ールド性は必ずしも十分とはいえない。
However, when carbon black is used, a large amount of carbon black must be added in order to obtain sufficient conductivity, which increases the melt viscosity and makes molding difficult. There is a problem that the mechanical properties are significantly reduced.
No. 17 discloses a method in which the average length of the conductive fiber is adjusted to an appropriate range and then carbon black is added. However, even with this method, the electromagnetic wave shielding property of a thin molded product is not necessarily sufficient. I can't say.

【0007】また、金属粒子を添加する方法でも、カー
ボンブラックと同様の問題があるうえに、成形品の比重
が大きくなり、軽量性が要求される用途には向かない。
Also, the method of adding metal particles has the same problems as carbon black, and also has a large specific gravity of a molded product, and is not suitable for applications requiring lightness.

【0008】特開平8−73220号公報に開示されて
いるような導電処理無機繊維を使用する場合も、成形性
や、成形品の機械的特性を損なわない範囲の添加量で
は、十分な電磁波遮蔽性を得ることは困難である。
In the case of using a conductive treated inorganic fiber as disclosed in Japanese Patent Application Laid-Open No. 8-73220, sufficient electromagnetic wave shielding is required if the amount of addition is within the range that does not impair the moldability and mechanical properties of the molded article. It is difficult to obtain sex.

【0009】また、金属繊維は、比較的少量の添加で導
電性が得られるフィラーとして知られている。たとえ
ば、特開昭60−260651号公報では炭素繊維強化
樹脂に金属繊維を添加する方法が開示されている。しか
し、軽量筐体のように薄肉でかつ十分な電磁波遮蔽性を
得ようとすれば、高価な金属繊維をおよそ10体積%以
上添加しなければならず、コストの増大や成形性の悪
化、成形品比重の増大などの問題は避けられない。
[0009] Metal fibers are known as fillers that can be made conductive by addition of a relatively small amount. For example, Japanese Patent Application Laid-Open No. 60-260651 discloses a method of adding metal fibers to a carbon fiber reinforced resin. However, in order to obtain a thin and sufficient electromagnetic wave shielding property as in a lightweight housing, expensive metal fibers must be added in an amount of about 10% by volume or more, resulting in an increase in cost, deterioration in moldability, and molding. Problems such as an increase in product specific gravity are inevitable.

【0010】かかる金属繊維の代わりに、ニッケル、
銅、銀などの金属で被覆された有機繊維や炭素繊維を用
いれば、成形品比重の増大の問題はある程度抑えられる
が、成形品の機械的特性やコストの問題は依然として大
きく、この場合も、より少ない添加量で電磁波遮蔽性を
得ることが望まれているのが実状である。
In place of such metal fibers, nickel,
If organic fibers or carbon fibers coated with a metal such as copper or silver are used, the problem of an increase in the specific gravity of the molded product can be suppressed to some extent, but the problems of mechanical properties and cost of the molded product are still large. In fact, it is desired to obtain an electromagnetic wave shielding property with a smaller addition amount.

【0011】このように、不連続繊維強化樹脂に導電性
フィラーを添加しても、必要な電磁波遮蔽性と機械的特
性とを併せ持つものを得ることは困難な状況にある。
As described above, even if a conductive filler is added to a discontinuous fiber reinforced resin, it is difficult to obtain a resin having both necessary electromagnetic wave shielding properties and mechanical properties.

【0012】また、炭素繊維や金属繊維等を含め、繊維
状の導電性フィラーによって成形品に導電性を付与する
場合、一般に成形プロセスのなかで、導電性フィラーが
折れて短くなっていくことが多いが、最終成形品中での
導電性フィラーの長さが長いほど、フィラー相互の接触
機会が増え、導電性が高くなる傾向であることは知られ
ている。ただし、あまり長くしようとすると、成形プロ
セスにおいて、フィラーの分散が妨げられ、導電性が思
ったほど向上しなかったり、成形品の表面品位が悪化し
たりすることも知られている。すなわち、成形品の導電
性を含めて総合的に判断して、導電性フィラー長さを適
正に調整するべく成形材料や成形条件を設定することが
重要であるが、ここで、最適なフィラー長さは、導電性
フィラーの種類によって異なり、その長さのみに注目し
て成形品の最適化を行っても、他の特性を保持しながら
十分な電磁波遮蔽性を得ることは非常に困難であった。
In addition, when imparting conductivity to a molded article by using fibrous conductive fillers, including carbon fibers and metal fibers, the conductive filler is generally broken and shortened during the molding process. However, it is known that as the length of the conductive filler in the final molded product is longer, the chance of contact between the fillers increases and the conductivity tends to increase. However, it is also known that if the length is set too long, the dispersion of the filler is hindered in the molding process, the conductivity does not improve as expected, or the surface quality of the molded product deteriorates. In other words, it is important to make a comprehensive judgment, including the conductivity of the molded product, and to set the molding material and molding conditions in order to properly adjust the conductive filler length. However, it depends on the type of conductive filler, and it is very difficult to obtain sufficient electromagnetic wave shielding properties while maintaining other characteristics even if optimization of the molded product is performed by focusing only on its length. Was.

【0013】[0013]

【発明が解決しようとする課題】本発明は、かかる従来
技術の背景に鑑み、電子機器の筐体などの軽量、薄肉の
不連続繊維強化樹脂成形品において、必要とされる機械
的特性と電磁波遮蔽性とを併せ持つ優れた不連続繊維強
化樹脂成形品およびそれを成形するための成形材料を提
供せんとするものである。
SUMMARY OF THE INVENTION In view of the background of the prior art, the present invention has been developed for a light-weight, thin-walled discontinuous fiber-reinforced resin molded article such as a housing of an electronic device, and has a required mechanical property and electromagnetic wave. An object of the present invention is to provide a discontinuous fiber reinforced resin molded article having excellent shielding properties and a molding material for molding the same.

【0014】[0014]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次のような手段を採用するものであ
る。すなわち、本発明の不連続繊維強化樹脂成形品は、
比重が1.7以下である不連続繊維強化樹脂成形品にお
いて、該不連続繊維が、30以上の平均アスペクト比を
有する導電性繊維を含み、かつ、該成形品の体積固有抵
抗が0.1Ωcm以下であることを特徴とするものであ
る。また、本発明の不連続繊維強化樹脂成形品用成形材
料は、少なくとも次の構成要素[A]、[B]および
[C]からなり、構成要素[A]と構成要素[B]から
なる複合体に、構成要素[C]が接するように配置され
てなることを特徴とするものである。
The present invention employs the following means in order to solve the above-mentioned problems. That is, the discontinuous fiber-reinforced resin molded product of the present invention is:
In a discontinuous fiber reinforced resin molded product having a specific gravity of 1.7 or less, the discontinuous fiber contains a conductive fiber having an average aspect ratio of 30 or more, and the molded product has a volume resistivity of 0.1 Ωcm. It is characterized by the following. Further, the molding material for a discontinuous fiber reinforced resin molded product of the present invention comprises at least the following components [A], [B] and [C], and is a composite comprising component [A] and component [B]. The component [C] is arranged so as to be in contact with the body.

【0015】[A]導電性繊維束 [B]重量平均分子量が200〜50000でかつ構成
要素[C]よりも溶融粘度が低い熱可塑性重合体 [C]重量平均分子量が10000以上である熱可塑性
樹脂
[A] a conductive fiber bundle [B] a thermoplastic polymer having a weight average molecular weight of 200 to 50,000 and a lower melt viscosity than the constituent element [C] [C] a thermoplastic polymer having a weight average molecular weight of 10,000 or more resin

【0016】[0016]

【発明の実施の形態】本発明は、前記課題、つまり、機
械的特性と電磁波遮蔽性を併せ持つ不連続繊維強化樹脂
成形品について、鋭意検討し、繊維状導電性フィラーの
導電性向上効果を、機械的特性等を損ねない範囲で、最
大に発揮させるために、繊維状導電性フィラーの形態を
適切に制御して、成形品の導電性を特定レベル以上にし
てみたところ、かかる課題を一挙に解決することを究明
したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has been made to study the above-mentioned problems, that is, a discontinuous fiber reinforced resin molded article having both mechanical properties and electromagnetic wave shielding properties, and to examine the effect of improving the conductivity of a fibrous conductive filler. In order not to impair the mechanical properties, etc., the shape of the fibrous conductive filler was appropriately controlled in order to maximize the conductivity, and the conductivity of the molded product was set to a specific level or more. It was determined that it could be solved.

【0017】また、本発明は、かかる不連続繊維強化樹
脂成形品を製造する手段として、射出成形用の特定な成
形材料、すなわち、成形品内の導電性繊維のアスペクト
比を適当な範囲として成形品での導電性を高くする、す
なわち体積固有抵抗を低くするような成形材料を使用す
ることを究明したものである。
Further, the present invention provides a method for producing such a discontinuous fiber reinforced resin molded article, which comprises molding a specific molding material for injection molding, that is, by setting an aspect ratio of conductive fibers in the molded article to an appropriate range. It has been sought to use a molding material that increases the conductivity of the product, that is, lowers the volume resistivity.

【0018】本発明は、比重が1.7以下、好ましくは
1.5以下の不連続繊維強化樹脂成形品に関するもので
ある。不連続繊維強化樹脂成形品(以下、成形品と略
す)とは、不連続、すなわち、いわゆる連続長繊維状で
ない強化繊維がマトリクス樹脂中に埋め込まれたもので
あって、これによって強化された成形硬化後の部品であ
り、必要に応じて諸々の形態を有するものである。その
材料としては、連続長繊維状の強化繊維を使用してもよ
いが、成形後の成形品中では、該強化繊維は不連続にな
っているものである。
The present invention relates to a discontinuous fiber reinforced resin molded product having a specific gravity of 1.7 or less, preferably 1.5 or less. A discontinuous fiber reinforced resin molded product (hereinafter, abbreviated as a molded product) is a discontinuous, that is, a product in which reinforcing fibers that are not a continuous continuous fibrous shape are embedded in a matrix resin. It is a part after curing and has various forms as necessary. As the material, continuous filament-shaped reinforcing fibers may be used, but in the molded article after molding, the reinforcing fibers are discontinuous.

【0019】かかる成形品の比重は、任意の形態の成形
品から、重量が1〜50gの範囲内の試験片を切り出
し、ASTM D792−91に従って測定された値で
示される。
The specific gravity of the molded article is indicated by a value obtained by cutting a test piece having a weight in the range of 1 to 50 g from a molded article of an arbitrary form and measuring the specimen in accordance with ASTM D792-91.

【0020】該成形品中の不連続繊維の種類は特に限定
されず、2種類以上の繊維を併用してもよいが、軽量、
薄肉で良好な機械的特性を得る観点からは、少なくとも
その一部が炭素繊維であることが好ましい。なかでも、
引張弾性率が200GPa〜700GPaのポリアクリ
ロニトリル(PAN)系炭素繊維であることがより好ま
しい。
The type of the discontinuous fibers in the molded article is not particularly limited, and two or more types of fibers may be used in combination.
From the viewpoint of obtaining thin and good mechanical properties, it is preferable that at least a part thereof is carbon fiber. Above all,
More preferably, it is a polyacrylonitrile (PAN) -based carbon fiber having a tensile modulus of 200 GPa to 700 GPa.

【0021】本発明で使用される樹脂種も特に限定され
ないが、望ましくは、耐衝撃性に優れ、かつ、生産性の
高い射出成形が可能な熱可塑性樹脂がよい。例えば、ポ
リエチレンテレフタレートやポリブチレンテレフタレー
トや液晶ポリエステル等のポリエステル、ポリエチレン
やポリプロピレンやポリブチレン等のポリオレフィンの
他、ポリオキシメチレン、ポリアミド、ポリカーボネイ
ト、ポリスチレン、スチレン・アクリロニトリル共重合
体、アクリロニトリル・ブタジエン・スチレン共重合
体、アクリレート・スチレン・アクリロニトリル共重合
体、ポリメチレンメタクリレート、ポリ塩化ビニル、ポ
リフェニレンスルフィド、ポリフェニレンエーテル、ポ
リイミド、ポリアミドイミド、ポリエーテルイミド、ポ
リスルホン、ポリエーテルスルホン、ポリエーテルケト
ン、ポリエーテルエーテルケトン等を使用することがで
き、また、これらの共重合体、変性体および2種類以上
のブレンドした樹脂も使用することができる。また、更
に耐衝撃性向上のために、上記樹脂にエラストマーもし
くはゴム成分を添加した樹脂も使用することができる。
The type of resin used in the present invention is not particularly limited, but desirably a thermoplastic resin which is excellent in impact resistance and which can be injection molded with high productivity. For example, in addition to polyesters such as polyethylene terephthalate, polybutylene terephthalate and liquid crystal polyester, polyolefins such as polyethylene, polypropylene and polybutylene, polyoxymethylene, polyamide, polycarbonate, polystyrene, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer Union, acrylate / styrene / acrylonitrile copolymer, polymethylene methacrylate, polyvinyl chloride, polyphenylene sulfide, polyphenylene ether, polyimide, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, etc. These copolymers, modified products and two or more kinds of It may also be used resin. Further, in order to further improve impact resistance, a resin obtained by adding an elastomer or a rubber component to the above resin can be used.

【0022】本発明の成形品は、導電性繊維を有する。
導電性繊維とは体積固有抵抗が0.01Ωcm以下、好
ましくは10-3Ωcm以下、さらに好ましくは10-5Ω
cm以下の繊維状フィラーであり、具体的には、ステン
レス鋼繊維や銅繊維等の金属繊維、PAN系やピッチ系
その他の炭素繊維、さらには各種の金属被覆繊維が例示
できる。繊維の体積固有抵抗はJIS R7601に規
定された炭素繊維の体積抵抗率の測定法に準じて測定す
る。この場合測定長さは導電性繊維の形状や導電性に応
じて適宜変更してよい。なお、金属被覆繊維など不均一
の素材から構成される繊維についても、上の測定法によ
る値を繊維の体積固有抵抗とみなす。
The molded article of the present invention has conductive fibers.
The conductive fiber has a volume resistivity of 0.01 Ωcm or less, preferably 10 −3 Ωcm or less, more preferably 10 −5 Ω or less.
cm or less, specifically, metal fibers such as stainless steel fibers and copper fibers, PAN-based and pitch-based carbon fibers, and various metal-coated fibers. The volume resistivity of the fiber is measured according to the method of measuring the volume resistivity of carbon fiber specified in JIS R7601. In this case, the measurement length may be appropriately changed according to the shape and conductivity of the conductive fiber. It should be noted that the value obtained by the above measurement method is also regarded as the volume resistivity of the fiber even for a fiber composed of a non-uniform material such as a metal-coated fiber.

【0023】導電性繊維は、シランカップリング剤、ア
ルミネートカップリング剤、チタネートカップリング剤
等で表面処理、ウレタン系樹脂、エポキシ系樹脂、ポリ
エステル系樹脂、スチレン系樹脂、オレフィン系樹脂、
アミド系樹脂、テルペン・フェノール共重合樹脂等で集
束処理されていてもよい 本発明の樹脂成形品においては、導電性繊維の平均アス
ペクト比が30以上であることが必要で、40〜500
の範囲内であることが好ましく、50〜200の範囲内
であることがさらに好ましい。導電性繊維のアスペクト
比は、成形後の成形品中での導電性繊維の長さを直径で
除した無次元数で定義される。平均アスペクト比はその
重み付け平均値である。すなわち、各導電性繊維の長さ
をLi(i=1,2,..)、平均直径をDとした場
合、平均アスペクト比は(ΣLi2/ΣLi)/Dで算
出される。
The conductive fiber is surface-treated with a silane coupling agent, an aluminate coupling agent, a titanate coupling agent, or the like, a urethane resin, an epoxy resin, a polyester resin, a styrene resin, an olefin resin,
The amide-based resin, terpene-phenol copolymer resin, etc. may be subjected to a bunching treatment. In the resin molded article of the present invention, the average aspect ratio of the conductive fibers needs to be 30 or more, and 40 to 500
Is more preferably within the range, more preferably within the range of 50 to 200. The aspect ratio of the conductive fiber is defined as a dimensionless number obtained by dividing the length of the conductive fiber in the molded article after molding by the diameter. The average aspect ratio is the weighted average value. That is, when the length of each conductive fiber is Li (i = 1, 2,...) And the average diameter is D, the average aspect ratio is calculated by (ΣLi 2 / ΣLi) / D.

【0024】導電性繊維の太さは種類によって異なり、
成形品導電性や成形品品位、成形性等のバランスからみ
て必要な繊維長さも種類によって異なる。本発明者は、
太さの異なる導電性繊維においても、平均アスペクト比
を上記の通りとすることにより、導電性付与効果が高
く、機械特性その他の特性に大きな悪影響を及ぼさない
程度の添加量で、必要な成形品導電性が得られることを
見出した。
The thickness of the conductive fiber depends on the type,
The necessary fiber length also varies depending on the type in view of the balance between the conductivity of the molded product, the grade of the molded product, the moldability, and the like. The inventor has
Even for conductive fibers of different thicknesses, by setting the average aspect ratio as described above, the conductivity-imparting effect is high, and the amount of the molded article required is small enough to have no significant adverse effect on mechanical properties and other properties. It has been found that conductivity can be obtained.

【0025】すなわち、成形材の導電性を高くするため
には、導電性繊維が相互に接触する確率が高いほど有利
であるため、同じ直径の導電性繊維であれば平均繊維長
が長い方がよい。ところが、細い導電性繊維を用いれ
ば、導電性繊維の体積あたりの総延長が長くなるため、
同じ平均繊維長を有する、より太い繊維よりも導電性向
上効果は大きい。したがって、導電性向上効果は、平均
繊維長と繊維直径の比をとった無次元数である平均アス
ペクト比に大きく支配されることになる。
That is, in order to increase the conductivity of the molding material, the higher the probability that the conductive fibers are in contact with each other, the more advantageous. Therefore, if the conductive fibers have the same diameter, the longer the average fiber length, the better. Good. However, if a thin conductive fiber is used, the total extension per volume of the conductive fiber becomes longer,
The effect of improving conductivity is greater than a thicker fiber having the same average fiber length. Therefore, the effect of improving conductivity is largely governed by the average aspect ratio, which is a dimensionless number that is the ratio of the average fiber length to the fiber diameter.

【0026】平均アスペクト比があまり小さくなると、
導電性繊維が相互接触する機会が少なくなるため、成形
品の導電性が低くなる傾向がある。一方、平均アスペク
ト比が上記の好ましい範囲より大きくなると、成形品の
品位が低下したり、成形プロセスにおいて導電性繊維が
樹脂中に分散しにくくなるため導電性が有効に向上しな
い場合がある。
When the average aspect ratio becomes too small,
Since the chance of the conductive fibers contacting each other is reduced, the conductivity of the molded article tends to be low. On the other hand, when the average aspect ratio is larger than the above preferable range, the quality of the molded product may be deteriorated, or the conductive fiber may not be easily dispersed in the resin during the molding process, so that the conductivity may not be effectively improved.

【0027】導電性繊維の長さLiは、成形品の樹脂を
適当な溶媒等で溶かすなどの方法で除去し、残存した繊
維を顕微鏡等で観察して得られる。直径Dは、導電性繊
維の種類ごとに、たとえば繊度と密度とから算出した平
均直径を使用するのが簡便でよい。長さを測定する導電
性繊維の数は200以上とする。
The length Li of the conductive fiber can be obtained by removing the resin of the molded article by dissolving the resin with an appropriate solvent or the like, and observing the remaining fiber with a microscope or the like. As the diameter D, it is convenient and convenient to use an average diameter calculated from, for example, fineness and density for each type of conductive fiber. The number of conductive fibers for measuring the length is 200 or more.

【0028】たとえば炭素繊維と金属繊維など、2種以
上の導電性繊維を併用した場合、全ての導電性繊維から
ランダムに200以上の繊維を抜き出した場合の平均ア
スペクト比を、成形品の平均アスペクト比とする。
For example, when two or more conductive fibers such as carbon fiber and metal fiber are used in combination, the average aspect ratio when 200 or more fibers are randomly extracted from all the conductive fibers is calculated as the average aspect ratio of the molded article. Ratio.

【0029】成形品の平均アスペクト比が上記範囲より
小さくなると、導電性と機械的特性がともに低下する傾
向がある。
When the average aspect ratio of the molded product is smaller than the above range, both the conductivity and the mechanical properties tend to decrease.

【0030】本発明の成形品の体積固有抵抗は0.1Ω
cm以下であり、0.05Ωcm以下であることが好ま
しい。体積固有抵抗がこの値より大きくなると必要な電
磁波シールド性が得られないことがある。成形品の体積
固有抵抗にはいくつかの測定法があるが、本発明の成形
品においては次のような方法で測定する。
The volume resistivity of the molded article of the present invention is 0.1Ω.
cm or less, and preferably 0.05 Ωcm or less. If the volume resistivity exceeds this value, the required electromagnetic wave shielding properties may not be obtained. There are several methods for measuring the volume resistivity of a molded article, and the molded article of the present invention is measured by the following method.

【0031】すなわち、厚さt(mm)が1〜4mmの
成形品から、幅w(mm)が10〜15mm、長さL
(mm)が50〜100mmの範囲内にある試験片を切
り出し、長さ方向の両端面を研磨、洗浄した後導電性ペ
ーストを均一に塗布し、十分な精度の抵抗計で端面間の
電気抵抗R(Ω)を測定する。成形品の体積固有抵抗
(Ωcm)は、0.1×R×t×w/Lで定義される。
That is, from a molded product having a thickness t (mm) of 1 to 4 mm, a width w (mm) of 10 to 15 mm and a length L
A test piece having a (mm) in the range of 50 to 100 mm is cut out, and both end faces in the longitudinal direction are polished and washed. Then, a conductive paste is uniformly applied, and the electric resistance between the end faces is measured with a sufficiently accurate resistance meter. Measure R (Ω). The volume resistivity (Ωcm) of the molded product is defined as 0.1 × R × t × w / L.

【0032】本発明の導電性繊維として炭素繊維を用い
ると、導電性付与と機械的特性の付与を同時に達成でき
るため好ましい。また、金属被覆繊維は、成形品比重の
増大が比較的小さくかつ導電性付与効果が大きいので好
ましい。ここで金属被覆繊維とは、たとえば銅繊維、ス
テンレス繊維、銀被覆ナイロン繊維、銅/ニッケル被覆
ガラス繊維、ニッケル被覆炭素繊維などを含み、被覆の
方法も電解メッキ、無電解メッキ、蒸着などいずれでも
よい。なかでもニッケル被覆炭素繊維は、コストと導電
性付与効果のバランスに優れ、しかも導電性が長期にわ
たって劣化しないのでより好ましい。成形品の特性を総
合的に考慮し、炭素繊維と、それよりも導電性の高い導
電性繊維を併用することも好ましい。
It is preferable to use carbon fiber as the conductive fiber of the present invention, since it is possible to simultaneously provide conductivity and mechanical properties. Further, metal-coated fibers are preferred because the increase in specific gravity of the molded article is relatively small and the effect of imparting conductivity is large. Here, the metal-coated fiber includes, for example, copper fiber, stainless steel fiber, silver-coated nylon fiber, copper / nickel-coated glass fiber, nickel-coated carbon fiber, and the like, and the coating method may be any of electrolytic plating, electroless plating, and vapor deposition. Good. Among them, nickel-coated carbon fibers are more preferable because they have an excellent balance between the cost and the effect of imparting conductivity, and the conductivity does not deteriorate over a long period of time. It is also preferable to use a carbon fiber and a conductive fiber having higher conductivity than the carbon fiber in consideration of the characteristics of the molded product.

【0033】炭素繊維とニッケル被覆炭素繊維を併用す
る場合、成形品中の炭素繊維の重量含有率は15%〜4
0%の範囲内にあることが好ましい。含有率が15%を
下回ると成形品の機械的特性が低下する傾向があり、4
0%を上回ると溶融粘度の増大等から成形上の問題が多
くなると同時にニッケル炭素繊維の含有率を適当な範囲
とすることが困難となる傾向がある。また、ニッケル被
覆炭素繊維の重量含有率は5%〜15%の範囲内にある
ことが好ましい。5%を下回ると成形品の電磁波シール
ド性が低下する傾向があり、15%を上回ると成形上の
問題が多くなると同時に成形品の機械的特性が低下する
傾向がある。
When the carbon fiber and the nickel-coated carbon fiber are used together, the weight content of the carbon fiber in the molded product is from 15% to 4%.
It is preferably within the range of 0%. If the content is less than 15%, the mechanical properties of the molded article tend to decrease.
If it exceeds 0%, problems in molding will increase due to an increase in melt viscosity and the like, and at the same time, it tends to be difficult to control the content of nickel carbon fibers in an appropriate range. Further, the weight content of the nickel-coated carbon fibers is preferably in the range of 5% to 15%. If it is less than 5%, the electromagnetic wave shielding properties of the molded article tend to decrease, and if it exceeds 15%, the molding problems tend to increase and the mechanical properties of the molded article tend to decrease.

【0034】本発明の樹脂成形品に、カーボンブラック
など公知の非繊維形状の導電性フィラーを添加すると、
導電性をさらに向上させることができる。特に、パーソ
ナルコンピュータ筐体等としての各要求特性をバランス
よく満たすためには、炭素繊維と、金属被覆炭素繊維た
とえばニッケル被覆炭素繊維を併用したものにさらにカ
ーボンブラックを適当な割合で添加することにより、金
属被覆炭素繊維とカーボンブラックの相乗効果が得ら
れ、きわめて高い導電性が得られるので好ましい。この
場合、成形品の機械的特性の低下を抑えるために、カー
ボンブラックの添加量は、成形品全体に対して10%以
下であることが好ましく、4%以下であることがさらに
好ましい。
When a known non-fibrous conductive filler such as carbon black is added to the resin molded article of the present invention,
The conductivity can be further improved. In particular, in order to satisfy each required characteristic as a personal computer housing or the like in a well-balanced manner, carbon fiber and a metal-coated carbon fiber such as a nickel-coated carbon fiber are used in combination with carbon black in an appropriate ratio. This is preferable because a synergistic effect between the metal-coated carbon fiber and carbon black is obtained, and extremely high conductivity is obtained. In this case, the amount of carbon black added is preferably 10% or less, more preferably 4% or less, based on the whole molded article, in order to suppress a decrease in mechanical properties of the molded article.

【0035】本発明によれば、軽量で電磁波遮蔽性に優
れながら、シャルピー衝撃値が20kJ/m2 以上、曲
げ弾性率が10GPa以上の成形品を従来よりはるかに
容易に得ることができる。ここでシャルピー衝撃値とは
JIS K7077に従って測定された値であり、曲げ
弾性率とはASTM D790−96aに従って測定さ
れた値である。
According to the present invention, a molded article having a Charpy impact value of 20 kJ / m 2 or more and a flexural modulus of 10 GPa or more can be obtained much more easily than before, while being lightweight and having excellent electromagnetic wave shielding properties. Here, the Charpy impact value is a value measured according to JIS K7077, and the flexural modulus is a value measured according to ASTM D790-96a.

【0036】本発明の成形品は、厚さ2mm以下で45
dB以上の電磁波遮蔽性を得ることが可能である。電磁
波遮蔽性は、株式会社アドバンテスト製TR17301
Aまたは同等品によって測定した周波数500MHzの
高インピーダンス電界空間における電界遮蔽性である。
The molded article of the present invention has a thickness of 2 mm or less and a thickness of 45 mm.
It is possible to obtain an electromagnetic wave shielding property of dB or more. The electromagnetic wave shielding property is TR17301 manufactured by Advantest Corporation.
The electric field shielding property in a high impedance electric field space at a frequency of 500 MHz measured by A or an equivalent product.

【0037】本発明の成形品の成形法としては、従来の
不連続繊維強化樹脂成形品の成形法のいずれを適用して
もよいが、樹脂が熱可塑性である場合は射出成形やスタ
ンピング成形等、さらにその中でも射出成形が、成形サ
イクルが短く生産性に優れる。
As the molding method of the molded article of the present invention, any of the conventional molding methods for a discontinuous fiber reinforced resin molded article may be applied, but when the resin is thermoplastic, injection molding, stamping molding, etc. Among them, injection molding has a short molding cycle and is excellent in productivity.

【0038】本発明の成形品を成形する場合、平均アス
ペクト比を所定の値にするためには、導電性繊維の長さ
を、その直径に応じたある値以上にする必要がある。し
たがって、その射出成形においては、導電性繊維を含む
成形材料すなわちペレットとして、できるだけ繊維長を
長く保ったまま成形機に投入できるものを用いることが
望ましい。すなわち、たとえば導電性繊維束をペレット
全長に近い長さで含む、いわゆる長繊維ペレットのよう
な形態のものである。
In molding the molded article of the present invention, the length of the conductive fiber must be equal to or more than a certain value in accordance with the diameter in order to make the average aspect ratio a predetermined value. Therefore, in the injection molding, it is desirable to use a molding material containing conductive fibers, that is, a pellet that can be charged into a molding machine while keeping the fiber length as long as possible. That is, for example, it has a form like a so-called long fiber pellet including a conductive fiber bundle with a length close to the entire length of the pellet.

【0039】一方、本発明においては導電性繊維の相互
接触機会を大きくするために、成形プロセスにおいて導
電性繊維が樹脂中に束状に存在するのではなく、均一に
分散することが望ましい。ところが、上に述べた長繊維
ペレット形態で導電性繊維束を投入すると、成形プロセ
ス中に導電性繊維が分散することが困難になる傾向があ
る。
On the other hand, in the present invention, in order to increase the chance of the conductive fibers contacting each other, it is desirable that the conductive fibers are not uniformly present in the resin in the molding process but are dispersed uniformly. However, when the conductive fiber bundle is supplied in the form of the long fiber pellets described above, the conductive fibers tend to be difficult to disperse during the molding process.

【0040】特に、軽量かつ機械的特性に優れた成形品
においては、一般に高分子量の樹脂が用いられるため、
成形中の樹脂の粘度が比較的高く、長繊維ペレットの導
電性繊維の分散はますます困難となる。
In particular, in the case of a molded article that is lightweight and has excellent mechanical properties, a high molecular weight resin is generally used.
The viscosity of the resin during molding is relatively high, making it increasingly difficult to disperse the conductive fibers of the long fiber pellets.

【0041】そこで、本発明においては、次のような構
成のペレットを使用することが特に好ましい。すなわ
ち、ペレットの一部または全部が次の3つの構成要素か
らなり、かつ構成要素[A]と構成要素[B]からなる
複合体に、構成要素[C]が接するように配置されてな
るペレットである。
Therefore, in the present invention, it is particularly preferable to use pellets having the following structure. That is, a pellet in which a part or the whole of the pellet is composed of the following three components, and the component [C] is arranged so as to be in contact with a complex composed of the component [A] and the component [B]. It is.

【0042】構成要素[A]は連続した導電性繊維束で
あり、成形品に高い導電性を付与するもので、体積固有
抵抗が0.01Ωcm以下の導電性繊維からなるもので
ある。なかでも、銅繊維、ステンレス繊維、銀被覆ナイ
ロン繊維、銅/ニッケル被覆ガラス繊維、ニッケル被覆
炭素繊維など、導電性繊維の体積固有抵抗が10-3以下
であることが好ましい。
The component [A] is a continuous conductive fiber bundle, which imparts high conductivity to the molded product, and is made of conductive fibers having a volume resistivity of 0.01 Ωcm or less. In particular, it is preferable that the volume resistivity of the conductive fiber such as copper fiber, stainless steel fiber, silver-coated nylon fiber, copper / nickel-coated glass fiber, and nickel-coated carbon fiber is 10 −3 or less.

【0043】構成要素[B]は重量平均分子量が200
〜50000でかつ次に述べる構成要素[C]よりも溶
融粘度が低い熱可塑性重合体であり、成形時にはマトリ
クス樹脂(構成要素[C])が導電性繊維束(構成要素
[A])に含浸することを助け、また導電性繊維がマト
リクス樹脂中に分散することを助ける、いわゆる含浸助
剤・分散助剤としての役割を持つものである。
The component [B] has a weight average molecular weight of 200
A thermoplastic polymer having a melt viscosity of about 50,000 and having a lower melt viscosity than the component [C] described below. The matrix resin (the component [C]) impregnates the conductive fiber bundle (the component [A]) during molding. And a role as a so-called impregnation aid / dispersion aid, which helps the conductive fibers to be dispersed in the matrix resin.

【0044】導電性繊維束[A]に最終的に含浸させよ
うとする樹脂(構成要素[C])よりも溶融粘度が低い
物質(構成要素[B])で予め導電性繊維表面が濡らさ
れ、単繊維間の隙間が埋められていることにより、最終
的に含浸させる樹脂[C]がある程度高粘度であっても
容易に含浸・分散が達成される。構成要素[B]として
特に優れたものとして、たとえばテルペンフェノールの
ような、フェノールもしくはフェノールの置換基誘導体
と、二重結合を2個有する脂肪族炭化水素の縮合により
得られるオリゴマーが挙げられる。
The conductive fiber surface is wetted in advance with a substance (component [B]) having a lower melt viscosity than the resin (component [C]) to be finally impregnated into the conductive fiber bundle [A]. Since the gaps between the single fibers are filled, impregnation / dispersion can be easily achieved even if the resin [C] to be finally impregnated has a somewhat high viscosity. Particularly excellent as the component [B] are oligomers obtained by condensation of phenol or a substituent derivative of phenol, such as terpene phenol, with an aliphatic hydrocarbon having two double bonds.

【0045】構成要素[C]は、重量平均分子量が1
0,000以上である熱可塑性樹脂で、たとえば靭性な
どの物性が高く、成形後構成要素[A]に含浸し、導電
性繊維と接着、これを強固に保持する役割を持つマトリ
クス樹脂である。特に適したものとして、ポリアミド、
ポリオレフィン、ポリカーボネートが挙げられ、なかで
もポリアミド樹脂が優れる。
Component [C] has a weight average molecular weight of 1
It is a thermoplastic resin having a physical property of, for example, toughness or the like, which is not less than 000, and is a matrix resin having a role of impregnating the component [A] after molding, bonding to the conductive fiber, and firmly holding it. Particularly suitable are polyamides,
Examples thereof include polyolefin and polycarbonate. Among them, polyamide resin is excellent.

【0046】ポリアミド樹脂とは、例えばナイロン4、
ナイロン6、ナイロン66、ナイロン10、ナイロン1
1、ナイロン12、ナイロン46等の脂肪族ナイロン、
ポリヘキサジアミンテレフタルアミド、ポリヘキサメチ
レンジアミンイソフタル酸アミド、キシレン基含有ポリ
アミド等の芳香族ナイロン、およびそれらの共重合体、
変性体、およびこれらを2種類以上ブレンドした樹脂等
を指す。
The polyamide resin is, for example, nylon 4,
Nylon 6, Nylon 66, Nylon 10, Nylon 1
Aliphatic nylons such as 1, nylon 12, nylon 46,
Aromatic nylons such as polyhexadiamine terephthalamide, polyhexamethylene diamine isophthalamide, xylene group-containing polyamide, and copolymers thereof,
It refers to a modified product, a resin or the like obtained by blending two or more of them.

【0047】構成要素[B]および/または[C]に
は、得ようとする成形品の要求特性に応じて、難燃材、
耐候性改良材、酸化防止剤、熱安定剤、可塑剤、滑剤、
着色剤等、さらにカーボンブラック等の導電性フィラー
を添加しておくことができる。図1および図2は、本発
明の導電性繊維を含む成形材料の形状を模式的に示した
ものである。形状は構成要素[A]と構成要素[B]か
らなる複合体1に、構成要素「C」である樹脂2が接す
るように配置されていれば、図に示すものに限定される
ものではないが、図1および図2のように、構成要素
[C]が複合体の周囲を被覆するように配置されている
ことが好ましい。その場合、断面の形状は図1のような
円形や図2のような楕円形など、いずれでもよい。
The components [B] and / or [C] may include a flame retardant, depending on the required characteristics of the molded article to be obtained.
Weather resistance improver, antioxidant, heat stabilizer, plasticizer, lubricant,
A conductive filler such as a carbon black may be added, such as a colorant. FIG. 1 and FIG. 2 schematically show the shape of a molding material containing the conductive fiber of the present invention. The shape is not limited to the one shown in the figure as long as the resin 2 as the component “C” is arranged so as to be in contact with the composite 1 including the component [A] and the component [B]. However, as shown in FIGS. 1 and 2, it is preferable that the component [C] is arranged so as to cover the periphery of the composite. In this case, the cross-sectional shape may be any of a circle as shown in FIG. 1 and an elliptical shape as shown in FIG.

【0048】成形材料の長さ3は、成形後に導電性繊維
のアスペクト比を所定の値とするための繊維長に対し
て、長くとるべきことはいうまでもないが、好ましくは
1mm〜50mmの範囲内、さらに好ましくは2mm〜
10mm、最も好ましくは3mm〜8mmの範囲内であ
るのがよい。この長さが短すぎると成形材料の製造コス
トが高くなるとともに導電性繊維の長さが短くなり、成
形品における導電性繊維のアスペクト比を所定の範囲内
とすることが難しくなる場合があり、逆に長すぎると導
電性繊維の開繊性や分散性が低下する傾向があり、成形
品の導電性や表面品位が悪化する場合があるためであ
る。
It is needless to say that the length 3 of the molding material should be longer than the fiber length for setting the aspect ratio of the conductive fibers after molding to a predetermined value, but it is preferably 1 mm to 50 mm. Within the range, more preferably 2 mm to
It may be in the range of 10 mm, most preferably 3 mm to 8 mm. If the length is too short, the production cost of the molding material is increased and the length of the conductive fiber is shortened, and it may be difficult to keep the aspect ratio of the conductive fiber in the molded product within a predetermined range, Conversely, if the length is too long, the spreadability and dispersibility of the conductive fiber tend to decrease, and the conductivity and surface quality of the molded product may deteriorate.

【0049】本発明の成形材料は、構成要素[A]に、
粘度が100ポイズ以下になるように加熱溶融された構
成要素[B]を含浸させることによって複合体を形成
し、ついで溶融した粘度500ポイズ以上の構成要素
[C]をこの複合体を被覆するように配置した後、冷却
して形成されたものである。
The molding material of the present invention comprises:
A composite is formed by impregnating the component [B] heated and melted so that the viscosity is 100 poise or less, and then the component [C] having a melted viscosity of 500 poise or more is coated with the composite. , And then formed by cooling.

【0050】このうち、[A]と[B]の複合体を形成
する方法としては、繊維束に油剤、サイジング剤、マト
リクス樹脂を付与するような公知の方法を用いることが
できる。より具体的には、加熱溶融された構成要素
[B]をダイコーターより一定速度で押し出し、このコ
ーター部に接触させながら構成要素[A]を一定速度で
通過させた後加熱する方法が採用される。
Among these, as a method of forming a composite of [A] and [B], a known method of applying an oil agent, a sizing agent, and a matrix resin to a fiber bundle can be used. More specifically, a method of extruding the heated and melted component [B] from the die coater at a constant speed, passing the component [A] at a constant speed while contacting the coater portion, and then heating is adopted. You.

【0051】つぎに、構成要素[C]を複合体を被覆す
るように配置する方法としては、複合体を電線被覆用の
コーティングダイ中に通し、押し出し機から溶融させた
構成要素[C]を吐出させて複合体の周囲を被覆するよ
うに配置する方法が採用される。
Next, as a method of arranging the component [C] so as to cover the composite, the composite [C] is melted from an extruder by passing the composite through a coating die for coating an electric wire. A method is employed in which the composite is discharged so as to cover the periphery of the composite.

【0052】[0052]

【実施例】実施例1 重量平均分子量460のテルペンフェノール重合体を1
30℃に加熱してダイコーターより一定速度で押し出し
た。このコーター部に接触させながら、連続したニッケ
ル被覆炭素繊維束(引張弾性率225GPa、ニッケル
の電解メッキ層厚さ0.25μm、ニッケル層を含む単
糸径7.5μm、単糸数12,000、繊度1440T
EX、比重2.7、体積固有抵抗7.5×10-6Ωc
m)を一定速度で通過させた後加熱して、ニッケル被覆
炭素繊維束にテルペンフェノール重合体を含浸させた複
合体を得た。次に、この複合体を電線被覆用のコーティ
ングダイ中に通し、押し出し機から250℃で溶融させ
たナイロン6樹脂(重量平均分子量15000)を吐出
させて複合体の周囲を被覆するように配置した樹脂被覆
複合体を得た。次に、この樹脂被覆複合体を室温まで冷
却後、ストランドカッターで3mmにカットして射出成
形用マスターペレットAを得た。
EXAMPLES Example 1 A terpene phenol polymer having a weight average molecular weight of 460 was added to 1
The mixture was heated to 30 ° C. and extruded at a constant speed from a die coater. While being in contact with this coater, a continuous nickel-coated carbon fiber bundle (tensile modulus of elasticity: 225 GPa, nickel electrolytic plating layer thickness: 0.25 μm, single yarn diameter including nickel layer: 7.5 μm, single yarn number: 12,000, fineness: 1440T
EX, specific gravity 2.7, volume resistivity 7.5 × 10 -6 Ωc
m) was passed at a constant speed and then heated to obtain a composite in which a nickel-coated carbon fiber bundle was impregnated with a terpene phenol polymer. Next, the composite was passed through a coating die for covering an electric wire, and a nylon 6 resin (weight average molecular weight: 15,000) melted at 250 ° C. was discharged from an extruder and arranged so as to cover the periphery of the composite. A resin-coated composite was obtained. Next, after cooling this resin-coated composite to room temperature, it was cut into 3 mm with a strand cutter to obtain a master pellet A for injection molding.

【0053】一方、ニッケル被覆炭素繊維束のかわりに
PAN系炭素繊維束(引張弾性率230GPa、単糸径
6.9μm、単糸数12,000、繊度800TEX、
比重1.8、体積固有抵抗1.6×10-3Ωcm)を用
い、ストランドカッターで7mmにカットした他はマス
ターペレットAと同様にして、マスターペレットBを得
た。
On the other hand, instead of the nickel-coated carbon fiber bundle, a PAN-based carbon fiber bundle (tensile modulus 230 GPa, single yarn diameter 6.9 μm, single yarn number 12,000, fineness 800 TEX,
Using a specific gravity of 1.8 and a volume resistivity of 1.6 × 10 −3 Ωcm), a master pellet B was obtained in the same manner as the master pellet A, except that the pellet was cut into 7 mm by a strand cutter.

【0054】以上のマスターペレットA、マスターペレ
ットB、前述のナイロン6樹脂チップを、全体に対して
PAN系炭素繊維が24重量%、ニッケル被覆炭素繊維
が8.5重量%となるように混合し、型締め力150t
fの射出成形機により、外形が150mm×150m
m、厚さが1mmの平板状成形品を得た。この成形品の
比重は1.38、体積固有抵抗は0.086Ωcm、シ
ャルピー衝撃値は27kJ/m2 、曲げ弾性率は17G
Paであり、蟻酸に浸漬してナイロン6樹脂を溶解させ
る方法でアスペクト比を測定した結果、平均アスペクト
比は70であった。
The above-mentioned master pellet A, master pellet B, and the above-mentioned nylon 6 resin chip were mixed so that PAN-based carbon fiber was 24% by weight and nickel-coated carbon fiber was 8.5% by weight based on the whole. , 150t clamping force
The outer shape is 150mm x 150m by the injection molding machine of f
m, a flat molded product having a thickness of 1 mm was obtained. This molded product has a specific gravity of 1.38, a volume resistivity of 0.086 Ωcm, a Charpy impact value of 27 kJ / m 2 , and a flexural modulus of 17 G.
As a result of measuring the aspect ratio by a method of dissolving the nylon 6 resin by immersion in formic acid, the average aspect ratio was 70.

【0055】この成形品の電磁波シールド性は46dB
であった。
The electromagnetic wave shielding property of this molded product is 46 dB.
Met.

【0056】実施例2 導電性カーボンブラック(粒子径55nm、比表面積2
9m2 /g)と前述のナイロン6樹脂チップを混合後、
二軸押出機に供給して250℃で溶融させて引き取り冷
却した後、長さ3mmにカットしてマスターペレットC
を得た。
Example 2 Conductive carbon black (particle size 55 nm, specific surface area 2
9m 2 / g) and the above-mentioned nylon 6 resin chip,
After supplying to a twin-screw extruder and melting at 250 ° C., cooling and taking it down, it is cut into a length of 3 mm and the master pellet C
I got

【0057】前述のマスターペレットA、マスターペレ
ットBと、マスターペレットC、ナイロン6樹脂チップ
を、全体に対してPAN系炭素繊維が24重量%、ニッ
ケル被覆炭素繊維が8.5重量%、カーボンブラックが
3.7%となるように混合し、実施例1と同様に成形し
て平板状成形品を得た。この成形品の比重は1.40、
体積固有抵抗は0.046Ωcm、シャルピー衝撃値は
25kJ/m2 、曲げ弾性率は17GPaであり、実施
例1と同様の方法で測定した平均アスペクト比は68で
あった。
The above-mentioned master pellet A, master pellet B, master pellet C, and nylon 6 resin chip were combined with 24% by weight of PAN-based carbon fiber, 8.5% by weight of nickel-coated carbon fiber, and carbon black. Was adjusted to 3.7% and molded in the same manner as in Example 1 to obtain a flat molded product. The specific gravity of this molded product is 1.40,
The volume resistivity was 0.046 Ωcm, the Charpy impact value was 25 kJ / m 2 , the flexural modulus was 17 GPa, and the average aspect ratio measured by the same method as in Example 1 was 68.

【0058】この成形品の電磁波シールド性は50dB
(装置測定限界)以上であった。
The electromagnetic wave shielding property of this molded product is 50 dB.
(Device measurement limit).

【0059】実施例3 ニッケル被覆炭素繊維束のかわりにステンレス繊維(引
張弾性率186GPa、単糸径8.0μm、単糸数5,
100、繊度2040TEX、比重8.0、体積固有抵
抗72×10-6Ωcm)を用いた他はマスターペレット
Aと同様にして、マスターペレットDを得た。
Example 3 Instead of the nickel-coated carbon fiber bundle, stainless steel fiber (tensile modulus 186 GPa, single yarn diameter 8.0 μm, single yarn number 5,
Master pellet D was obtained in the same manner as master pellet A except that 100, fineness of 2040 TEX, specific gravity of 8.0, and volume resistivity of 72 × 10 −6 Ωcm) were used.

【0060】前述のマスターペレットBと、マスターペ
レットD、ナイロン6樹脂チップを、全体に対してPA
N系炭素繊維が24重量%、ステンレス繊維が8.5重
量%となるように混合し、実施例1と同様に成形して平
板状成形品を得た。この成形品の比重は1.44、体積
固有抵抗は0.071Ωcm、シャルピー衝撃値は23
kJ/m2 、曲げ弾性率は15GPaであり、実施例1
と同様の方法で測定した平均アスペクト比は65であっ
た。
The above-mentioned master pellet B, master pellet D, and nylon 6 resin chip were all
The N-type carbon fiber was mixed so as to be 24% by weight and the stainless steel fiber was 8.5% by weight, and molded in the same manner as in Example 1 to obtain a flat molded product. This molded article has a specific gravity of 1.44, a volume resistivity of 0.071 Ωcm, and a Charpy impact value of 23.
Example 1 was kJ / m 2 , and the flexural modulus was 15 GPa.
The average aspect ratio measured by the same method as in Example 1 was 65.

【0061】この成形品の電磁波シールド性は48dB
であった。
The electromagnetic wave shielding property of this molded product is 48 dB.
Met.

【0062】実施例4 前述のマスターペレットAとナイロン6樹脂チップを、
全体に対してニッケル被覆炭素繊維が18重量%となる
ように混合し、実施例1と同様に成形して平板状成形品
を得た。この成形品の比重は1.34、体積固有抵抗は
0.040Ωcm、シャルピー衝撃値は15kJ/
2 、曲げ弾性率は10GPaであり、実施例1と同様
の方法で測定した平均アスペクト比は40であった。
Example 4 The aforementioned master pellet A and nylon 6 resin chip were
The nickel-coated carbon fiber was mixed so as to be 18% by weight with respect to the whole, and molded in the same manner as in Example 1 to obtain a flat molded product. This molded product has a specific gravity of 1.34, a volume resistivity of 0.040 Ωcm, and a Charpy impact value of 15 kJ /
m 2 , the flexural modulus was 10 GPa, and the average aspect ratio measured by the same method as in Example 1 was 40.

【0063】この成形品の電磁波シールド性は50dB
(装置測定限界)以上であった。
The electromagnetic wave shielding property of this molded product is 50 dB.
(Device measurement limit).

【0064】実施例5 前述のマスターペレットA、マスターペレットCとナイ
ロン6樹脂チップを、全体に対してニッケル被覆炭素繊
維が18重量%、カーボンブラックが5.1重量%とな
るように混合し、実施例1と同様に成形して平板状成形
品を得た。この成形品の比重は1.36、体積固有抵抗
は0.036Ωcm、シャルピー衝撃値は14kJ/m
2 、曲げ弾性率は10GPaであり、実施例1と同様の
方法で測定した平均アスペクト比は36であった。
Example 5 The above-mentioned master pellet A, master pellet C and nylon 6 resin chip were mixed so that the nickel-coated carbon fiber was 18% by weight and the carbon black was 5.1% by weight based on the whole. Molding was performed in the same manner as in Example 1 to obtain a flat molded product. This molded product has a specific gravity of 1.36, a volume resistivity of 0.036 Ωcm, and a Charpy impact value of 14 kJ / m.
2. The flexural modulus was 10 GPa, and the average aspect ratio measured by the same method as in Example 1 was 36.

【0065】この成形品の電磁波シールド性は50dB
(装置測定限界)以上であった。
The electromagnetic wave shielding property of this molded product is 50 dB.
(Device measurement limit).

【0066】実施例6 実施例1のマスターペレットBで用いたPAN系炭素繊
維束のかわりに、別のPAN系炭素繊維束(引張弾性率
451GPa、単糸径5.0μm、単糸数6,000、
繊度223TEX、比重1.84、体積固有抵抗0.8
×10-3Ωcm)を用いた他はマスターペレットBと同
様にして、マスターペレットEを得た。マスターペレッ
トBのかわりにマスターペレットEを用いた他は実施例
1と同様に混合し、成形して平板状成形品を得た。この
成形品の比重は1.39、体積固有抵抗は0.085Ω
cm、シャルピー衝撃値は23kJ/m2 、曲げ弾性率
は28GPaであり、実施例1と同様の方法で測定した
平均アスペクト比は69であった。
Example 6 Instead of the PAN-based carbon fiber bundle used in the master pellet B of Example 1, another PAN-based carbon fiber bundle (tensile elastic modulus: 451 GPa, single yarn diameter: 5.0 μm, number of single yarns: 6,000) ,
Fineness 223 TEX, specific gravity 1.84, volume resistivity 0.8
A master pellet E was obtained in the same manner as the master pellet B except for using × 10 −3 Ωcm). A flat molded product was obtained by mixing and molding in the same manner as in Example 1 except that the master pellet E was used instead of the master pellet B. The specific gravity of this molded product is 1.39 and the volume resistivity is 0.085Ω.
cm, the Charpy impact value was 23 kJ / m 2 , the flexural modulus was 28 GPa, and the average aspect ratio measured by the same method as in Example 1 was 69.

【0067】この成形品の電磁波シールド性は47dB
であった。
The electromagnetic wave shielding property of this molded product is 47 dB.
Met.

【0068】比較例1 実施例1で用いたのと同様のニッケル被覆炭素繊維束
に、前述のナイロン6チップを溶融、含浸させて樹脂含
浸ストランドを作製し、これをストランドカッターで長
さ3mmにカットしてマスターペレットFを得た。
Comparative Example 1 The same nylon-coated carbon fiber bundle as that used in Example 1 was melted and impregnated with the above-mentioned nylon 6 chip to prepare a resin-impregnated strand, which was cut to a length of 3 mm with a strand cutter. This was cut to obtain a master pellet F.

【0069】マスターペレットAのかわりにマスターペ
レットFを用いた他は実施例1と同様に混合し、成形し
て平板状成形品を得た。この成形品の比重は1.38、
体積固有抵抗は1.250Ωcm、シャルピー衝撃値は
19kJ/m2 、曲げ弾性率は15GPaであり、実施
例1と同様の方法で測定した平均アスペクト比は25で
あった。
A flat molded product was obtained by mixing and molding in the same manner as in Example 1 except that the master pellet F was used instead of the master pellet A. The specific gravity of this molded product is 1.38,
The volume resistivity was 1.250 Ωcm, the Charpy impact value was 19 kJ / m 2 , the flexural modulus was 15 GPa, and the average aspect ratio measured by the same method as in Example 1 was 25.

【0070】この成形品の電磁波シールド性は28dB
であった。
The electromagnetic wave shielding property of this molded product is 28 dB.
Met.

【0071】比較例2 前述のマスターペレットAを二軸押出機で250度で再
混練しながら溶融押出ししてストランドを作製した、こ
れをストランドカッターで長さ3mmにカットしてマス
ターペレットGを得た。
Comparative Example 2 The above-mentioned master pellet A was melt-extruded with a twin-screw extruder at 250 ° C. while melt-extruding to prepare a strand. The strand was cut into a length of 3 mm with a strand cutter to obtain a master pellet G. Was.

【0072】マスターペレットAのかわりにマスターペ
レットGを用いた他は実施例1と同様に混合し、成形し
て平板状成形品を得た。この成形品の比重は1.38、
体積固有抵抗は8500Ωcm、シャルピー衝撃値は1
2kJ/m2 、曲げ弾性率は11GPaであり、実施例
1と同様の方法で測定した平均アスペクト比は13であ
った。
A flat molded product was obtained by mixing and molding in the same manner as in Example 1 except that the master pellet G was used instead of the master pellet A. The specific gravity of this molded product is 1.38,
Volume resistivity is 8500Ωcm, Charpy impact value is 1
2 kJ / m 2 , the flexural modulus was 11 GPa, and the average aspect ratio measured by the same method as in Example 1 was 13.

【0073】この成形品の電磁波シールド性は10dB
であった。
The electromagnetic wave shielding property of this molded product is 10 dB.
Met.

【0074】比較例3 前述のマスターペレットA、マスターペレットBと、ナ
イロン6樹脂チップを、全体に対してPAN系炭素繊維
が24重量%、ニッケル被覆炭素繊維が20重量%とな
るように混合し、実施例1と同様に成形して平板状成形
品を得た。この成形品の比重は1.49、体積固有抵抗
は0.090Ωcm、シャルピー衝撃値は5kJ/
2 、曲げ弾性率は12GPaであり、実施例1と同様
の方法で測定した平均アスペクト比は19であった。
Comparative Example 3 The above-mentioned master pellet A, master pellet B and nylon 6 resin chip were mixed so that the PAN-based carbon fiber was 24% by weight and the nickel-coated carbon fiber was 20% by weight based on the whole. In the same manner as in Example 1, a flat molded product was obtained. The specific gravity of this molded product is 1.49, the volume resistivity is 0.090 Ωcm, and the Charpy impact value is 5 kJ /
m 2 , the flexural modulus was 12 GPa, and the average aspect ratio measured by the same method as in Example 1 was 19.

【0075】この成形品の電磁波シールド性は45dB
であった。
The electromagnetic wave shielding property of this molded product is 45 dB.
Met.

【0076】比較例4 前述のマスターペレットBとナイロン6樹脂チップを、
全体に対してPAN系炭素繊維が30重量%となるよう
に混合し、実施例1と同様に成形して平板状成形品を得
た。この成形品の比重は1.33、体積固有抵抗は0.
290Ωcm、シャルピー衝撃値は31kJ/m2 、曲
げ弾性率は20GPaであり、実施例1と同様の方法で
測定した平均アスペクト比は72であった。
Comparative Example 4 The aforementioned master pellet B and nylon 6 resin chip were
The PAN-based carbon fiber was mixed so as to be 30% by weight with respect to the whole, and molded in the same manner as in Example 1 to obtain a flat molded product. This molded article has a specific gravity of 1.33 and a volume resistivity of 0.3.
290 Ωcm, the Charpy impact value was 31 kJ / m 2 , the flexural modulus was 20 GPa, and the average aspect ratio measured by the same method as in Example 1 was 72.

【0077】この成形品の電磁波シールド性は37dB
であった。
The electromagnetic wave shielding property of this molded product is 37 dB.
Met.

【0078】比較例5 前述のマスターペレットB、マスターペレットCとナイ
ロン6樹脂チップを、全体に対してPAN系炭素繊維が
30重量%、カーボンブラックが2重量%となるように
混合し、実施例1と同様に成形して平板状成形品を得
た。この成形品の比重は1.34、体積固有抵抗は0.
158Ωcm、シャルピー衝撃値は30kJ/m2 、曲
げ弾性率は18GPaであり、実施例1と同様の方法で
測定した平均アスペクト比は65であった。
Comparative Example 5 The above-mentioned master pellet B, master pellet C and nylon 6 resin chip were mixed so that PAN-based carbon fiber was 30% by weight and carbon black was 2% by weight with respect to the whole. Molding was performed in the same manner as in Example 1 to obtain a flat molded product. This molded article has a specific gravity of 1.34 and a volume resistivity of 0.3.
The Charpy impact value was 158 Ωcm, the Charpy impact value was 30 kJ / m 2 , the flexural modulus was 18 GPa, and the average aspect ratio measured by the same method as in Example 1 was 65.

【0079】この成形品の電磁波シールド性は41dB
であった。
The electromagnetic wave shielding property of this molded product is 41 dB.
Met.

【0080】比較例6 前述のマスターペレットBとナイロン6樹脂チップを、
全体に対してPAN系炭素繊維が45重量%となるよう
に混合し、実施例1と同様に成形して平板状成形品を得
た。この成形品の比重は1.41、体積固有抵抗は0.
148Ωcm、シャルピー衝撃値は18kJ/m2 、曲
げ弾性率は22GPaであり、実施例1と同様の方法で
測定した平均アスペクト比は42であった。
Comparative Example 6 The above-mentioned master pellet B and nylon 6 resin chip were
The PAN-based carbon fiber was mixed so as to be 45% by weight with respect to the whole, and molded in the same manner as in Example 1 to obtain a flat molded product. This molded article has a specific gravity of 1.41 and a volume resistivity of 0.4.
The Charpy impact value was 148 Ωcm, the Charpy impact value was 18 kJ / m 2 , the flexural modulus was 22 GPa, and the average aspect ratio measured by the same method as in Example 1 was 42.

【0081】この成形品の電磁波シールド性は42dB
であった。
The electromagnetic wave shielding property of this molded product is 42 dB.
Met.

【0082】比較例7 前述のマスターペレットEとナイロン6樹脂チップを、
全体に対してPAN系炭素繊維が30重量%となるよう
に混合し、実施例1と同様に成形して平板状成形品を得
た。この成形品の比重は1.34、体積固有抵抗は0.
270Ωcm、シャルピー衝撃値は29kJ/m2 、曲
げ弾性率は34GPaであり、実施例1と同様の方法で
測定した平均アスペクト比は70であった。
Comparative Example 7 The above-mentioned master pellet E and nylon 6 resin chip were
The PAN-based carbon fiber was mixed so as to be 30% by weight with respect to the whole, and molded in the same manner as in Example 1 to obtain a flat molded product. This molded article has a specific gravity of 1.34 and a volume resistivity of 0.3.
270 Ωcm, Charpy impact value was 29 kJ / m 2 , flexural modulus was 34 GPa, and average aspect ratio measured by the same method as in Example 1 was 70.

【0083】この成形品の電磁波シールド性は39dB
であった。
The electromagnetic wave shielding property of this molded product is 39 dB.
Met.

【0084】以上の結果を表1にまとめた。The above results are summarized in Table 1.

【0085】[0085]

【表1】 [Table 1]

【0086】[0086]

【発明の効果】本発明によれば、導電性繊維の効果を最
大限に生かし、電子機器の筐体などの用途において必要
とされる機械的特性と電磁波遮蔽性とを併せ持つ成形品
を提供可能である。また本発明の成形材料を用いれば、
このような成形品を通常の射出成形によって容易に成形
可能である。
According to the present invention, it is possible to provide a molded product having both the mechanical properties and the electromagnetic wave shielding properties required for applications such as housings of electronic equipment by making the most of the effect of the conductive fiber. It is. Also, if the molding material of the present invention is used,
Such a molded article can be easily molded by ordinary injection molding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる成形材料の形状の一例を示す説
明図である。
FIG. 1 is an explanatory diagram showing an example of the shape of a molding material according to the present invention.

【図2】本発明にかかる成形材料の形状の他の一例を示
す説明図である。
FIG. 2 is an explanatory view showing another example of the shape of the molding material according to the present invention.

【符号の説明】[Explanation of symbols]

1:構成要素[A]、[B]からなる複合体 2:構成要素[C] 3:成形材料の長さ 1: Composite composed of components [A] and [B] 2: Component [C] 3: Length of molding material

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 比重が1.7以下である不連続繊維強化
樹脂成形品において、該不連続繊維が、30以上の平均
アスペクト比を有する導電性繊維を含み、かつ、該成形
品の体積固有抵抗が0.1Ωcm以下であることを特徴
とする不連続繊維強化樹脂成形品。
1. A discontinuous fiber reinforced resin molded article having a specific gravity of 1.7 or less, wherein the discontinuous fibers include conductive fibers having an average aspect ratio of 30 or more, and have a specific volume of the molded article. A discontinuous fiber reinforced resin molded product having a resistance of 0.1 Ωcm or less.
【請求項2】 該導電性繊維が、40〜500の範囲の
平均アスペクト比を有するものである請求項1記載の不
連続繊維強化樹脂成形品。
2. The discontinuous fiber reinforced resin molded article according to claim 1, wherein said conductive fiber has an average aspect ratio in the range of 40 to 500.
【請求項3】 該導電性繊維が、炭素繊維および金属被
覆繊維から選ばれた少なくとも1種である請求項1また
は2記載の不連続繊維強化樹脂成形品。
3. The discontinuous fiber reinforced resin molded product according to claim 1, wherein the conductive fiber is at least one kind selected from a carbon fiber and a metal-coated fiber.
【請求項4】 該金属被覆繊維が、ニッケル被覆炭素繊
維である請求項3記載の不連続繊維強化樹脂成形品。
4. The discontinuous fiber-reinforced resin molded article according to claim 3, wherein the metal-coated fiber is a nickel-coated carbon fiber.
【請求項5】 該不連続繊維強化樹脂成形品が、15〜
40重量%の範囲で炭素繊維を含有するものである請求
項1〜4のいずれかに記載の不連続繊維強化樹脂成形
品。
5. The method for producing a discontinuous fiber reinforced resin molded product according to claim
The discontinuous fiber-reinforced resin molded product according to any one of claims 1 to 4, wherein the molded product contains carbon fibers in a range of 40% by weight.
【請求項6】 該不連続繊維強化樹脂成形品が、5〜1
5重量%の範囲でニッケル被覆炭素繊維を含有するもの
である請求項1〜5のいずれかに記載の不連続繊維強化
樹脂成形品。
6. The discontinuous fiber reinforced resin molded product according to claim 5, wherein
The discontinuous fiber-reinforced resin molded article according to any one of claims 1 to 5, wherein the article contains nickel-coated carbon fibers in a range of 5% by weight.
【請求項7】 該不連続繊維強化樹脂成形品が、1.5
以下の比重を有するものである請求項1〜6のいずれか
に記載の不連続繊維強化樹脂成形品。
7. The discontinuous fiber reinforced resin molded product has a thickness of 1.5
The discontinuous fiber reinforced resin molded product according to any one of claims 1 to 6, which has the following specific gravity.
【請求項8】 該不連続繊維強化樹脂成形品が、非繊維
形状の導電性フィラーを含有するものである請求項1〜
7のいずれかに記載の不連続繊維強化樹脂成形品。
8. The discontinuous fiber-reinforced resin molded product contains a non-fibrous conductive filler.
8. The discontinuous fiber reinforced resin molded product according to any one of items 7 to 7.
【請求項9】 該非繊維形状の導電性フィラーが、カー
ボンブラックである請求項8に記載の不連続繊維強化樹
脂成形品。
9. The discontinuous fiber-reinforced resin molded article according to claim 8, wherein the non-fibrous conductive filler is carbon black.
【請求項10】 該不連続繊維強化樹脂成形品が、45
dB以上の電磁波遮蔽性を有するものである請求項1〜
9のいずれかに記載の不連続繊維強化樹脂成形品。
10. The discontinuous fiber reinforced resin molded product is 45
It has an electromagnetic wave shielding property of dB or more.
10. The discontinuous fiber reinforced resin molded product according to any one of 9 above.
【請求項11】 該不連続繊維強化樹脂成形品が、20
kJ/m2 以上のシャルピー衝撃値を有するものである
請求項1〜10のいずれかに記載の不連続繊維強化樹脂
成形品。
11. The discontinuous fiber reinforced resin molded product according to claim 10,
kJ / m 2 or more discontinuous fiber-reinforced resin molded article according to any one of claims 1 to 10 and has a Charpy impact value.
【請求項12】 該不連続繊維強化樹脂成形品が、10
GPa以上の曲げ弾性率を有するものである請求項1〜
11のいずれかに記載の不連続繊維強化樹脂成形品。
12. The discontinuous fiber reinforced resin molded product according to claim 10,
It has a bending elastic modulus of GPa or more.
12. The discontinuous fiber reinforced resin molded product according to any one of 11).
【請求項13】 該不連続繊維強化樹脂成形品が、平板
状の部分の厚さが2mm以下であるものである請求項1
〜12のいずれかに記載の不連続繊維強化樹脂成形品。
13. The discontinuous fiber reinforced resin molded product according to claim 1, wherein the thickness of the flat portion is 2 mm or less.
13. The discontinuous fiber reinforced resin molded product according to any one of items 12 to 12.
【請求項14】 該不連続繊維強化樹脂成形品が、電磁
波シールド性成形品である請求項1〜13のいずれかに
記載の不連続繊維強化樹脂成形品。
14. The discontinuous fiber reinforced resin molded article according to claim 1, wherein the discontinuous fiber reinforced resin molded article is an electromagnetic wave shielding molded article.
【請求項15】 少なくとも次の構成要素[A]、
[B]および[C]からなり、構成要素[A]と構成要
素[B]からなる複合体に、構成要素[C]が接するよ
うに配置されてなることを特徴とする不連続繊維強化樹
脂成形品用成形材料。 [A]導電性繊維束 [B]重量平均分子量が200〜50000でかつ構成
要素[C]よりも溶融粘度が低い熱可塑性重合体 [C]重量平均分子量が10000以上である熱可塑性
樹脂
15. At least the following components [A],
A discontinuous fiber reinforced resin comprising a composite consisting of [B] and [C], wherein the component [C] is disposed in contact with a composite consisting of the component [A] and the component [B]. Molding material for molded products. [A] a conductive fiber bundle [B] a thermoplastic polymer having a weight average molecular weight of 200 to 50,000 and a lower melt viscosity than the constituent element [C] [C] a thermoplastic resin having a weight average molecular weight of 10,000 or more
【請求項16】 該構成要素[A]の導電性繊維束が、
体積固有抵抗10-3Ωcm以下の導電性繊維からなるこ
とを特徴とする請求項15に記載の不連続繊維強化樹脂
成形品用成形材料。
16. The conductive fiber bundle of the component [A]
The molding material for a discontinuous fiber-reinforced resin molded product according to claim 15, comprising a conductive fiber having a volume resistivity of 10 -3 Ωcm or less.
JP05988098A 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same Expired - Fee Related JP3937560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05988098A JP3937560B2 (en) 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05988098A JP3937560B2 (en) 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same

Publications (2)

Publication Number Publication Date
JPH11255907A true JPH11255907A (en) 1999-09-21
JP3937560B2 JP3937560B2 (en) 2007-06-27

Family

ID=13125914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05988098A Expired - Fee Related JP3937560B2 (en) 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same

Country Status (1)

Country Link
JP (1) JP3937560B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231703B2 (en) 2002-08-21 2007-06-19 Nissin Kogyo Co., Ltd. Deburring method and automotive knuckle
JP2021503541A (en) * 2017-11-20 2021-02-12 ティコナ・エルエルシー Fiber reinforced polymer composition for use in electronic modules
WO2022050211A1 (en) * 2020-09-01 2022-03-10 帝人株式会社 Resin-bonded fiber, and active material layer , electrode, and nonaqueous electrolyte secondary battery using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231703B2 (en) 2002-08-21 2007-06-19 Nissin Kogyo Co., Ltd. Deburring method and automotive knuckle
JP2021503541A (en) * 2017-11-20 2021-02-12 ティコナ・エルエルシー Fiber reinforced polymer composition for use in electronic modules
WO2022050211A1 (en) * 2020-09-01 2022-03-10 帝人株式会社 Resin-bonded fiber, and active material layer , electrode, and nonaqueous electrolyte secondary battery using same

Also Published As

Publication number Publication date
JP3937560B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP4786711B2 (en) Method for producing conductive long fiber composite material
EP2134783B1 (en) Electrically conducting polymeric compositions, methods of manufacture thereof and articles comprising the same
WO2014098103A1 (en) Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
JP6957859B2 (en) Fiber-reinforced thermoplastic resin molded products and fiber-reinforced thermoplastic resin molded materials
JP6123956B1 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP2017537233A (en) Hybrid reinforced assembly
JPWO2018056434A1 (en) Electronic device case
JP2002088259A (en) Molding material, its manufacturing method and its molded article
JP4160138B2 (en) Thermoplastic resin molded product, material for molded product, and method for producing molded product
JP2013177560A (en) Method for producing carbon fiber reinforced molded product, and carbon fiber reinforced molded product
KR20120023490A (en) High modulus composite for emi shielding
JP2012057277A (en) Producing method of conjugated reinforcing fiber bundle, and molding material using the same
JP6766877B2 (en) Fiber reinforced thermoplastic resin molded product
TWI222987B (en) Carbon-reinforced PC-ABS composition and articles made from same
Lin et al. Extrusion/hot pressing processing and laminated layers of continuous carbon fiber/thermoplastic polyurethane knitted composites
JP2013117014A (en) Method for production of carbon fiber-reinforced molded article, and carbon fiber-reinforced molded article
JP5972721B2 (en) Thermoplastic resin composition
JPH11255907A (en) Discontinuous fiber-reinforced resin molding and molding material for discontinuous fiber-reinforced resin molding
JP6554815B2 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
WO2021106714A1 (en) Fiber-reinforced thermoplastic resin molded article
JP6996351B2 (en) Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and molded products made of the same.
JP2001129826A (en) Conductive fiber-reinforced molding material and manufacturing method therefor
JP2003128799A (en) Carbon fiber for thermoplastic resin composition and thermoplastic resin composition produced by using the carbon fiber
JP2002220786A (en) Carbon fiber bundle, resin composition, molding compound and molded product using the same
JP2004019055A (en) Carbon fiber and thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees