JP3937560B2 - Discontinuous fiber reinforced resin molding material and molded product using the same - Google Patents

Discontinuous fiber reinforced resin molding material and molded product using the same Download PDF

Info

Publication number
JP3937560B2
JP3937560B2 JP05988098A JP5988098A JP3937560B2 JP 3937560 B2 JP3937560 B2 JP 3937560B2 JP 05988098 A JP05988098 A JP 05988098A JP 5988098 A JP5988098 A JP 5988098A JP 3937560 B2 JP3937560 B2 JP 3937560B2
Authority
JP
Japan
Prior art keywords
molded product
fiber
conductive
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05988098A
Other languages
Japanese (ja)
Other versions
JPH11255907A (en
Inventor
健一 吉岡
英輔 和田原
壮一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP05988098A priority Critical patent/JP3937560B2/en
Publication of JPH11255907A publication Critical patent/JPH11255907A/en
Application granted granted Critical
Publication of JP3937560B2 publication Critical patent/JP3937560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、パーソナルコンピュータ、ワードプロセッサ等の各種電子機器の内装部品や筐体の材料として好適な不連続繊維強化樹脂成形材料に関し、特に軽量でかつ機械的特性や電磁波遮蔽性に優れた不連続繊維強化樹脂成形材料および不連続繊維強化樹脂成形品に関する。
【0002】
【従来の技術】
パーソナルコンピュータ等の各種電子機器の内装部品や筐体の材料として、不連続繊維強化樹脂が広く用いられてきている。不連続繊維強化樹脂は、射出成形など生産性や設計自由度に優れた成形法が可能で、しかも剛性や強度など機械的特性にも優れた成形品が得られる利点がある。
【0003】
ところで、電子機器の普及と高性能化が進むとともに、機器相互の放射電磁波干渉による誤動作等が懸念され、これを防止するための、機器の電磁的両立性(Electro-magnetic Compatibility)が求められ、機器の部品や筐体の材料として電磁波遮蔽性が重要となってきている。しかも、電子機器の軽量化のために、従来よりも薄肉、軽量でかつ十分な電磁波遮蔽性を有する材料が求められている。かかる成形品の電磁波遮蔽性を高くするためには、成形品の導電性を高くすればよい。すなわち、物性値としては、成形品の体積固有抵抗が低い方がよい。ところが、一般に不連続繊維強化樹脂成形品は、炭素繊維など導電性繊維を使えば、ある程度の導電性は有するものの、それだけでは必ずしも十分な電磁波遮蔽性が得られないという問題があった。
【0004】
本来、導電性を持たない樹脂成形品に導電性を付与する方法としては、成形品表面に銅、ニッケル、アルミニウム等の金属薄膜を無電解メッキ法や真空蒸着法により生成する方法が知られ、広く用いられているが、工程や設備に大きなコストがかかるうえ、成形品の変形などに伴い、金属薄膜が脱落する問題もある。また、類似の方法として、導電性塗料を塗布する方法もあるが、電磁波遮蔽性が必ずしも十分でなく、塗膜の脱落という問題もある。
【0005】
一方、他の方法としては、金属粒子、炭素繊維、導電処理無機繊維、金属繊維等の導電性フィラーを樹脂中に添加することが知られている。そこで、不連続繊維強化樹脂に、これらの導電性フィラーを添加することで成形品の導電性を向上させ、必要な電磁波遮蔽性を確保しようという試みがある。
【0006】
しかしながら、このうちカーボンブラックを使う場合、十分な導電性を得るためには、大量に添加しなければならず、そうすると溶融粘度が上昇し、成形が困難になるばかりか、成形品の機械的特性が著しく低下するという問題があり、たとえば、特開平9−87417号公報においては、導電性繊維の平均長さを適当な範囲としたうえでカーボンブラックを添加する方法が開示されているが、この方法でも薄肉成形品での電磁波シールド性は必ずしも十分とはいえない。
【0007】
また、金属粒子を添加する方法でも、カーボンブラックと同様の問題があるうえに、成形品の比重が大きくなり、軽量性が要求される用途には向かない。
【0008】
特開平8−73220号公報に開示されているような導電処理無機繊維を使用する場合も、成形性や、成形品の機械的特性を損なわない範囲の添加量では、十分な電磁波遮蔽性を得ることは困難である。
【0009】
また、金属繊維は、比較的少量の添加で導電性が得られるフィラーとして知られている。たとえば、特開昭60−260651号公報では炭素繊維強化樹脂に金属繊維を添加する方法が開示されている。しかし、軽量筐体のように薄肉でかつ十分な電磁波遮蔽性を得ようとすれば、高価な金属繊維をおよそ10体積%以上添加しなければならず、コストの増大や成形性の悪化、成形品比重の増大などの問題は避けられない。
【0010】
かかる金属繊維の代わりに、ニッケル、銅、銀などの金属で被覆された有機繊維や炭素繊維を用いれば、成形品比重の増大の問題はある程度抑えられるが、成形品の機械的特性やコストの問題は依然として大きく、この場合も、より少ない添加量で電磁波遮蔽性を得ることが望まれているのが実状である。
【0011】
このように、不連続繊維強化樹脂に導電性フィラーを添加しても、必要な電磁波遮蔽性と機械的特性とを併せ持つものを得ることは困難な状況にある。
【0012】
また、炭素繊維や金属繊維等を含め、繊維状の導電性フィラーによって成形品に導電性を付与する場合、一般に成形プロセスのなかで、導電性フィラーが折れて短くなっていくことが多いが、最終成形品中での導電性フィラーの長さが長いほど、フィラー相互の接触機会が増え、導電性が高くなる傾向であることは知られている。ただし、あまり長くしようとすると、成形プロセスにおいて、フィラーの分散が妨げられ、導電性が思ったほど向上しなかったり、成形品の表面品位が悪化したりすることも知られている。すなわち、成形品の導電性を含めて総合的に判断して、導電性フィラー長さを適正に調整するべく成形材料や成形条件を設定することが重要であるが、ここで、最適なフィラー長さは、導電性フィラーの種類によって異なり、その長さのみに注目して成形品の最適化を行っても、他の特性を保持しながら十分な電磁波遮蔽性を得ることは非常に困難であった。
【0013】
【発明が解決しようとする課題】
本発明は、かかる従来技術の背景に鑑み、電子機器の筐体などの軽量、薄肉の不連続繊維強化樹脂成形品において、必要とされる機械的特性と電磁波遮蔽性とを併せ持つ優れた不連続繊維強化樹脂成形品およびそれを成形するための成形材料を提供せんとするものである。
【0014】
【課題を解決するための手段】
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の不連続繊維強化樹脂成形材料は、少なくとも次の構成要素[A]、[B]および[C]からなり、構成要素[A]と構成要素[B]からなる複合体に、構成要素[C]が接するように配置されてなることを特徴とするものである。
【0015】
[A]体積固有抵抗値が10 −3 Ωcm以下の導電性繊維束
[B]フェノールもしくはフェノールの置換基誘導体を構成成分として含む、重量平均分子量が200〜50000でかつ構成要素[C]よりも溶融粘度が低い熱可塑性重合体
[C]重量平均分子量が10000以上である熱可塑性樹脂
【0016】
【発明の実施の形態】
本発明は、前記課題、つまり、機械的特性と電磁波遮蔽性を併せ持つ不連続繊維強化樹脂成形品について、鋭意検討し、特定の体積固有抵抗値を有する導電性繊維束と樹脂含浸性を良好にする熱可塑性重合体より構成されてなる射出成形用の成形材料を使用することでかかる課題を一挙に解決することを究明したものである。
【0017】
また、本発明は、かかる成形材料を用いることで機械的特性と電磁波遮蔽性を併せ持つ不連続繊維強化樹脂成形品が得られることを究明したものである。
【0018】
本発明は、少なくとも構成要素[A]、[B]および[C]からなり、構成要素[A]と構成要素[B]からなる複合体に、構成要素[C]が接するように配置されてなる不連続繊維強化樹脂成形材料およびそれを用いた不連続繊維強化樹脂成形品に関するものである。不連続繊維強化樹脂成形品(以下、成形品と略す)とは、不連続、すなわち、いわゆる連続長繊維状でない強化繊維がマトリクス樹脂中に埋め込まれたものであって、これによって強化された成形硬化後の部品であり、必要に応じて諸々の形態を有するものである。その材料としては、連続長繊維状の強化繊維を使用してもよいが、成形後の成形品中では、該強化繊維は不連続になっているものである。
【0019】
前記成形品の比重は好ましくは1.7以下、さらに好ましくは1.5以下である。かかる成形品の比重は、任意の形態の成形品から、重量が1〜50gの範囲内の試験片を切り出し、ASTM D792−91に従って測定された値で示される。
【0020】
該成形品中の不連続繊維の種類は特に限定されず、2種類以上の繊維を併用してもよいが、軽量、薄肉で良好な機械的特性を得る観点からは、少なくともその一部が炭素繊維であることが好ましい。なかでも、引張弾性率が200GPa〜700GPaのポリアクリロニトリル(PAN)系炭素繊維であることがより好ましい。
【0021】
本発明で使用される樹脂種も特に限定されないが、望ましくは、耐衝撃性に優れ、かつ、生産性の高い射出成形が可能な熱可塑性樹脂がよい。例えば、ポリエチレンテレフタレートやポリブチレンテレフタレートや液晶ポリエステル等のポリエステル、ポリエチレンやポリプロピレンやポリブチレン等のポリオレフィンの他、ポリオキシメチレン、ポリアミド、ポリカーボネイト、ポリスチレン、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、アクリレート・スチレン・アクリロニトリル共重合体、ポリメチレンメタクリレート、ポリ塩化ビニル、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン等を使用することができ、また、これらの共重合体、変性体および2種類以上のブレンドした樹脂も使用することができる。また、更に耐衝撃性向上のために、上記樹脂にエラストマーもしくはゴム成分を添加した樹脂も使用することができる。
【0022】
本発明の成形品は、導電性繊維を有する。導電性繊維とは体積固有抵抗が10 −3 Ωcm以下であることが重要で、好ましくは10−5Ωcm以下の繊維状フィラーであり、具体的には、ステンレス鋼繊維や銅繊維等の金属繊維、PAN系やピッチ系その他の炭素繊維、さらには各種の金属被覆繊維が例示できる。繊維の体積固有抵抗はJIS R7601に規定された炭素繊維の体積抵抗率の測定法に準じて測定する。この場合測定長さは導電性繊維の形状や導電性に応じて適宜変更してよい。なお、金属被覆繊維など不均一の素材から構成される繊維についても、上の測定法による値を繊維の体積固有抵抗とみなす。
【0023】
導電性繊維は、シランカップリング剤、アルミネートカップリング剤、チタネートカップリング剤等で表面処理、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、スチレン系樹脂、オレフィン系樹脂、アミド系樹脂、テルペン・フェノール共重合樹脂等で集束処理されていてもよい本発明の樹脂成形品においては、導電性繊維の平均アスペクト比が30以上であることが好ましく、40〜500の範囲内であることがより好ましく、50〜200の範囲内であることがさらに好ましい。導電性繊維のアスペクト比は、成形後の成形品中での導電性繊維の長さを直径で除した無次元数で定義される。平均アスペクト比はその重み付け平均値である。すなわち、各導電性繊維の長さをLi(i=1,2,..)、平均直径をDとした場合、平均アスペクト比は(ΣLi/ΣLi)/Dで算出される。
【0024】
導電性繊維の太さは種類によって異なり、成形品導電性や成形品品位、成形性等のバランスからみて必要な繊維長さも種類によって異なる。本発明者は、太さの異なる導電性繊維においても、平均アスペクト比を上記の通りとすることにより、導電性付与効果が高く、機械特性その他の特性に大きな悪影響を及ぼさない程度の添加量で、必要な成形品導電性が得られることを見出した。
【0025】
すなわち、成形材の導電性を高くするためには、導電性繊維が相互に接触する確率が高いほど有利であるため、同じ直径の導電性繊維であれば平均繊維長が長い方がよい。ところが、細い導電性繊維を用いれば、導電性繊維の体積あたりの総延長が長くなるため、同じ平均繊維長を有する、より太い繊維よりも導電性向上効果は大きい。したがって、導電性向上効果は、平均繊維長と繊維直径の比をとった無次元数である平均アスペクト比に大きく支配されることになる。
【0026】
平均アスペクト比があまり小さくなると、導電性繊維が相互接触する機会が少なくなるため、成形品の導電性が低くなる傾向がある。一方、平均アスペクト比が上記の好ましい範囲より大きくなると、成形品の品位が低下したり、成形プロセスにおいて導電性繊維が樹脂中に分散しにくくなるため導電性が有効に向上しない場合がある。
【0027】
導電性繊維の長さLiは、成形品の樹脂を適当な溶媒等で溶かすなどの方法で除去し、残存した繊維を顕微鏡等で観察して得られる。直径Dは、導電性繊維の種類ごとに、たとえば繊度と密度とから算出した平均直径を使用するのが簡便でよい。長さを測定する導電性繊維の数は200以上とする。
【0028】
たとえば炭素繊維と金属繊維など、2種以上の導電性繊維を併用した場合、全ての導電性繊維からランダムに200以上の繊維を抜き出した場合の平均アスペクト比を、成形品の平均アスペクト比とする。
【0029】
成形品の平均アスペクト比が上記範囲より小さくなると、導電性と機械的特性がともに低下する傾向がある。
【0030】
本発明の成形品の体積固有抵抗は0.1Ωcm以下が好ましく、0.05Ωcm以下であることがより好ましい。体積固有抵抗がこの値より大きくなると必要な電磁波シールド性が得られないことがある。成形品の体積固有抵抗にはいくつかの測定法があるが、本発明の成形品においては次のような方法で測定する。
【0031】
すなわち、厚さt(mm)が1〜4mmの成形品から、幅w(mm)が10〜15mm、長さL(mm)が50〜100mmの範囲内にある試験片を切り出し、長さ方向の両端面を研磨、洗浄した後導電性ペーストを均一に塗布し、十分な精度の抵抗計で端面間の電気抵抗R(Ω)を測定する。成形品の体積固有抵抗(Ωcm)は、0.1×R×t×w/Lで定義される。
【0032】
本発明の導電性繊維として炭素繊維を用いると、導電性付与と機械的特性の付与を同時に達成できるため好ましい。また、金属被覆繊維は、成形品比重の増大が比較的小さくかつ導電性付与効果が大きいので好ましい。ここで金属被覆繊維とは、たとえば銅繊維、ステンレス繊維、銀被覆ナイロン繊維、銅/ニッケル被覆ガラス繊維、ニッケル被覆炭素繊維などを含み、被覆の方法も電解メッキ、無電解メッキ、蒸着などいずれでもよい。なかでもニッケル被覆炭素繊維は、コストと導電性付与効果のバランスに優れ、しかも導電性が長期にわたって劣化しないのでより好ましい。成形品の特性を総合的に考慮し、炭素繊維と、それよりも導電性の高い導電性繊維を併用することも好ましい。
【0033】
炭素繊維とニッケル被覆炭素繊維を併用する場合、成形品中の炭素繊維の重量含有率は15%〜40%の範囲内にあることが好ましい。含有率が15%を下回ると成形品の機械的特性が低下する傾向があり、40%を上回ると溶融粘度の増大等から成形上の問題が多くなると同時にニッケル炭素繊維の含有率を適当な範囲とすることが困難となる傾向がある。また、ニッケル被覆炭素繊維の重量含有率は5%〜15%の範囲内にあることが好ましい。5%を下回ると成形品の電磁波シールド性が低下する傾向があり、15%を上回ると成形上の問題が多くなると同時に成形品の機械的特性が低下する傾向がある。
【0034】
本発明の樹脂成形品に、カーボンブラックなど公知の非繊維形状の導電性フィラーを添加すると、導電性をさらに向上させることができる。特に、パーソナルコンピュータ筐体等としての各要求特性をバランスよく満たすためには、炭素繊維と、金属被覆炭素繊維たとえばニッケル被覆炭素繊維を併用したものにさらにカーボンブラックを適当な割合で添加することにより、金属被覆炭素繊維とカーボンブラックの相乗効果が得られ、きわめて高い導電性が得られるので好ましい。この場合、成形品の機械的特性の低下を抑えるために、カーボンブラックの添加量は、成形品全体に対して10%以下であることが好ましく、4%以下であることがさらに好ましい。
【0035】
本発明によれば、軽量で電磁波遮蔽性に優れながら、シャルピー衝撃値が20kJ/m2 以上、曲げ弾性率が10GPa以上の成形品を従来よりはるかに容易に得ることができる。ここでシャルピー衝撃値とはJIS K7077に従って測定された値であり、曲げ弾性率とはASTM D790−96aに従って測定された値である。
【0036】
本発明の成形品は、厚さ2mm以下で45dB以上の電磁波遮蔽性を得ることが可能である。電磁波遮蔽性は、株式会社アドバンテスト製TR17301Aまたは同等品によって測定した周波数500MHzの高インピーダンス電界空間における電界遮蔽性である。
【0037】
本発明の成形品の成形法としては、従来の不連続繊維強化樹脂成形品の成形法のいずれを適用してもよいが、樹脂が熱可塑性である場合は射出成形やスタンピング成形等、さらにその中でも射出成形が、成形サイクルが短く生産性に優れる。
【0038】
本発明の成形品を成形する場合、平均アスペクト比を所定の値にするためには、導電性繊維の長さを、その直径に応じたある値以上にする必要がある。したがって、その射出成形においては、導電性繊維を含む成形材料すなわちペレットとして、できるだけ繊維長を長く保ったまま成形機に投入できるものを用いることが望ましい。すなわち、たとえば導電性繊維束をペレット全長に近い長さで含む、いわゆる長繊維ペレットのような形態のものである。
【0039】
一方、本発明においては導電性繊維の相互接触機会を大きくするために、成形プロセスにおいて導電性繊維が樹脂中に束状に存在するのではなく、均一に分散することが望ましい。ところが、上に述べた長繊維ペレット形態で導電性繊維束を投入すると、成形プロセス中に導電性繊維が分散することが困難になる傾向がある。
【0040】
特に、軽量かつ機械的特性に優れた成形品においては、一般に高分子量の樹脂が用いられるため、成形中の樹脂の粘度が比較的高く、長繊維ペレットの導電性繊維の分散はますます困難となる。
【0041】
そこで、本発明においては、次のような構成のペレットを使用することが重要である。すなわち、ペレットの一部または全部が次の3つの構成要素からなり、かつ構成要素[A]と構成要素[B]からなる複合体に、構成要素[C]が接するように配置されてなるペレットである。
【0042】
構成要素[A]は連続した導電性繊維束であり、成形品に高い導電性を付与するもので、体積固有抵抗が10 −3 Ωcm以下の導電性繊維からなるものである。なかでも、銅繊維、ステンレス繊維、銀被覆ナイロン繊維、銅/ニッケル被覆ガラス繊維、ニッケル被覆炭素繊維などが好ましい。
【0043】
構成要素[B]はフェノールもしくはフェノールの置換基誘導体を構成成分として含む、重量平均分子量が200〜50000でかつ次に述べる構成要素[C]よりも溶融粘度が低い熱可塑性重合体であり、成形時にはマトリクス樹脂(構成要素[C])が導電性繊維束(構成要素[A])に含浸することを助け、また導電性繊維がマトリクス樹脂中に分散することを助ける、いわゆる含浸助剤・分散助剤としての役割を持つものである。
【0044】
導電性繊維束[A]に最終的に含浸させようとする樹脂(構成要素[C])よりも溶融粘度が低い物質(構成要素[B])で予め導電性繊維表面が濡らされ、単繊維間の隙間が埋められていることにより、最終的に含浸させる樹脂[C]がある程度高粘度であっても容易に含浸・分散が達成される。かかる構成要素[B]として、たとえばテルペン・フェノールのような、フェノールもしくはフェノールの置換基誘導体が用いられるのである。
【0045】
構成要素[C]は、重量平均分子量が10,000以上である熱可塑性樹脂で、たとえば靭性などの物性が高く、成形後構成要素[A]に含浸し、導電性繊維と接着、これを強固に保持する役割を持つマトリクス樹脂である。特に適したものとして、ポリアミド、ポリオレフィン、ポリカーボネートが挙げられ、なかでもポリアミド樹脂が優れる。
【0046】
ポリアミド樹脂とは、例えばナイロン4、ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイロン12、ナイロン46等の脂肪族ナイロン、ポリヘキサジアミンテレフタルアミド、ポリヘキサメチレンジアミンイソフタル酸アミド、キシレン基含有ポリアミド等の芳香族ナイロン、およびそれらの共重合体、変性体、およびこれらを2種類以上ブレンドした樹脂等を指す。
【0047】
構成要素[B]および/または[C]には、得ようとする成形品の要求特性に応じて、難燃材、耐候性改良材、酸化防止剤、熱安定剤、可塑剤、滑剤、着色剤等、さらにカーボンブラック等の導電性フィラーを添加しておくことができる。図1および図2は、本発明の導電性繊維を含む成形材料の形状を模式的に示したものである。形状は構成要素[A]と構成要素[B]からなる複合体1に、構成要素「C」である樹脂2が接するように配置されていれば、図に示すものに限定されるものではないが、図1および図2のように、構成要素[C]が複合体の周囲を被覆するように配置されていることが好ましい。その場合、断面の形状は図1のような円形や図2のような楕円形など、いずれでもよい。
【0048】
成形材料の長さ3は、成形後に導電性繊維のアスペクト比を所定の値とするための繊維長に対して、長くとるべきことはいうまでもないが、好ましくは1mm〜50mmの範囲内、さらに好ましくは2mm〜10mm、最も好ましくは3mm〜8mmの範囲内であるのがよい。この長さが短すぎると成形材料の製造コストが高くなるとともに導電性繊維の長さが短くなり、成形品における導電性繊維のアスペクト比を所定の範囲内とすることが難しくなる場合があり、逆に長すぎると導電性繊維の開繊性や分散性が低下する傾向があり、成形品の導電性や表面品位が悪化する場合があるためである。
【0049】
本発明の成形材料は、構成要素[A]に、粘度が100ポイズ以下になるように加熱溶融された構成要素[B]を含浸させることによって複合体を形成し、ついで溶融した粘度500ポイズ以上の構成要素[C]をこの複合体を被覆するように配置した後、冷却して形成されたものである。
【0050】
このうち、[A]と[B]の複合体を形成する方法としては、繊維束に油剤、サイジング剤、マトリクス樹脂を付与するような公知の方法を用いることができる。より具体的には、加熱溶融された構成要素[B]をダイコーターより一定速度で押し出し、このコーター部に接触させながら構成要素[A]を一定速度で通過させた後加熱する方法が採用される。
【0051】
つぎに、構成要素[C]を複合体を被覆するように配置する方法としては、複合体を電線被覆用のコーティングダイ中に通し、押し出し機から溶融させた構成要素[C]を吐出させて複合体の周囲を被覆するように配置する方法が採用される。
【0052】
【実施例】
実施例1
重量平均分子量460のテルペンフェノール重合体を130℃に加熱してダイコーターより一定速度で押し出した。このコーター部に接触させながら、連続したニッケル被覆炭素繊維束(引張弾性率225GPa、ニッケルの電解メッキ層厚さ0.25μm、ニッケル層を含む単糸径7.5μm、単糸数12,000、繊度1440TEX、比重2.7、体積固有抵抗7.5×10-6Ωcm)を一定速度で通過させた後加熱して、ニッケル被覆炭素繊維束にテルペンフェノール重合体を含浸させた複合体を得た。次に、この複合体を電線被覆用のコーティングダイ中に通し、押し出し機から250℃で溶融させたナイロン6樹脂(重量平均分子量15000)を吐出させて複合体の周囲を被覆するように配置した樹脂被覆複合体を得た。次に、この樹脂被覆複合体を室温まで冷却後、ストランドカッターで3mmにカットして射出成形用マスターペレットAを得た。
【0053】
一方、ニッケル被覆炭素繊維束のかわりにPAN系炭素繊維束(引張弾性率230GPa、単糸径6.9μm、単糸数12,000、繊度800TEX、比重1.8、体積固有抵抗1.6×10-3Ωcm)を用い、ストランドカッターで7mmにカットした他はマスターペレットAと同様にして、マスターペレットBを得た。
【0054】
以上のマスターペレットA、マスターペレットB、前述のナイロン6樹脂チップを、全体に対してPAN系炭素繊維が24重量%、ニッケル被覆炭素繊維が8.5重量%となるように混合し、型締め力150tfの射出成形機により、外形が150mm×150mm、厚さが1mmの平板状成形品を得た。この成形品の比重は1.38、体積固有抵抗は0.086Ωcm、シャルピー衝撃値は27kJ/m2 、曲げ弾性率は17GPaであり、蟻酸に浸漬してナイロン6樹脂を溶解させる方法でアスペクト比を測定した結果、平均アスペクト比は70であった。
【0055】
この成形品の電磁波シールド性は46dBであった。
【0056】
実施例2
導電性カーボンブラック(粒子径55nm、比表面積29m2 /g)と前述のナイロン6樹脂チップを混合後、二軸押出機に供給して250℃で溶融させて引き取り冷却した後、長さ3mmにカットしてマスターペレットCを得た。
【0057】
前述のマスターペレットA、マスターペレットBと、マスターペレットC、ナイロン6樹脂チップを、全体に対してPAN系炭素繊維が24重量%、ニッケル被覆炭素繊維が8.5重量%、カーボンブラックが3.7%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.40、体積固有抵抗は0.046Ωcm、シャルピー衝撃値は25kJ/m2 、曲げ弾性率は17GPaであり、実施例1と同様の方法で測定した平均アスペクト比は68であった。
【0058】
この成形品の電磁波シールド性は50dB(装置測定限界)以上であった。
【0059】
実施例3
ニッケル被覆炭素繊維束のかわりにステンレス繊維(引張弾性率186GPa、単糸径8.0μm、単糸数5,100、繊度2040TEX、比重8.0、体積固有抵抗72×10-6Ωcm)を用いた他はマスターペレットAと同様にして、マスターペレットDを得た。
【0060】
前述のマスターペレットBと、マスターペレットD、ナイロン6樹脂チップを、全体に対してPAN系炭素繊維が24重量%、ステンレス繊維が8.5重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.44、体積固有抵抗は0.071Ωcm、シャルピー衝撃値は23kJ/m2 、曲げ弾性率は15GPaであり、実施例1と同様の方法で測定した平均アスペクト比は65であった。
【0061】
この成形品の電磁波シールド性は48dBであった。
【0062】
実施例4
前述のマスターペレットAとナイロン6樹脂チップを、全体に対してニッケル被覆炭素繊維が18重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.34、体積固有抵抗は0.040Ωcm、シャルピー衝撃値は15kJ/m2 、曲げ弾性率は10GPaであり、実施例1と同様の方法で測定した平均アスペクト比は40であった。
【0063】
この成形品の電磁波シールド性は50dB(装置測定限界)以上であった。
【0064】
実施例5
前述のマスターペレットA、マスターペレットCとナイロン6樹脂チップを、全体に対してニッケル被覆炭素繊維が18重量%、カーボンブラックが5.1重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.36、体積固有抵抗は0.036Ωcm、シャルピー衝撃値は14kJ/m2 、曲げ弾性率は10GPaであり、実施例1と同様の方法で測定した平均アスペクト比は36であった。
【0065】
この成形品の電磁波シールド性は50dB(装置測定限界)以上であった。
【0066】
実施例6
実施例1のマスターペレットBで用いたPAN系炭素繊維束のかわりに、別のPAN系炭素繊維束(引張弾性率451GPa、単糸径5.0μm、単糸数6,000、繊度223TEX、比重1.84、体積固有抵抗0.8×10-3Ωcm)を用いた他はマスターペレットBと同様にして、マスターペレットEを得た。マスターペレットBのかわりにマスターペレットEを用いた他は実施例1と同様に混合し、成形して平板状成形品を得た。この成形品の比重は1.39、体積固有抵抗は0.085Ωcm、シャルピー衝撃値は23kJ/m2 、曲げ弾性率は28GPaであり、実施例1と同様の方法で測定した平均アスペクト比は69であった。
【0067】
この成形品の電磁波シールド性は47dBであった。
【0068】
比較例1
実施例1で用いたのと同様のニッケル被覆炭素繊維束に、前述のナイロン6チップを溶融、含浸させて樹脂含浸ストランドを作製し、これをストランドカッターで長さ3mmにカットしてマスターペレットFを得た。
【0069】
マスターペレットAのかわりにマスターペレットFを用いた他は実施例1と同様に混合し、成形して平板状成形品を得た。この成形品の比重は1.38、体積固有抵抗は1.250Ωcm、シャルピー衝撃値は19kJ/m2 、曲げ弾性率は15GPaであり、実施例1と同様の方法で測定した平均アスペクト比は25であった。
【0070】
この成形品の電磁波シールド性は28dBであった。
【0071】
比較例2
前述のマスターペレットAを二軸押出機で250度で再混練しながら溶融押出ししてストランドを作製した、これをストランドカッターで長さ3mmにカットしてマスターペレットGを得た。
【0072】
マスターペレットAのかわりにマスターペレットGを用いた他は実施例1と同様に混合し、成形して平板状成形品を得た。この成形品の比重は1.38、体積固有抵抗は8500Ωcm、シャルピー衝撃値は12kJ/m2 、曲げ弾性率は11GPaであり、実施例1と同様の方法で測定した平均アスペクト比は13であった。
【0073】
この成形品の電磁波シールド性は10dBであった。
【0074】
比較例3
前述のマスターペレットA、マスターペレットBと、ナイロン6樹脂チップを、全体に対してPAN系炭素繊維が24重量%、ニッケル被覆炭素繊維が20重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.49、体積固有抵抗は0.090Ωcm、シャルピー衝撃値は5kJ/m2 、曲げ弾性率は12GPaであり、実施例1と同様の方法で測定した平均アスペクト比は19であった。
【0075】
この成形品の電磁波シールド性は45dBであった。
【0076】
比較例4
前述のマスターペレットBとナイロン6樹脂チップを、全体に対してPAN系炭素繊維が30重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.33、体積固有抵抗は0.290Ωcm、シャルピー衝撃値は31kJ/m2 、曲げ弾性率は20GPaであり、実施例1と同様の方法で測定した平均アスペクト比は72であった。
【0077】
この成形品の電磁波シールド性は37dBであった。
【0078】
比較例5
前述のマスターペレットB、マスターペレットCとナイロン6樹脂チップを、全体に対してPAN系炭素繊維が30重量%、カーボンブラックが2重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.34、体積固有抵抗は0.158Ωcm、シャルピー衝撃値は30kJ/m2 、曲げ弾性率は18GPaであり、実施例1と同様の方法で測定した平均アスペクト比は65であった。
【0079】
この成形品の電磁波シールド性は41dBであった。
【0080】
比較例6
前述のマスターペレットBとナイロン6樹脂チップを、全体に対してPAN系炭素繊維が45重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.41、体積固有抵抗は0.148Ωcm、シャルピー衝撃値は18kJ/m2 、曲げ弾性率は22GPaであり、実施例1と同様の方法で測定した平均アスペクト比は42であった。
【0081】
この成形品の電磁波シールド性は42dBであった。
【0082】
比較例7
前述のマスターペレットEとナイロン6樹脂チップを、全体に対してPAN系炭素繊維が30重量%となるように混合し、実施例1と同様に成形して平板状成形品を得た。この成形品の比重は1.34、体積固有抵抗は0.270Ωcm、シャルピー衝撃値は29kJ/m2 、曲げ弾性率は34GPaであり、実施例1と同様の方法で測定した平均アスペクト比は70であった。
【0083】
この成形品の電磁波シールド性は39dBであった。
【0084】
以上の結果を表1にまとめた。
【0085】
【表1】

Figure 0003937560
【0086】
【発明の効果】
本発明によれば、導電性繊維の効果を最大限に生かし、電子機器の筐体などの用途において必要とされる機械的特性と電磁波遮蔽性とを併せ持つ成形品を提供可能である。また本発明の成形材料を用いれば、このような成形品を通常の射出成形によって容易に成形可能である。
【図面の簡単な説明】
【図1】本発明にかかる成形材料の形状の一例を示す説明図である。
【図2】本発明にかかる成形材料の形状の他の一例を示す説明図である。
【符号の説明】
1:構成要素[A]、[B]からなる複合体
2:構成要素[C]
3:成形材料の長さ[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a discontinuous fiber reinforced resin suitable as a material for interior parts and housings of various electronic devices such as personal computers and word processors.For molding materialsDiscontinuous fiber reinforced resin that is particularly lightweight and has excellent mechanical properties and electromagnetic shielding propertiesMolding materialAnd discontinuous fiber reinforced resin moldingTo goodsRelated.
[0002]
[Prior art]
Discontinuous fiber reinforced resin has been widely used as a material for interior parts and housings of various electronic devices such as personal computers. The discontinuous fiber reinforced resin has an advantage that a molding method having excellent productivity and design flexibility such as injection molding can be obtained and a molded product having excellent mechanical properties such as rigidity and strength can be obtained.
[0003]
By the way, with the spread of electronic devices and higher performance, there are concerns about malfunctions due to radiated electromagnetic interference between devices, and there is a need for electromagnetic compatibility (Electro-magnetic Compatibility) of devices to prevent this, Electromagnetic shielding is becoming important as a material for equipment parts and housings. In addition, in order to reduce the weight of electronic devices, there is a demand for materials that are thinner, lighter, and have sufficient electromagnetic shielding properties. In order to increase the electromagnetic wave shielding property of such a molded product, the conductivity of the molded product may be increased. That is, as a physical property value, it is preferable that the volume specific resistance of the molded product is low. However, in general, discontinuous fiber reinforced resin molded products have a certain degree of conductivity if conductive fibers such as carbon fibers are used, but there is a problem that sufficient electromagnetic shielding properties cannot always be obtained.
[0004]
Originally, as a method of imparting conductivity to a resin molded product having no conductivity, a method of generating a metal thin film such as copper, nickel, aluminum, etc. on the surface of the molded product by an electroless plating method or a vacuum deposition method is known, Although widely used, there are problems in that the process and equipment are costly and the metal thin film falls off due to deformation of the molded product. Further, as a similar method, there is a method of applying a conductive paint, but the electromagnetic wave shielding property is not always sufficient, and there is a problem that the coating film is dropped off.
[0005]
On the other hand, as another method, it is known to add conductive fillers such as metal particles, carbon fibers, conductive inorganic fibers, and metal fibers to the resin. Therefore, there is an attempt to improve the conductivity of the molded product by adding these conductive fillers to the discontinuous fiber reinforced resin and to secure the necessary electromagnetic shielding properties.
[0006]
However, when carbon black is used, in order to obtain sufficient electrical conductivity, it must be added in a large amount, which increases the melt viscosity and makes molding difficult, as well as the mechanical properties of the molded product. For example, JP-A-9-87417 discloses a method of adding carbon black after making the average length of conductive fibers within an appropriate range. Even with this method, the electromagnetic wave shielding property of a thin molded product is not always sufficient.
[0007]
Also, the method of adding metal particles has the same problems as carbon black, and the specific gravity of the molded product increases, making it unsuitable for applications requiring light weight.
[0008]
Even when conductive inorganic fibers as disclosed in JP-A-8-73220 are used, sufficient electromagnetic wave shielding properties can be obtained with an addition amount within a range that does not impair the moldability and mechanical properties of the molded product. It is difficult.
[0009]
In addition, metal fibers are known as fillers that can obtain conductivity when added in a relatively small amount. For example, Japanese Patent Laid-Open No. 60-260651 discloses a method of adding metal fibers to a carbon fiber reinforced resin. However, in order to obtain a thin wall and sufficient electromagnetic wave shielding like a lightweight casing, it is necessary to add about 10% by volume or more of an expensive metal fiber, which increases costs, deteriorates moldability, and molds. Problems such as increased product specific gravity are inevitable.
[0010]
If organic fibers or carbon fibers coated with a metal such as nickel, copper, or silver are used instead of such metal fibers, the problem of increase in specific gravity of the molded product can be suppressed to some extent, but the mechanical properties and cost of the molded product are reduced. The problem is still great, and in this case as well, it is actually desired to obtain electromagnetic shielding properties with a smaller addition amount.
[0011]
Thus, even if a conductive filler is added to the discontinuous fiber reinforced resin, it is difficult to obtain a material having both necessary electromagnetic shielding properties and mechanical properties.
[0012]
In addition, when imparting conductivity to a molded product with a fibrous conductive filler, including carbon fibers and metal fibers, the conductive filler is often broken and shortened during the molding process. It is known that the longer the length of the conductive filler in the final molded product, the greater the chance of contact between the fillers and the higher the conductivity. However, it is known that if the length is too long, the dispersion of the filler is hindered in the molding process, and the conductivity is not improved as expected, or the surface quality of the molded product is deteriorated. In other words, it is important to set the molding material and molding conditions in order to properly adjust the conductive filler length by comprehensively including the conductivity of the molded product. Depending on the type of conductive filler, it is very difficult to obtain sufficient electromagnetic wave shielding properties while maintaining other characteristics even if the molded product is optimized by paying attention only to its length. It was.
[0013]
[Problems to be solved by the invention]
In light of the background of such prior art, the present invention is an excellent discontinuity having both required mechanical properties and electromagnetic wave shielding in a lightweight, thin discontinuous fiber reinforced resin molded product such as a casing of an electronic device. A fiber-reinforced resin molded article and a molding material for molding the same are provided.
[0014]
[Means for Solving the Problems]
  The present invention employs the following means in order to solve such problems. SnowBookThe discontinuous fiber reinforced resin molding material of the invention is composed of at least the following components [A], [B] and [C], and the composite of the component [A] and the component [B] C] is arranged so as to be in contact with each other.
[0015]
[A]Volume resistivity is 10 -3 Ωcm or lessConductive fiber bundle
[B]Containing phenol or a phenol substituent as a constituent,Thermoplastic polymer having a weight average molecular weight of 200 to 50,000 and a lower melt viscosity than component [C]
[C] Thermoplastic resin having a weight average molecular weight of 10,000 or more
[0016]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention, the above-mentioned problem, that is, for the discontinuous fiber reinforced resin molded product having both mechanical properties and electromagnetic shielding properties,By using a molding material for injection molding composed of a conductive fiber bundle having a specific volume resistivity and a thermoplastic polymer with good resin impregnationIt has been clarified that such problems can be solved all at once.
[0017]
  In addition, the present inventionRuShape materialCan be used to obtain discontinuous fiber reinforced resin molded products having both mechanical properties and electromagnetic shielding propertiesIt has been investigated.
[0018]
  The present inventionDiscontinuous fiber comprising at least constituent elements [A], [B] and [C], and arranged so that constituent element [C] is in contact with a composite consisting of constituent element [A] and constituent element [B] Reinforced resin molding materials and discontinuous fiber reinforced resin molded products using the sameIt is related. A discontinuous fiber reinforced resin molded product (hereinafter abbreviated as a molded product) is a discontinuous, that is, a reinforced fiber that is not so-called continuous long fiber embedded in a matrix resin. It is a part after curing, and has various forms as required. As the material, continuous continuous fiber-like reinforcing fibers may be used, but in the molded article after molding, the reinforcing fibers are discontinuous.
[0019]
  The specific gravity of the molded product is preferably 1.7 or less, more preferably 1.5 or less.The specific gravity of such a molded product is indicated by a value measured according to ASTM D792-91 by cutting out a test piece having a weight in the range of 1 to 50 g from a molded product of an arbitrary form.
[0020]
The type of discontinuous fibers in the molded product is not particularly limited, and two or more types of fibers may be used in combination. However, from the viewpoint of obtaining good mechanical properties with light weight and thin wall, at least a part thereof is carbon. It is preferably a fiber. Especially, it is more preferable that it is a polyacrylonitrile (PAN) type | system | group carbon fiber with a tensile elasticity modulus of 200 GPa-700 GPa.
[0021]
The type of resin used in the present invention is not particularly limited. Desirably, a thermoplastic resin excellent in impact resistance and capable of injection molding with high productivity is preferable. For example, polyesters such as polyethylene terephthalate, polybutylene terephthalate and liquid crystal polyester, polyolefins such as polyethylene, polypropylene and polybutylene, polyoxymethylene, polyamide, polycarbonate, polystyrene, styrene / acrylonitrile copolymer, acrylonitrile / butadiene / styrene copolymer Polymer, acrylate / styrene / acrylonitrile copolymer, polymethylene methacrylate, polyvinyl chloride, polyphenylene sulfide, polyphenylene ether, polyimide, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, etc. These copolymers, modified products and two or more kinds of branes can be used. It may also be used resin. Further, in order to further improve the impact resistance, a resin obtained by adding an elastomer or a rubber component to the above resin can also be used.
[0022]
  The molded article of the present invention has conductive fibers. Conductive fiber is specific volume resistance10 -3 It is important that it is Ωcm or less.Preferably 10-5A fibrous filler of Ωcm or less, specifically, metal fibers such as stainless steel fibers and copper fibers, PAN-based and pitch-based carbon fibers, and various metal-coated fibers. The volume resistivity of the fiber is measured according to the volume resistivity measurement method of carbon fiber specified in JIS R7601. In this case, the measurement length may be appropriately changed according to the shape and conductivity of the conductive fiber. In addition, also about the fiber comprised from a non-uniform raw material, such as a metal coating fiber, the value by the said measuring method is considered as the volume specific resistance of a fiber.
[0023]
  Conductive fiber is surface-treated with silane coupling agent, aluminate coupling agent, titanate coupling agent, urethane resin, epoxy resin, polyester resin, styrene resin, olefin resin, amide resin, terpene -In the resin molded product of the present invention that may be subjected to a bundling treatment with a phenol copolymer resin or the like, the average aspect ratio of the conductive fibers is 30 or more.Is preferredWithin the range of 40-500Is betterMore preferably, it is in the range of 50-200. The aspect ratio of the conductive fiber is defined by a dimensionless number obtained by dividing the length of the conductive fiber in the molded article after molding by the diameter. The average aspect ratio is the weighted average value. That is, when the length of each conductive fiber is Li (i = 1, 2,...) And the average diameter is D, the average aspect ratio is (ΣLi2/ ΣLi) / D.
[0024]
The thickness of the conductive fiber varies depending on the type, and the required fiber length also varies depending on the type in view of the balance of the molded product conductivity, molded product quality, moldability, and the like. The present inventor has a high conductivity imparting effect even in conductive fibers having different thicknesses as described above, and is added in such an amount that does not significantly adversely affect mechanical properties and other properties. The inventors have found that the necessary conductivity of the molded product can be obtained.
[0025]
That is, in order to increase the conductivity of the molding material, the higher the probability that the conductive fibers are in contact with each other, the more advantageous. Therefore, if the conductive fibers have the same diameter, a longer average fiber length is better. However, if a thin conductive fiber is used, the total extension per volume of the conductive fiber becomes longer, so that the effect of improving the conductivity is greater than that of a thicker fiber having the same average fiber length. Therefore, the conductivity improvement effect is largely governed by the average aspect ratio, which is a dimensionless number taking the ratio of the average fiber length to the fiber diameter.
[0026]
If the average aspect ratio is too small, the conductive fibers tend to be less conductive because the opportunities for the conductive fibers to contact each other are reduced. On the other hand, when the average aspect ratio is larger than the above preferred range, the quality of the molded product may be lowered, or the conductive fibers may not easily be dispersed in the resin in the molding process, so that the conductivity may not be effectively improved.
[0027]
The length Li of the conductive fiber can be obtained by removing the resin of the molded product by a method such as dissolving the resin with an appropriate solvent and observing the remaining fiber with a microscope or the like. For the diameter D, it is convenient to use, for example, an average diameter calculated from the fineness and density for each type of conductive fiber. The number of conductive fibers whose length is to be measured is 200 or more.
[0028]
For example, when two or more kinds of conductive fibers such as carbon fiber and metal fiber are used in combination, the average aspect ratio when 200 or more fibers are randomly extracted from all the conductive fibers is defined as the average aspect ratio of the molded product. .
[0029]
When the average aspect ratio of the molded product is smaller than the above range, both conductivity and mechanical properties tend to decrease.
[0030]
  The volume resistivity of the molded product of the present invention is 0.1 Ωcm or lessIs preferred,0.05Ωcm or lessIs betterGood. If the volume resistivity is larger than this value, the necessary electromagnetic shielding properties may not be obtained. There are several measurement methods for the volume resistivity of the molded product, but the molded product of the present invention is measured by the following method.
[0031]
That is, from a molded product having a thickness t (mm) of 1 to 4 mm, a test piece having a width w (mm) of 10 to 15 mm and a length L (mm) of 50 to 100 mm is cut out in the length direction. After polishing and cleaning the both end surfaces, a conductive paste is uniformly applied, and the electric resistance R (Ω) between the end surfaces is measured with a sufficiently accurate resistance meter. The volume resistivity (Ωcm) of the molded product is defined by 0.1 × R × t × w / L.
[0032]
When carbon fiber is used as the conductive fiber of the present invention, it is preferable because conductivity and mechanical properties can be achieved at the same time. Metal-coated fibers are preferred because the increase in specific gravity of the molded product is relatively small and the conductivity imparting effect is large. Here, the metal-coated fibers include, for example, copper fibers, stainless steel fibers, silver-coated nylon fibers, copper / nickel-coated glass fibers, nickel-coated carbon fibers, etc., and the coating method can be any of electrolytic plating, electroless plating, vapor deposition, etc. Good. Among these, nickel-coated carbon fibers are more preferable because they are excellent in balance between cost and conductivity imparting effect, and conductivity is not deteriorated over a long period of time. Considering the characteristics of the molded product comprehensively, it is also preferable to use a combination of carbon fiber and conductive fiber having higher conductivity.
[0033]
When using together carbon fiber and nickel covering carbon fiber, it is preferable that the weight content rate of the carbon fiber in a molded article exists in the range of 15%-40%. If the content is less than 15%, the mechanical properties of the molded product tend to decrease. If the content is more than 40%, there are many molding problems due to an increase in melt viscosity, and at the same time the content of nickel carbon fibers is in an appropriate range. Tends to be difficult. Further, the weight content of the nickel-coated carbon fiber is preferably in the range of 5% to 15%. If it is less than 5%, the electromagnetic shielding property of the molded product tends to be lowered, and if it exceeds 15%, there are many molding problems and at the same time the mechanical properties of the molded product tend to be lowered.
[0034]
When a known non-fibrous conductive filler such as carbon black is added to the resin molded product of the present invention, the conductivity can be further improved. In particular, in order to satisfy each required characteristic as a personal computer housing in a well-balanced manner, by adding carbon black in an appropriate ratio to a combination of carbon fiber and metal-coated carbon fiber such as nickel-coated carbon fiber. A synergistic effect of the metal-coated carbon fiber and carbon black is obtained, and extremely high conductivity is obtained, which is preferable. In this case, in order to suppress the deterioration of the mechanical properties of the molded product, the amount of carbon black added is preferably 10% or less, more preferably 4% or less, based on the entire molded product.
[0035]
According to the present invention, the Charpy impact value is 20 kJ / m while being lightweight and excellent in electromagnetic shielding properties.2As described above, a molded article having a flexural modulus of 10 GPa or more can be obtained much more easily than before. Here, the Charpy impact value is a value measured according to JIS K7077, and the flexural modulus is a value measured according to ASTM D790-96a.
[0036]
The molded article of the present invention can obtain an electromagnetic wave shielding property of 45 dB or more with a thickness of 2 mm or less. The electromagnetic wave shielding property is an electric field shielding property in a high impedance electric field space having a frequency of 500 MHz measured by TR17301A manufactured by Advantest Corporation or an equivalent product.
[0037]
As the molding method of the molded product of the present invention, any of the conventional methods for molding discontinuous fiber reinforced resin molded products may be applied, but if the resin is thermoplastic, injection molding, stamping molding, etc. Among them, injection molding has a short molding cycle and excellent productivity.
[0038]
When the molded product of the present invention is molded, in order to set the average aspect ratio to a predetermined value, the length of the conductive fiber needs to be set to a certain value or more according to the diameter. Therefore, in the injection molding, it is desirable to use a molding material containing conductive fibers, that is, a pellet that can be put into a molding machine while keeping the fiber length as long as possible. That is, for example, it is in the form of a so-called long fiber pellet including a conductive fiber bundle with a length close to the entire length of the pellet.
[0039]
On the other hand, in the present invention, in order to increase the mutual contact opportunity of the conductive fibers, it is desirable that the conductive fibers are not uniformly present in the resin in the molding process but are uniformly dispersed. However, if the conductive fiber bundle is introduced in the form of the long fiber pellets described above, it tends to be difficult for the conductive fibers to be dispersed during the molding process.
[0040]
In particular, molded products with light weight and excellent mechanical properties generally use high molecular weight resins, so the viscosity of the resin during molding is relatively high, and dispersion of conductive fibers in long fiber pellets is increasingly difficult. Become.
[0041]
  Therefore, in the present invention, a pellet having the following configuration should be used.is important.That is, a pellet in which part or all of the pellet is composed of the following three constituent elements, and is arranged so that the constituent element [C] is in contact with the composite consisting of the constituent element [A] and the constituent element [B]. It is.
[0042]
  The constituent element [A] is a continuous conductive fiber bundle, which imparts high conductivity to the molded product, and has a volume resistivity.10 -3 ΩcmIt consists of the following conductive fibers. Among them, copper fiber, stainless steel fiber, silver coated nylon fiber, copper / nickel coated glass fiber, nickel coated carbon fiberetcpreferable.
[0043]
  Component [B] isContaining phenol or a phenol substituent as a constituent,It is a thermoplastic polymer having a weight average molecular weight of 200 to 50,000 and a melt viscosity lower than that of the constituent element [C] described below. At the time of molding, the matrix resin (constituent element [C]) is a conductive fiber bundle (constituent element [ A]) is used to help impregnate, and the conductive fibers help to disperse in the matrix resin, so-called impregnation aid / dispersion aid.
[0044]
  The surface of the conductive fiber is previously wetted with a substance (component [B]) having a lower melt viscosity than the resin (component [C]) to be finally impregnated into the conductive fiber bundle [A], and the single fiber By filling the gaps between them, impregnation and dispersion can be easily achieved even if the resin [C] to be finally impregnated has a certain degree of viscosity.. TakeAs component [B]TheFor example, terpeNDerivatives of phenol or phenol substituents such as enolThe body is used.
[0045]
The component [C] is a thermoplastic resin having a weight average molecular weight of 10,000 or more, and has high physical properties such as toughness. The component [C] is impregnated into the component [A] after molding, and adheres to the conductive fiber. It is a matrix resin having a role to hold in Particularly suitable are polyamides, polyolefins, and polycarbonates, among which polyamide resins are excellent.
[0046]
Examples of the polyamide resin include aliphatic nylon such as nylon 4, nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, and nylon 46, polyhexadiamine terephthalamide, polyhexamethylenediamine isophthalamide, and xylene group-containing polyamide. Aromatic nylons such as these, copolymers thereof, modified products, and resins obtained by blending two or more of these.
[0047]
Depending on the required properties of the molded product to be obtained, the constituent elements [B] and / or [C] are flame retardant, weather resistance improving agent, antioxidant, thermal stabilizer, plasticizer, lubricant, coloring. An electrically conductive filler such as carbon black can be added. 1 and 2 schematically show the shape of a molding material containing conductive fibers of the present invention. The shape is not limited to that shown in the figure as long as the resin 2 as the component “C” is in contact with the composite 1 composed of the component [A] and the component [B]. However, as shown in FIGS. 1 and 2, the component [C] is preferably arranged so as to cover the periphery of the composite. In that case, the cross-sectional shape may be any of a circle as shown in FIG. 1 and an ellipse as shown in FIG.
[0048]
Needless to say, the length 3 of the molding material should be longer than the fiber length for setting the aspect ratio of the conductive fiber to a predetermined value after molding, preferably in the range of 1 mm to 50 mm, More preferably, it is in the range of 2 mm to 10 mm, most preferably 3 mm to 8 mm. If this length is too short, the manufacturing cost of the molding material is increased and the length of the conductive fiber is shortened, and it may be difficult to set the aspect ratio of the conductive fiber in the molded product within a predetermined range. On the other hand, if the length is too long, the openability and dispersibility of the conductive fiber tend to be lowered, and the conductivity and surface quality of the molded product may be deteriorated.
[0049]
The molding material of the present invention forms a composite by impregnating the component [A] with the component [B] heated and melted so that the viscosity is 100 poise or less, and then melts the viscosity of 500 poise or more. The component [C] is arranged so as to cover the composite and then cooled.
[0050]
Among these, as a method for forming the composite of [A] and [B], a known method of adding an oil agent, a sizing agent, and a matrix resin to the fiber bundle can be used. More specifically, a method of extruding the heated and melted component [B] at a constant speed from a die coater, passing the component [A] at a constant speed while being in contact with the coater, and then heating is adopted. The
[0051]
Next, as a method of arranging the component [C] so as to cover the composite, the composite [C] is passed through a coating die for covering an electric wire, and the melted component [C] is discharged from an extruder. The method of arrange | positioning so that the circumference | surroundings of a composite_body | complex may be covered is employ | adopted.
[0052]
【Example】
Example 1
A terpene phenol polymer having a weight average molecular weight of 460 was heated to 130 ° C. and extruded from a die coater at a constant rate. While contacting the coater part, a continuous nickel-coated carbon fiber bundle (tensile elastic modulus 225 GPa, nickel electroplating layer thickness 0.25 μm, single layer diameter including nickel layer 7.5 μm, number of single yarns 12,000, fineness 1440 TEX, specific gravity 2.7, volume resistivity 7.5 × 10-6Ωcm) was passed through at a constant speed and then heated to obtain a composite in which a nickel-coated carbon fiber bundle was impregnated with a terpene phenol polymer. Next, the composite was passed through a coating die for coating the electric wire, and a nylon 6 resin (weight average molecular weight 15000) melted at 250 ° C. was discharged from the extruder to cover the periphery of the composite. A resin-coated composite was obtained. Next, this resin-coated composite was cooled to room temperature and then cut to 3 mm with a strand cutter to obtain an injection molding master pellet A.
[0053]
On the other hand, instead of the nickel-coated carbon fiber bundle, a PAN-based carbon fiber bundle (tensile elastic modulus 230 GPa, single yarn diameter 6.9 μm, single yarn number 12,000, fineness 800 TEX, specific gravity 1.8, volume specific resistance 1.6 × 10-3Ωcm), and a master pellet B was obtained in the same manner as the master pellet A except that it was cut to 7 mm with a strand cutter.
[0054]
The above master pellet A, master pellet B, and the above-mentioned nylon 6 resin chip are mixed so that the PAN-based carbon fiber is 24% by weight and the nickel-coated carbon fiber is 8.5% by weight, and the mold is clamped. A flat molded product having an outer shape of 150 mm × 150 mm and a thickness of 1 mm was obtained by an injection molding machine having a force of 150 tf. The molded article has a specific gravity of 1.38, a volume resistivity of 0.086 Ωcm, and a Charpy impact value of 27 kJ / m.2The flexural modulus was 17 GPa, and the average aspect ratio was 70 as a result of measuring the aspect ratio by dipping in formic acid to dissolve the nylon 6 resin.
[0055]
The electromagnetic wave shielding property of this molded product was 46 dB.
[0056]
Example 2
Conductive carbon black (particle diameter 55nm, specific surface area 29m2/ G) and the above-mentioned nylon 6 resin chip were mixed, then supplied to a twin-screw extruder, melted at 250 ° C., taken down and cooled, and then cut into a length of 3 mm to obtain a master pellet C.
[0057]
The master pellet A, master pellet B, master pellet C, and nylon 6 resin chip are 24% by weight of PAN-based carbon fiber, 8.5% by weight of nickel-coated carbon fiber, and 3.% of carbon black. It mixed so that it might become 7%, and it shape | molded similarly to Example 1, and obtained the flat molded article. This molded article has a specific gravity of 1.40, a volume resistivity of 0.046 Ωcm, and a Charpy impact value of 25 kJ / m.2The flexural modulus was 17 GPa and the average aspect ratio measured by the same method as in Example 1 was 68.
[0058]
The electromagnetic wave shielding property of this molded product was 50 dB (apparatus measurement limit) or more.
[0059]
Example 3
Stainless steel fiber (tensile elastic modulus 186 GPa, single yarn diameter 8.0 μm, single yarn number 5,100, fineness 2040 TEX, specific gravity 8.0, specific volume 72 × 10 instead of nickel-coated carbon fiber bundle-6A master pellet D was obtained in the same manner as the master pellet A except that Ωcm) was used.
[0060]
The above master pellet B, master pellet D, and nylon 6 resin chip were mixed so that the PAN-based carbon fiber was 24% by weight and the stainless fiber was 8.5% by weight, and the same as in Example 1. To obtain a flat molded product. The molded article has a specific gravity of 1.44, a volume resistivity of 0.071 Ωcm, and a Charpy impact value of 23 kJ / m.2The flexural modulus was 15 GPa and the average aspect ratio measured by the same method as in Example 1 was 65.
[0061]
The electromagnetic wave shielding property of this molded product was 48 dB.
[0062]
Example 4
The aforementioned master pellet A and nylon 6 resin chip were mixed so that the nickel-coated carbon fiber was 18% by weight with respect to the whole, and molded in the same manner as in Example 1 to obtain a flat molded product. The molded article has a specific gravity of 1.34, a volume resistivity of 0.040 Ωcm, and a Charpy impact value of 15 kJ / m.2The flexural modulus was 10 GPa and the average aspect ratio measured by the same method as in Example 1 was 40.
[0063]
The electromagnetic wave shielding property of this molded product was 50 dB (apparatus measurement limit) or more.
[0064]
Example 5
The above master pellet A, master pellet C and nylon 6 resin chip were mixed so that the nickel-coated carbon fiber was 18% by weight and the carbon black was 5.1% by weight, and the same as in Example 1. Molded to obtain a flat molded product. The molded article has a specific gravity of 1.36, a volume resistivity of 0.036 Ωcm, and a Charpy impact value of 14 kJ / m.2The flexural modulus was 10 GPa, and the average aspect ratio measured by the same method as in Example 1 was 36.
[0065]
The electromagnetic wave shielding property of this molded product was 50 dB (apparatus measurement limit) or more.
[0066]
Example 6
Instead of the PAN-based carbon fiber bundle used in the master pellet B of Example 1, another PAN-based carbon fiber bundle (tensile elastic modulus 451 GPa, single yarn diameter 5.0 μm, single yarn number 6,000, fineness 223 TEX, specific gravity 1 .84, Volume resistivity 0.8 × 10-3A master pellet E was obtained in the same manner as the master pellet B, except that Ωcm) was used. Except that the master pellet E was used in place of the master pellet B, the mixture was mixed and molded in the same manner as in Example 1 to obtain a flat molded product. The molded article has a specific gravity of 1.39, a volume resistivity of 0.085 Ωcm, and a Charpy impact value of 23 kJ / m.2The flexural modulus was 28 GPa and the average aspect ratio measured by the same method as in Example 1 was 69.
[0067]
The electromagnetic wave shielding property of this molded product was 47 dB.
[0068]
Comparative Example 1
The same nylon-coated carbon fiber bundle as used in Example 1 was melted and impregnated with the above nylon 6 chip to produce a resin-impregnated strand, which was cut into a length of 3 mm with a strand cutter, and master pellet F Got.
[0069]
Except for using the master pellet F in place of the master pellet A, the mixture was mixed and molded in the same manner as in Example 1 to obtain a flat molded product. The molded article has a specific gravity of 1.38, a volume resistivity of 1.250 Ωcm, and a Charpy impact value of 19 kJ / m.2The flexural modulus was 15 GPa and the average aspect ratio measured by the same method as in Example 1 was 25.
[0070]
The electromagnetic wave shielding property of this molded product was 28 dB.
[0071]
Comparative Example 2
The above-described master pellet A was melt-extruded while being re-kneaded at 250 degrees with a twin-screw extruder to produce a strand. This was cut into a length of 3 mm with a strand cutter to obtain a master pellet G.
[0072]
Except for using the master pellet G in place of the master pellet A, the mixture was mixed and molded in the same manner as in Example 1 to obtain a flat molded product. This molded article has a specific gravity of 1.38, a volume resistivity of 8500 Ωcm, and a Charpy impact value of 12 kJ / m.2The flexural modulus was 11 GPa and the average aspect ratio measured by the same method as in Example 1 was 13.
[0073]
The molded product had an electromagnetic wave shielding property of 10 dB.
[0074]
Comparative Example 3
Master pellet A, master pellet B, and nylon 6 resin chip described above were mixed so that the PAN-based carbon fiber was 24% by weight and the nickel-coated carbon fiber was 20% by weight, as in Example 1. To obtain a flat molded product. The molded article has a specific gravity of 1.49, a volume resistivity of 0.090 Ωcm, and a Charpy impact value of 5 kJ / m.2The flexural modulus was 12 GPa and the average aspect ratio measured by the same method as in Example 1 was 19.
[0075]
The molded product had an electromagnetic wave shielding property of 45 dB.
[0076]
Comparative Example 4
The above-mentioned master pellet B and nylon 6 resin chip were mixed so that the PAN-based carbon fiber was 30% by weight with respect to the whole and molded in the same manner as in Example 1 to obtain a flat molded product. The molded article has a specific gravity of 1.33, a volume resistivity of 0.290 Ωcm, and a Charpy impact value of 31 kJ / m.2The flexural modulus was 20 GPa and the average aspect ratio measured by the same method as in Example 1 was 72.
[0077]
The molded product had an electromagnetic wave shielding property of 37 dB.
[0078]
Comparative Example 5
The above master pellet B, master pellet C and nylon 6 resin chip were mixed so that the PAN-based carbon fiber was 30% by weight and the carbon black was 2% by weight, and molded in the same manner as in Example 1. Thus, a flat molded product was obtained. This molded article has a specific gravity of 1.34, a volume resistivity of 0.158 Ωcm, and a Charpy impact value of 30 kJ / m.2The flexural modulus was 18 GPa and the average aspect ratio measured by the same method as in Example 1 was 65.
[0079]
The electromagnetic wave shielding property of this molded product was 41 dB.
[0080]
Comparative Example 6
The aforementioned master pellet B and nylon 6 resin chip were mixed so that the PAN-based carbon fiber was 45% by weight with respect to the whole, and molded in the same manner as in Example 1 to obtain a flat molded product. The molded article has a specific gravity of 1.41, a volume resistivity of 0.148 Ωcm, and a Charpy impact value of 18 kJ / m.2The flexural modulus was 22 GPa and the average aspect ratio measured by the same method as in Example 1 was 42.
[0081]
The electromagnetic wave shielding property of this molded product was 42 dB.
[0082]
Comparative Example 7
The aforementioned master pellet E and nylon 6 resin chip were mixed so that the PAN-based carbon fiber was 30% by weight with respect to the whole, and molded in the same manner as in Example 1 to obtain a flat molded product. This molded article has a specific gravity of 1.34, a volume resistivity of 0.270 Ωcm, and a Charpy impact value of 29 kJ / m.2The flexural modulus was 34 GPa and the average aspect ratio measured by the same method as in Example 1 was 70.
[0083]
The electromagnetic wave shielding property of this molded product was 39 dB.
[0084]
The above results are summarized in Table 1.
[0085]
[Table 1]
Figure 0003937560
[0086]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the molded article which combines the mechanical characteristic required in uses, such as a housing | casing of an electronic device, and electromagnetic wave shielding can be provided making the most of the effect of a conductive fiber. Moreover, if the molding material of this invention is used, such a molded article can be easily shape | molded by normal injection molding.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of the shape of a molding material according to the present invention.
FIG. 2 is an explanatory view showing another example of the shape of the molding material according to the present invention.
[Explanation of symbols]
1: Complex composed of constituent elements [A] and [B]
2: Component [C]
3: Length of molding material

Claims (3)

少なくとも次の構成要素[A]、[B]および[C]からなり、構成要素[A]と構成要素[B]からなる複合体に、構成要素[C]が接するように配置されてなることを特徴とする不連続繊維強化樹脂成形材料。
[A]体積固有抵抗値が10 −3 Ωcm以下の導電性繊維束
[B]フェノールもしくはフェノールの置換基誘導体を構成成分として含む、重量平均分子量が200〜50000でかつ構成要素[C]よりも溶融粘度が低い熱可塑性重合体
[C]重量平均分子量が10000以上である熱可塑性樹脂
It is composed of at least the following constituent elements [A], [B] and [C], and is arranged so that the constituent element [C] is in contact with the complex consisting of the constituent element [A] and the constituent element [B]. Discontinuous fiber reinforced resin molding material characterized by
[A] Conductive fiber bundle having a volume resistivity of 10 −3 Ωcm or less [B] containing phenol or a substituent derivative of phenol as a constituent component, having a weight average molecular weight of 200 to 50,000 and a component element [C] Thermoplastic polymer with low melt viscosity [C] Thermoplastic resin having a weight average molecular weight of 10,000 or more
請求項1に記載の不連続繊維強化樹脂材料を射出成形して得られる不連続繊維強化樹脂成形品。A discontinuous fiber reinforced resin molded article obtained by injection molding the discontinuous fiber reinforced resin material according to claim 1. 成形品中の導電性繊維が、50〜200の範囲の平均アスペクト比を有するものである請求項2に記載の不連続繊維強化樹脂成形品。The discontinuous fiber reinforced resin molded article according to claim 2, wherein the conductive fibers in the molded article have an average aspect ratio in the range of 50 to 200.
JP05988098A 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same Expired - Fee Related JP3937560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05988098A JP3937560B2 (en) 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05988098A JP3937560B2 (en) 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same

Publications (2)

Publication Number Publication Date
JPH11255907A JPH11255907A (en) 1999-09-21
JP3937560B2 true JP3937560B2 (en) 2007-06-27

Family

ID=13125914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05988098A Expired - Fee Related JP3937560B2 (en) 1998-03-11 1998-03-11 Discontinuous fiber reinforced resin molding material and molded product using the same

Country Status (1)

Country Link
JP (1) JP3937560B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792184B2 (en) 2002-08-21 2006-07-05 日信工業株式会社 Deburring method and automotive knuckle
EP3714003A4 (en) * 2017-11-20 2021-08-04 Ticona LLC Fiber-reinforced polymer composition for use in an electronic module
EP4209632A1 (en) * 2020-09-01 2023-07-12 Teijin Limited Resin-bonded fiber, and active material layer , electrode, and nonaqueous electrolyte secondary battery using same

Also Published As

Publication number Publication date
JPH11255907A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
US11129312B2 (en) Electronic module for use in an automotive vehicle
US11466130B2 (en) Fiber-reinforced polymer composition for use in an electronic module
EP2134783B1 (en) Electrically conducting polymeric compositions, methods of manufacture thereof and articles comprising the same
JP2011174081A (en) Thermoplastic long fiber composite and article obtained therefrom
NZ204907A (en) Thermoplastic material reinforced with stainless steel fibres
KR101397687B1 (en) High modulus composite for emi shielding
JP2003012939A (en) Carbon-containing resin composition, molding material and molded product
KR101927557B1 (en) Fabrication method for injection formed body
WO2003022026A1 (en) Method for forming electrically conductive impregnated fibers and fiber pellets
JP2002088259A (en) Molding material, its manufacturing method and its molded article
JP2017082215A (en) Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
WO1998021281A1 (en) Long glass fiber-reinforced conductive thermoplastic resin molding and process for preparing the same
US6596199B2 (en) Carbon-reinforced PC-ABS composition and articles made from same
JP3937560B2 (en) Discontinuous fiber reinforced resin molding material and molded product using the same
US20080063864A1 (en) Variable-thickness elecriplast moldable capsule and method of manufacture
JP2002317384A (en) Electrically conductive fiber bundle for filament pellet, filament pellet made thereof, and formed article produced by using the same
KR940002557B1 (en) Elongated molding granules and injection-molding process empolying them
JP4810734B2 (en) Carbon fiber reinforced resin composition, molding material and molded article thereof
JPH08294918A (en) Raw material for manufacturing frtp product and manufacture thereof
KR101374363B1 (en) Bracket for protecting lcd of portable display device
JPH11329078A (en) Conductive resin composition and its molding
JP2002179924A (en) Manufacturing method of molding material and manufacturing method of molding
JPH0725935B2 (en) Conductive plastic molding material
JPH11188797A (en) Fiber reinforced resin molded product and its manufacture
JP2004019055A (en) Carbon fiber and thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees