JPH11233245A - Gaseous mass body heating device - Google Patents

Gaseous mass body heating device

Info

Publication number
JPH11233245A
JPH11233245A JP4436598A JP4436598A JPH11233245A JP H11233245 A JPH11233245 A JP H11233245A JP 4436598 A JP4436598 A JP 4436598A JP 4436598 A JP4436598 A JP 4436598A JP H11233245 A JPH11233245 A JP H11233245A
Authority
JP
Japan
Prior art keywords
heating
gas
heating element
gas body
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4436598A
Other languages
Japanese (ja)
Other versions
JP4004128B2 (en
Inventor
Riyouhei Nanba
暸平 難波
Takeshi Yamanaka
剛 山中
Taizo Kawamura
泰三 川村
Yoshitaka Uchibori
義隆 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETA KOSAN KAKO KK
Kogi Corp
Original Assignee
SETA KOSAN KAKO KK
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETA KOSAN KAKO KK, Kogi Corp filed Critical SETA KOSAN KAKO KK
Priority to JP04436598A priority Critical patent/JP4004128B2/en
Publication of JPH11233245A publication Critical patent/JPH11233245A/en
Application granted granted Critical
Publication of JP4004128B2 publication Critical patent/JP4004128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To heat gaseous mass by bringing it to be in contact with a heat generating body in a high temperature range of 800 deg.C or more by means of electromagnetic induction heating. SOLUTION: In a gaseous mass heating device that a heating body 3 which generate heat by means of electromagnetic induction heating in a passage 2 formed by nonmagnetic substance in which a gaseous mass passes to contact the gas body passing through the passage 2 with the heating body 3 heated by electromagnetic induction heating, the heating body 3 is composed of a carbon-ceramic compound material. In another constitution, a plurality of heating stages composed of a heating body and its coil are provided in the moving direction of the gaseous mass, where the first heating stage is composed of a metal, and heating body of the following heating stages is composed of carbon-ceramic compound material. The carbon-ceramic compound material mainly contains carbon and boron carbide and silicon carbide are compounded with this. The carbon-ceramic compound material has an electric specific resistance of 800 to 3500 μΩcm. This gaseous mass heating device is applied to a deodorizing device of the gaseous mass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁誘導加熱によ
り発熱した発熱体に、ガス体を接触させて高温にする、
例えば脱臭装置に利用できるガス体昇温装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a heating element, which is heated by electromagnetic induction heating, and is brought into contact with a gas body to raise the temperature.
For example, the present invention relates to a gas body heating device that can be used for a deodorizing device.

【0002】[0002]

【従来の技術】従来のこの種の技術としては、特開平7
−35413号公報に記載のものがある。その概略の構
成は、コイルが巻かれたケースに発熱体となる金属体を
設置してあり、金属体の設置状態は加熱される液体、気
体中に浸かる様にしてあり、コイルに交流電流を流して
金属体を発熱させ、液体、気体を加熱するようになって
いる。この他にも、電磁誘導加熱を利用して気体を加熱
する技術を含む装置として、特開平8−326522号
公報、特開平9−168773号公報等に記載のものが
ある。前者はガス中の可燃性微粒子を燃焼させる用途の
電磁誘導加熱技術を含むものであり、後者は異臭成分を
分解させる用途の電磁誘導加熱技術を含むものである。
これらの技術における発熱体はいずれも金属である。
2. Description of the Related Art A conventional technique of this kind is disclosed in
Japanese Patent Application Publication No. 35413/1999. The general configuration is that a metal body that becomes a heating element is installed in a case around which the coil is wound, and the installation state of the metal body is such that it is immersed in the liquid or gas to be heated. The metal body is heated to heat and heat the liquid and gas. In addition, as an apparatus including a technique of heating a gas using electromagnetic induction heating, there are apparatuses described in JP-A-8-326522 and JP-A-9-168773. The former includes an electromagnetic induction heating technique for use in burning combustible fine particles in a gas, and the latter includes an electromagnetic induction heating technique for use in decomposing an off-flavor component.
The heating elements in these techniques are all metals.

【0003】また、脱臭に注目すると、従来の熱による
ガスの脱臭処理は、灯油、重油、ガス等の燃料を燃焼さ
せ、その火炎中に脱臭しようとするガスを導入して0.
5〜0.3秒間程度滞留させて行うのが一般的である。
これによりガス中の悪臭成分は殆どが可燃性であるか
ら、火炎による650〜800°Cの雰囲気にさらされ
ると、燃焼して脱臭状態となる。これは燃焼脱臭方式で
ある。
[0003] In addition, attention is paid to deodorization. In the conventional gas deodorization treatment by heat, a fuel such as kerosene, heavy oil, gas or the like is burned, and a gas to be deodorized is introduced into the flame.
It is common to hold for about 5 to 0.3 seconds.
Thus, most of the malodorous components in the gas are combustible, and when exposed to an atmosphere of 650 to 800 ° C. due to a flame, they burn and deodorize. This is a combustion deodorization method.

【0004】[0004]

【発明が解決しようとする課題】電磁誘導加熱を利用し
てガス体を高温に昇温させる装置は、燃料の燃焼熱を直
接利用するものに比べて、小型の装置となり、急速加熱
が可能であり、電力使用であるからクリーンである点で
好ましいものである。しかし、従来の電磁誘導加熱を利
用した装置は、いずれも発熱体が金属であるから、ガス
体を500°C程度までに昇温させる装置は容易に製作
可能であるが、600°C以上になると発熱体を少なく
とも650〜800°Cに維持する必要があり、発熱体
の耐久性の面で実用可能なものを製作することは非常に
困難である。特に酸素を含むガス体の昇温においては、
金属製発熱体の酸化による劣化が大きな問題となる。
A device for heating a gas body to a high temperature by using electromagnetic induction heating is a small device compared to a device that directly uses the combustion heat of fuel, and is capable of rapid heating. This is preferable because it uses electricity and is clean. However, in any of the conventional apparatuses using electromagnetic induction heating, since the heating element is made of metal, an apparatus for raising the temperature of a gas body to about 500 ° C. can be easily manufactured. In this case, it is necessary to maintain the heating element at least at 650 to 800 ° C., and it is very difficult to produce a heating element that is practical in terms of durability. In particular, when raising the temperature of a gas containing oxygen,
Deterioration due to oxidation of the metal heating element is a major problem.

【0005】また、ガス体昇温装置の用途の一つに脱臭
装置がある。一般的な脱臭装置に適用するときは、分解
に比較的高温を要する臭気成分、例えば、アンモニア、
フェノール、アニリン等は650〜700°Cで分解す
るから、これらの脱臭作用が可能であることが必要であ
る。従って、発熱体を少なくとも750°C以上に保持
する必要があり、更に確実、迅速な処理を行うためには
発熱体をより高温に保持することが望まれ、金属発熱体
を用いると、前述したように耐久性の面で実用性の高い
ものは得られない。
[0005] One of the uses of the gas body temperature raising device is a deodorizing device. When applied to a general deodorizer, odor components that require relatively high temperature for decomposition, for example, ammonia,
Phenol, aniline, and the like decompose at 650 to 700 ° C., so that it is necessary that these odors can be deodorized. Therefore, it is necessary to maintain the heating element at least at 750 ° C. or higher, and it is desirable to maintain the heating element at a higher temperature in order to perform the processing more reliably and quickly. As described above, a product having high practicality in terms of durability cannot be obtained.

【0006】また、従来の燃焼脱臭方式は、脱臭効果が
極めて優れている。すなわち、高濃度の悪臭の場合、吸
着法や薬液洗浄法では脱臭処理が困難であるのに対し
て、燃焼脱臭方式では、アンモニアや硫化水素などの広
範囲の悪臭成分の確実な分解が可能である。しかしなが
ら、燃料を燃焼させるために、燃料のみならず燃焼炉、
バーナ、燃料容器等の装置が必要であるから、装置が大
型になると共にエネルギー効率が悪く、燃料の燃焼によ
り環境に悪影響を与えるCO2 、CO、NOx 、SOx
等のガスの発生があり、この対策が別に必要である点で
問題があり、必ずしも適切な方法ではない。本発明は、
電磁誘導加熱を利用して、発熱体を800〜1200°
Cの高温域に昇温させてガス体と接触させることができ
るガス体昇温装置を提供することを課題とする。
[0006] Further, the conventional combustion deodorizing method has an extremely excellent deodorizing effect. In other words, in the case of high-concentration odor, it is difficult to deodorize by the adsorption method or the chemical cleaning method, while the combustion deodorization method can reliably decompose a wide range of odor components such as ammonia and hydrogen sulfide. . However, in order to burn fuel, not only fuel but also combustion furnace,
Since a device such as a burner and a fuel container is required, the size of the device becomes large, the energy efficiency is low, and CO 2 , CO, NO x , and SO x have a bad influence on the environment due to fuel combustion.
However, there is a problem in that this countermeasure is required separately, and it is not always an appropriate method. The present invention
Using electromagnetic induction heating, heat the heating element at 800-1200 °
It is an object of the present invention to provide a gas body temperature raising device that can be heated to a high temperature region of C and brought into contact with a gas body.

【0007】[0007]

【課題を解決するための手段】本発明の手段は、ガス体
が通るように非磁性体で形成された通路中に電磁誘導に
より発熱する発熱体を設置し、電磁誘導加熱した前記発
熱体に前記通路内を通るガス体を接触させるガス体昇温
装置において、前記発熱体を、炭素・セラミックス複合
材料で構成したことを特徴とする(請求項1)。
According to the present invention, a heating element which generates heat by electromagnetic induction is provided in a passage made of a non-magnetic material so that a gaseous body passes therethrough. In the gas heating apparatus for contacting a gas passing through the passage, the heating element is made of a carbon / ceramic composite material.

【0008】この手段では、発熱体が、炭素・セラミッ
クス複合材料であり、必要な耐熱性、機械的強度、電気
比抵抗を備えたものを使用すると、電磁誘導加熱により
発熱させてその温度を大気中で800〜1200°Cと
することが可能であり、その温度に長時間維持しても殆
ど劣化がない。従って、この最高温度に発熱させた発熱
体にガス体を接触させることによって1100°C程度
にまでは昇温させることができる。なお、炭素・セラミ
ックス複合材料及び製造方法は公知の技術であり、例え
ば、特開昭56−140075号公報に記載されてい
る。
In this means, when the heating element is a carbon / ceramic composite material having necessary heat resistance, mechanical strength, and electrical resistivity, the heat is generated by electromagnetic induction heating, and the temperature is raised to the atmosphere. In this case, the temperature can be 800 to 1200 ° C., and even if the temperature is maintained for a long time, there is almost no deterioration. Therefore, the temperature can be raised to about 1100 ° C. by bringing the gas into contact with the heating element that has generated heat to the maximum temperature. The carbon-ceramic composite material and the production method are known technologies, and are described in, for example, JP-A-56-140075.

【0009】また別の本発明の手段は、ガス体が通るよ
うに非磁性体で形成された通路中に電磁誘導により発熱
する発熱体を設置し、電磁誘導加熱した前記発熱体に前
記通路内を通るガス体を接触させるガス体昇温装置にお
いて、前記発熱体とそのコイルとで構成する加熱段を、
前記ガス体の移動方向に複数段設け、最初の加熱段の発
熱体を金属で構成し、次の加熱段以降の加熱段の発熱体
を炭素・セラミックス複合材料で構成したことを特徴と
する(請求項2)。
In another aspect of the present invention, a heating element which generates heat by electromagnetic induction is provided in a passage made of a non-magnetic material so that a gas body passes therethrough, and the heating element heated by electromagnetic induction is provided in the passage. In the gas body heating device for contacting a gas body passing therethrough, a heating stage comprising the heating element and its coil,
A plurality of stages are provided in the moving direction of the gas body, a heating element of a first heating stage is made of metal, and a heating element of a heating stage after the next heating stage is made of a carbon / ceramic composite material ( Claim 2).

【0010】この手段では、最初の加熱段の発熱体を金
属としたから、この段の発熱体の温度は、金属発熱体の
耐久性を考慮するとその材質に応じた限界温度があり、
例えば、その限界温度が500°C程度であるとする
と、この温度以下に保持されるように昇温を制御し、次
の加熱段以降で、炭素・セラミックス複合材料の発熱体
が800〜1200°Cに昇温するように使用する。こ
れによって比較的安価に容易に製作できる最初の加熱段
において耐久性に無理のない範囲で金属発熱体を発熱作
用させ、所定温度までガス体を加熱しておくことができ
るから、多量のガス体の昇温処理においては、次の加熱
段以降の負荷がその分低減し、最初の加熱段で一挙に最
高温度に昇温する構成よりは装置を製作しやすい。ま
た、加熱段を複数とすることにより、ガス体の昇温処理
が短時間で可能になる。
In this means, since the heating element in the first heating stage is made of metal, the temperature of the heating element in this stage has a limit temperature according to the material in consideration of the durability of the metal heating element.
For example, assuming that the limit temperature is about 500 ° C., the temperature is controlled to be maintained at or below this temperature, and the heating element of the carbon / ceramic composite material becomes 800 to 1200 ° C. after the next heating stage. Use to raise the temperature to C. This allows the metal heating element to generate heat within a reasonable range for durability in the first heating stage, which can be easily manufactured relatively inexpensively, thereby heating the gas body to a predetermined temperature. In the temperature raising process, the load after the next heating stage is reduced correspondingly, and the apparatus is easier to manufacture than a configuration in which the temperature is raised to the maximum temperature at once in the first heating stage. In addition, by using a plurality of heating stages, it is possible to perform a heating process on the gas body in a short time.

【0011】前記請求項1、又は請求項2に記載のガス
体昇温装置において、前記炭素・セラミックス複合材料
が、カーボンを主体としこれに炭化硼素および炭化珪素
を複合させたものであることを特徴とする(請求項
3)。この構成では、炭化硼素および炭化珪素の配合比
を変えることによって電気比抵抗と熱衝撃に対する強さ
が変化するから、ガス体昇温装置の目的とする性能に応
じた特性のものを使用してより耐久性や電気的効率のよ
いガス体昇温装置とすることができる。
In the gas-body heating apparatus according to claim 1 or 2, the carbon / ceramic composite material is mainly composed of carbon, and is made of a mixture of boron carbide and silicon carbide. Features (claim 3). In this configuration, the electrical resistivity and the resistance to thermal shock change by changing the compounding ratio of boron carbide and silicon carbide. It is possible to provide a gas body temperature raising device with higher durability and electrical efficiency.

【0012】前記請求項1、請求項2、又は請求項3に
記載のガス体昇温装置において、前記炭素・セラミック
ス複合材料が、800〜3500μΩcmの電気比抵抗
を有するものであることを特徴とする(請求項4)。電
気比抵抗を800μΩcm以上としたのは、これよりも
小さい抵抗値の発熱体に用いると、共振回路を流れる電
流値が高くなるため、電磁誘導加熱を行うための電気的
効率が低下し、その結果目的とする温度までの昇温が困
難となるからであり、また、3500μΩcm以下とし
たのは、炭素・セラミックス複合材料の比抵抗の値を単
純に上げるには炭化硼素、炭化窒素の配合比を増加させ
ればよいが、増加させすぎると加工性が悪くなり、また
熱衝撃にも弱くなる傾向があるためである。
[0012] In the gas body heating apparatus according to any one of claims 1, 2 and 3, the carbon / ceramic composite material has an electric resistivity of 800 to 3500 µΩcm. (Claim 4). The reason why the electric specific resistance is set to 800 μΩcm or more is that when used for a heating element having a resistance value smaller than this, the electric current value flowing through the resonance circuit becomes high, so that the electric efficiency for performing the electromagnetic induction heating is reduced. As a result, it is difficult to raise the temperature to the target temperature. The reason why the temperature is set to 3500 μΩcm or less is to simply increase the specific resistance value of the carbon / ceramic composite material by mixing the boron carbide and the nitrogen carbide with each other. Is increased, but if it is excessively increased, the processability deteriorates and the thermal shock tends to be weak.

【0013】請求項1、請求項2、請求項3、又は請求
項4に記載のガス体昇温装置において、前記炭素・セラ
ミックス複合材料で構成した発熱体を、前記通路内周に
嵌合する外周を有し前記ガス体通過用の孔を有する部材
に形成したことを特徴とする(請求項5)。この構成で
は発熱体の外周が通路内周に嵌合しているからその間を
ガス体が殆ど通過しないで、ガス体通過用の穴を通過す
るから、ガス体が均一に加熱される。
[0013] In the gas heating apparatus according to any one of claims 1, 2, 3, and 4, a heating element made of the carbon-ceramic composite material is fitted to the inner periphery of the passage. It is characterized in that it is formed in a member having an outer periphery and having the gas passage hole (claim 5). In this configuration, since the outer periphery of the heating element is fitted to the inner periphery of the passage, the gas body hardly passes therethrough, but passes through the gas passage hole, so that the gas body is uniformly heated.

【0014】請求項1、請求項2、請求項3、又は請求
項4に記載のガス体昇温装置において、前記炭素・セラ
ミックス複合材料で構成した発熱体が、複数の部材から
なり、ガス通過路を形成するように前記通路内に非磁性
体で支持されていることを特徴とする(請求項6)。こ
の構成では、ガス通過路を、屈曲させて形成したり、ガ
ス通過路内面に凹凸を設けたりすることが可能で、ガス
体通過路を通るガス体を発熱体に十分に接触させること
ができ、所定通路長さに対して効果的に昇温させること
ができる。
In the gas heating apparatus according to any one of claims 1, 2, 3 and 4, the heating element made of the carbon / ceramic composite material is composed of a plurality of members, A nonmagnetic material is supported in the passage so as to form a passage (claim 6). With this configuration, it is possible to form the gas passage by bending it, or to provide irregularities on the inner surface of the gas passage, and to allow the gas passing through the gas passage to sufficiently contact the heating element. The temperature can be effectively raised for a predetermined passage length.

【0015】請求項1、請求項2、請求項3、請求項
4、請求項5、又は請求項6に記載のガス体昇温装置
を、ガス体の脱臭装置に適用したことを特徴とする(請
求項7)。発熱体は臭気成分の分解温度以上に確実に加
熱されるから、これに臭気を含むガス体を接触させて昇
温することにより脱臭できる。
[0015] The gas body heating device according to any one of claims 1, 2, 3, 4, 5, and 6 is applied to a gas body deodorizing device. (Claim 7). Since the heating element is reliably heated to a temperature higher than the decomposition temperature of the odor component, it can be deodorized by bringing a gas containing an odor into contact with the heating element and raising the temperature.

【0016】[0016]

【発明の実施の形態】本発明の第1の実施の形態を図1
を用いて説明する。このガス体昇温装置1は、ガス体の
通路2、発熱体3、コイル4、高周波電源5等で構成さ
れている。通路2は、非磁性体で耐熱性に優れたセラミ
ックス製のパイプで、その内孔が通路2であり、例え
ば、窒化珪素で形成してある。発熱体3は、電磁誘導過
熱により発熱して高温になり且つ形を保持できる物質で
形成され、電気比抵抗が800〜3500μΩcm程度
の特殊セラミックス、例えば、電気比抵抗が2400μ
Ωcm、カーボン約60%、炭化珪素約30%、炭化硼
素約10%の炭素・セラミックス複合材料で形成され、
通路2中に設置してあり、通路2を通るガス体が十分に
接触するように、外周をパイプの内孔に嵌合させて設置
され、ガス体の通過路として軸方向に貫通した多数の穴
10を穿設されている。従って、通路2内を通るガス体
は、殆どが穴10を通るようになっているから、発熱体
3と十分に接触する。コイル4は、通路2を形成してい
るパイプの外周にコイル保護用の断熱材11、例えば、
セラミックファイバーを介して設けてある。高周波電源
5は、従来周知の構成のもの(高周波インバータ)であ
り、コイル4に接続してある。
FIG. 1 shows a first embodiment of the present invention.
This will be described with reference to FIG. The gas body temperature raising apparatus 1 includes a gas body passage 2, a heating element 3, a coil 4, a high-frequency power supply 5, and the like. The passage 2 is a ceramic pipe made of a nonmagnetic material and excellent in heat resistance. The passage 2 has an inner hole formed of, for example, silicon nitride. The heating element 3 is made of a substance that can be heated to a high temperature and maintain its shape by heating due to electromagnetic induction overheating, and has a specific electric resistance of about 800 to 3500 μΩcm, for example, an electric specific resistance of 2400 μm.
Ωcm, about 60% carbon, about 30% silicon carbide, about 10% boron carbide, formed of a carbon-ceramic composite material,
A large number of axially penetrated gas pipes are installed in the passage 2 so that their outer circumferences are fitted into the inner holes of the pipes so that the gas bodies passing through the passage 2 are in sufficient contact. A hole 10 is drilled. Therefore, most of the gas passing through the passage 2 passes through the hole 10, so that the gas comes into sufficient contact with the heating element 3. The coil 4 is provided with a heat insulating material 11 for protecting the coil on the outer circumference of the pipe forming the passage 2, for example,
It is provided via a ceramic fiber. The high frequency power supply 5 has a conventionally known configuration (high frequency inverter), and is connected to the coil 4.

【0017】コイル4に高周波電源5から電力が供給さ
れると、電磁誘導により発熱体3に渦電流が発生し、発
熱体3が発熱する。発熱体3は、比抵抗が大きいため発
熱して1200°C程度にまで昇温可能であり、耐熱性
に優れているので大気中でもほとんど劣化がなく、通路
2内に一端からガス体を適当な流速で供給すると、ガス
体は発熱体3の穴10を通り抜ける間に十分に加熱さ
れ、他端から1100°C程度に昇温して出てくる。
When power is supplied from the high frequency power supply 5 to the coil 4, eddy current is generated in the heating element 3 by electromagnetic induction, and the heating element 3 generates heat. The heating element 3 generates heat due to its large specific resistance and can be heated to about 1200 ° C., and is excellent in heat resistance, so that it hardly deteriorates even in the atmosphere. When supplied at a flow rate, the gaseous body is sufficiently heated while passing through the hole 10 of the heating element 3 and emerges from the other end at a temperature of about 1100 ° C.

【0018】第2の実施の形態を図2を用いて説明す
る。この実施の形態は、ガス体を段階的に昇温させるよ
うに構成したもので、第1の実施の形態のガス体昇温装
置1と同様なガス体昇温装置1aを後段とし、その前段
に別のガス体昇温装置20を連結したものである。ガス
体昇温装置1aは第1の実施の形態と同じ構成であるの
で同等部分に同一図面符号を付して説明を省略し、ガス
体昇温装置20について説明する。ガス体昇温装置20
は、ガス体を最終目的の温度(例えば1100°C)よ
りも低い適当な温度(例えば500°C)に加熱して後
段へ供給する構成であり、ガス体の通路22、発熱体2
3、コイル24、高周波電源5a等で構成されている。
通路22は、非磁性体で耐熱性を有するセラミックス製
のパイプで、その内孔が通路22であり、例えば、アル
ミナで形成してある。発熱体23は、前段の加熱である
から、電磁誘導に都合のよい強磁性体で、且つ耐熱性を
備えた金属としてある。すなわち、電磁誘導過熱により
発熱して600°C程度の温度になり且つ長期間劣化し
ない金属、例えば、マルテンサイト系ステンレス、ニッ
ケル合金、クロム合金等の中のいずれかで形成されてい
る。発熱体23は、通路22中に設置してあり、通路2
2を通るガス体が十分に接触するように、ガス体の通過
路として多数の小孔25を軸方向に略沿い貫通状態に穿
設してあり、外周をパイプの内孔に嵌合させて設置され
ている。従って、通路22内を通るガス体は殆どが小孔
25を通るようになっていて、発熱体23と十分に接触
する。コイル24は、通路22を形成しているパイプの
外周に設けてある。高周波電源5aは、従来周知の構成
のものであり、コイル4及びコイル24の各々に電力を
供給するように設けてある。
A second embodiment will be described with reference to FIG. In this embodiment, a gas body is heated in a stepwise manner, and a gas body heating device 1a similar to the gas body heating device 1 of the first embodiment is set as a subsequent stage, and a preceding stage. Is connected to another gas heating device 20. Since the gas body heating device 1a has the same configuration as that of the first embodiment, the same parts are denoted by the same reference numerals and the description thereof will be omitted, and the gas body heating device 20 will be described. Gas body heating device 20
Is a configuration in which the gas body is heated to an appropriate temperature (for example, 500 ° C.) lower than the final target temperature (for example, 1100 ° C.) and supplied to the subsequent stage.
3, a coil 24, a high frequency power supply 5a, and the like.
The passage 22 is a non-magnetic, heat-resistant ceramic pipe having an inner hole formed of, for example, alumina. The heating element 23 is a ferromagnetic substance that is convenient for electromagnetic induction and is a metal having heat resistance, because the heating is performed in the preceding stage. That is, it is formed of a metal which generates heat due to electromagnetic induction overheating to reach a temperature of about 600 ° C. and does not deteriorate for a long time, such as any of martensitic stainless steel, nickel alloy, chromium alloy and the like. The heating element 23 is installed in the passage 22,
A large number of small holes 25 are drilled substantially in the axial direction so as to penetrate the pipe so that the gas passing through the pipe 2 is sufficiently in contact with the pipe. is set up. Therefore, most of the gas passing through the passage 22 passes through the small holes 25 and sufficiently contacts the heating element 23. The coil 24 is provided on the outer periphery of the pipe forming the passage 22. The high-frequency power supply 5a has a conventionally well-known configuration, and is provided to supply power to each of the coil 4 and the coil 24.

【0019】コイル4、24に高周波電源5aから電力
が供給されると、電磁誘導により発熱体3、23に渦電
流が発生し、発熱体3、23が発熱する。発熱体3は、
1200°C程度にまで昇温し、発熱体23は、600
°C程度にまで昇温する。前段の通路22内に一端から
ガス体を適当な流速で供給すると、ガス体は発熱体23
の穴25を通り抜ける間に加熱され、他端から500°
C程度に昇温して出てくる。そして後段の通路2の一端
に供給され、発熱体3の穴10を通り、1100°C程
度に昇温して他端から出てくる。
When power is supplied to the coils 4 and 24 from the high-frequency power supply 5a, eddy currents are generated in the heating elements 3 and 23 by electromagnetic induction, and the heating elements 3 and 23 generate heat. The heating element 3
The temperature was raised to about 1200 ° C.
The temperature is raised to about ° C. When a gas is supplied from one end into the previous passage 22 at an appropriate flow rate, the gas is supplied to the heating element 23.
Heated while passing through the hole 25, 500 ° from the other end
The temperature rises to about C and comes out. Then, it is supplied to one end of the latter passage 2, passes through the hole 10 of the heating element 3, rises in temperature to about 1100 ° C., and emerges from the other end.

【0020】この実施の形態では、ガス体を段階的に加
熱するので、一挙に加熱する第1の実施の形態のものよ
りも最終目的の温度に昇温させる部分の、すなわち後段
の、負荷を軽減できる。これにより、確実に目的温度に
昇温できる、あるいはより多くのガス体を昇温処理でき
る装置となる。
In this embodiment, since the gas body is heated stepwise, the load of the portion for raising the temperature to the final target temperature, that is, the latter stage, compared with the first embodiment in which the gas body is heated all at once, is reduced. Can be reduced. This makes it possible to surely raise the temperature to the target temperature or to increase the temperature of more gas bodies.

【0021】第3の実施の形態を図3を用いて説明す
る。この実施の形態は、ガス体の昇温によりガス体に含
まれる臭気成分を加熱分解する構成の脱臭装置としたも
のである。この脱臭装置は、3個の加熱段を構成するガ
ス体昇温装置20、1a、1を順次連結したもので、ガ
ス体昇温装置20、1a、1は前述した実施の形態にお
けるものと同じであるから、同じ部分を同一図面符号で
示して説明を省略する。図中、30は被加熱ガス源で、
つまり悪臭発生源で、例えば、醗酵乾燥機等である。こ
の被加熱ガス源30の排気口にガス体昇温装置20側の
一端を接続し、必要に応じてファン及び風量調節ダンパ
ーを適所に設置して適当な風圧と風量で被加熱ガス体を
供給できるようにしてあり、そしてガス体が最終段のガ
ス体昇温装置1を通過する所要時間が臭気成分の加熱分
解所要時間以上となるように風量を制限してある。ま
た、各ガス体昇温装置20、1a、1の出口側には温度
センサー31、32、33を設置し、ガス体の温度を検
出できるようにしてあり、この検出温度に基いて高周波
電源5、5aからの供給電力量、被加熱ガス源30から
のガス体供給量等を調節し、各加熱段から出る加熱され
たガス体の温度を、温度センサー31で400〜500
°C、温度センサー32で800〜1100°C、温度
センサー33で800〜1100°Cが検出されるよう
に制御する。
A third embodiment will be described with reference to FIG. In this embodiment, a deodorizing apparatus is configured to heat and decompose an odor component contained in a gas body by raising the temperature of the gas body. This deodorizing device is a device in which gas heating devices 20, 1a, and 1 constituting three heating stages are sequentially connected, and the gas heating devices 20, 1a, and 1 are the same as those in the above-described embodiment. Therefore, the same parts are denoted by the same reference numerals, and description thereof is omitted. In the figure, 30 is a heated gas source,
That is, it is a source of foul odor, for example, a fermentation dryer. One end of the gas body heating device 20 side is connected to the exhaust port of the heated gas source 30, and if necessary, a fan and an air volume adjusting damper are installed at an appropriate position to supply the heated gas body at an appropriate air pressure and air volume. The amount of air is limited so that the time required for the gas body to pass through the gas body temperature raising device 1 at the final stage is equal to or longer than the time required for the thermal decomposition of the odor component. Temperature sensors 31, 32, and 33 are provided at the outlet side of each of the gas body temperature raising devices 20, 1a, and 1 so that the temperature of the gas body can be detected. 5a, the amount of gas supplied from the gas source 30 to be heated, and the like are adjusted, and the temperature of the heated gas discharged from each heating stage is measured by the temperature sensor 31 to 400 to 500.
The control is performed so that the temperature sensor 32 detects 800 to 1100 ° C., and the temperature sensor 33 detects 800 to 1100 ° C.

【0022】この実施の形態では、2段目のガス体昇温
装置1aから出る昇温したガス体の温度が800°C以
上であり、最終加熱段のガス体昇温装置1から出るガス
体の温度が800°C以上であるから、最終段では確実
に800°C以上に維持されて確実に脱臭される。
In this embodiment, the temperature of the gas body heated from the second-stage gas body temperature raising device 1a is 800 ° C. or more, and the gas body exiting from the final heating stage gas body temperature raising device 1a. Is 800 ° C. or more, the final stage surely maintains the temperature at 800 ° C. or more and reliably deodorizes.

【0023】前記実施の形態において、炭素・セラミッ
クス複合材料からなる発熱体3の形態として、円柱体の
軸方向に複数の穴を穿設したものを示したが、他の形態
であってもよく、ガス体の昇温目的によって適切なもの
を選択使用するのが良いが、要は、発熱効率がある程度
良く、通路を通過するガス体が十分に接触できる構成で
あればよい。このような発熱体の形態を通路2と共に例
示すると、図4、図5に示すようになる。図4(a)の
発熱体3a、その穴10aは第1の実施の形態における
ものと同等である。図4(b)の発熱体40、40は前
記発熱体3aを軸方向に直角な面で分断した形状であ
り、軸方向に少し離して設置したものである。分断して
軸方向に短くした形状は、貫通穴の加工が技術的に困難
である場合に有効である。また位置関係を、一方の発熱
体40に対して他方の発熱体40を回転変位させて穴4
0の位置が軸方向に見て一致しないようにすると、ガス
体の流れが乱されるから、接触時間を長くできる。
In the above embodiment, the heating element 3 made of the carbon / ceramic composite material has been described as having a plurality of holes formed in the cylindrical body in the axial direction. However, other forms may be used. It is preferable to select and use an appropriate gas body according to the purpose of raising the temperature of the gas body, but the point is that the heat generation efficiency is good to some extent and the gas body passing through the passage can be sufficiently contacted. FIGS. 4 and 5 show examples of such a heating element together with the passage 2. The heating element 3a and its hole 10a in FIG. 4A are the same as those in the first embodiment. The heating elements 40 and 40 in FIG. 4B have a shape in which the heating element 3a is divided by a plane perpendicular to the axial direction, and are disposed slightly apart in the axial direction. The shape that is divided and shortened in the axial direction is effective when processing of the through hole is technically difficult. Further, the positional relationship is determined by rotating the other heating element 40 with respect to the
If the zero positions are not matched when viewed in the axial direction, the flow of the gas body is disturbed, so that the contact time can be prolonged.

【0024】図4(c)の発熱体41は所定厚さの板状
体42の大きさの異なるものを通路2の軸方向に沿うよ
うに間隔を隔てて複数設置したものである。板状体42
に代えて、図4(d)に示す穴38を有する板状体42
a、図4(e)に示す溝37を有する板状体42bとし
てもよく、更に図示していないが板面に任意形状の凹凸
を有するものとしてもよい。図4(f)の発熱体43は
チップであり、通気孔を有するように耐熱性の非磁性体
で形成された適当な容器に収容して通路2に設置する。
図4(g)の発熱体44は丸棒がフィン46を有する構
成である。図4(g)の発熱体47は発熱体44を軸方
向に分断し、間隔を隔てて配置した構成である。
In FIG. 4C, a plurality of heating elements 41 of a predetermined thickness having different sizes are arranged at intervals along the axial direction of the passage 2. Plate 42
In place of the plate-like body 42 having the hole 38 shown in FIG.
a, a plate-like body 42b having a groove 37 shown in FIG. 4 (e), or a plate-like body having an irregular shape of an arbitrary shape (not shown). The heating element 43 in FIG. 4F is a chip, and is housed in a suitable container formed of a heat-resistant non-magnetic material so as to have a ventilation hole, and installed in the passage 2.
The heating element 44 in FIG. 4G has a configuration in which a round bar has fins 46. The heating element 47 in FIG. 4G has a configuration in which the heating element 44 is divided in the axial direction and is arranged at intervals.

【0025】また、図4のものに比べてより単純な比較
的製作しやすい形態のものとしては図5のようになる。
図5(a)の発熱体50は1本の丸棒であり、通路2の
内周面との間にガス体の通過路が形成されるように耐熱
性の非磁性体で形成された適当な支持体を介して設置す
る。図5(b)の発熱体52は複数の丸棒で構成されて
おり、この場合も適当な支持体を介して設置するのが良
いが、丸棒をまとめた状態で丁度通路2内に収まる外径
寸法として支持体を省略してもよい。複数本の丸棒は1
本よりも表面積が大きいから、熱伝達面積が大きい点で
ガス体昇温に有利である。図5(c)の発熱体53は1
本の角棒であり、各角部が通路2の内周面と丁度当接し
て支持されるようにしてもよいが、支持体を用いて支持
してもよい。図5(d)の発熱体55は間隔を隔てて配
置した複数本の角棒で構成されており、適当な支持体を
介して設置する。図示していないが、角棒に貫通孔を穿
設したものであっても良く、また角棒を多角形のものと
してもよい。図5(e)の発熱体56は1本の円筒体で
あり、必要に応じて通路2の内周面との間及び円筒体の
内孔によりガス体の通過路が形成されるように耐熱性の
非磁性体で形成された適当な支持体を介して設置し、場
合によっては支持体を省略して嵌合状態に設置してガス
体の通過路が円筒体の内孔で形成されるように設置して
もよい。図5(f)の発熱体58は複数本の円筒体で構
成されており、この場合も適当な支持体を介して設置す
るのが良いが、円筒体をまとめた状態で丁度通路2内に
収まる外径寸法として支持体を省略してもよい。図5
(g)の発熱体59は異径の円筒体を同軸的に通路2内
に支持したものであり、熱伝達面積はより大きくなる。
FIG. 5 shows a simpler and easier-to-manufacture form as compared with that of FIG.
The heating element 50 shown in FIG. 5A is a single round bar, and is formed of a heat-resistant non-magnetic material so that a gas passage is formed between the heating element 50 and the inner peripheral surface of the passage 2. It is installed through a suitable support. The heating element 52 shown in FIG. 5B is composed of a plurality of round bars. In this case, it is preferable that the heating body 52 is installed via a suitable support. The support may be omitted as the outer diameter. Multiple round bars are 1
Since the surface area is larger than that of the book, the heat transfer area is large, which is advantageous for the temperature rise of the gas body. The heating element 53 in FIG.
It may be a square bar of a book, and each corner may be supported just in contact with the inner peripheral surface of the passage 2 or may be supported using a support. The heating element 55 in FIG. 5D is composed of a plurality of square bars arranged at intervals and is installed via a suitable support. Although not shown, a rectangular rod having a through hole may be formed, or the rectangular rod may be formed in a polygonal shape. The heating element 56 in FIG. 5E is a single cylindrical body, and is heat-resistant so that a gas passage can be formed between the inner peripheral surface of the passage 2 and the inner hole of the cylindrical body as necessary. It is installed through a suitable support made of a non-magnetic material, and in some cases, the support is omitted and installed in a fitted state so that the passage of the gas body is formed by the inner hole of the cylindrical body It may be installed as follows. The heating element 58 in FIG. 5 (f) is composed of a plurality of cylinders. In this case, it is preferable to install the heating element via a suitable support. The support may be omitted as the outer diameter that can be accommodated. FIG.
The heating element 59 in (g) supports a cylindrical body of different diameter coaxially in the passage 2 and has a larger heat transfer area.

【0026】図4、図5に示した発熱体の形態の中、貫
通穴を有するものは、その穴の内周面に軸方向の溝ある
いは螺旋溝等を設けた形態であっても、丸棒、角柱、円
筒等で構成されるものは、その外表面に軸方向の溝ある
いは螺旋溝等を設けた形態であってもよい。これによっ
て熱伝達面積が大きくなる。そして更に別の形態とし
て、丸棒、角柱、円筒等のブロック状に形成して、ラン
ダムに組み合わせて構成してもよい。
Of the heat generating elements shown in FIGS. 4 and 5, those having a through hole have a circular shape even if an axial groove or a spiral groove is provided on the inner peripheral surface of the hole. What is constituted by a rod, a prism, a cylinder, or the like may have a form in which an axial groove or a spiral groove is provided on the outer surface thereof. This increases the heat transfer area. And as still another form, it may be formed in a block shape such as a round bar, a prism, a cylinder, and the like, and may be configured by being randomly combined.

【0027】[0027]

【発明の効果】請求項1に記載の発明は、電磁誘導加熱
により発熱させる発熱体に、炭素・セラミックス複合材
料を用いたから、その温度を800〜1200°Cとす
ることが可能であり、電磁誘導加熱により従来よりもガ
ス体を高温に昇温させることができる効果を奏する。請
求項2に記載の発明は、電磁誘導加熱により発熱させる
加熱段を複数段設けたから、各段に昇温負荷を分散で
き、加熱段が1のときに比べて短時間により多くのガス
体を昇温処理可能であり、また、最初の加熱段の発熱体
を金属で形成したから、その分安価に製作でき、次の加
熱段以降の発熱体を炭素・セラミックス複合材料で形成
したから、高温に昇温できて最終的には電磁誘導加熱に
より従来よりもガス体を高温に昇温させることができる
効果を奏する。請求項3に記載の発明は、ガス体昇温装
置に応じた特性のものを使用して、より耐久性や電気的
効率のよいガス体昇温装置とすることができる効果を奏
する。請求項4に記載の発明は、発熱体である炭素・セ
ラミックス複合材料が、800°Cを越える昇温が可能
で、必要な加工性、耐熱衝撃性を備えたものとなる効果
を奏する。請求項5に記載の発明は、ガス体が均一に加
熱される効果を奏する。請求項6に記載の発明は、ガス
体通過路を通るガス体を発熱体に十分に接触させること
ができ、所定通路長さに対して効果的に昇温させること
ができる効果を奏する。請求項7に記載の発明は、従来
の燃料燃焼熱を直接利用した脱臭装置と比べて、クリー
ンで、急速な立ち上がりができ、小型に形成できる利点
があり、従来の電磁誘導加熱を利用した脱臭装置と比べ
て、従来不可能であった高温域でガス体を加熱できて確
実な脱臭が可能となる効果を奏する。
According to the first aspect of the present invention, since the carbon / ceramic composite material is used for the heating element that generates heat by electromagnetic induction heating, the temperature can be set to 800 to 1200 ° C. By the induction heating, there is an effect that the gas body can be heated to a higher temperature than in the past. According to the second aspect of the invention, since a plurality of heating stages for generating heat by electromagnetic induction heating are provided, the heating load can be distributed to each stage, and more gas bodies can be produced in a shorter time than when the number of heating stages is one. Heating treatment is possible, and since the heating element in the first heating stage is made of metal, it can be manufactured at a lower cost, and since the heating element in the next heating stage and later is made of carbon-ceramic composite material, Thus, there is an effect that the gas body can be heated to a higher temperature than before by the electromagnetic induction heating. The third aspect of the invention has an effect that a gas body temperature raising device having higher durability and electrical efficiency can be obtained by using a device having characteristics corresponding to the gas temperature rising device. According to the fourth aspect of the present invention, the carbon / ceramic composite material as the heating element has an effect that the temperature can be raised to more than 800 ° C. and the required workability and thermal shock resistance are provided. The invention described in claim 5 has an effect of uniformly heating the gas body. According to the sixth aspect of the invention, the gas body passing through the gas body passage can be sufficiently brought into contact with the heating element, and the temperature can be effectively raised for a predetermined passage length. The invention according to claim 7 has the advantages that it can be formed clean, can be quickly started, and can be formed in a small size, as compared with the conventional deodorizing apparatus that directly uses the heat of fuel combustion, and has the advantage of the conventional deodorizing apparatus using electromagnetic induction heating. Compared with the apparatus, the gas body can be heated in a high-temperature region, which was impossible in the past, and an effect that reliable deodorization can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の概略の構成を示
し、(a)は主要部縦断正面図、(b)は(a)のA−
A断面図である。
FIGS. 1A and 1B show a schematic configuration of a first embodiment of the present invention, wherein FIG. 1A is a longitudinal sectional front view of a main part, and FIG.
It is A sectional drawing.

【図2】本発明の第2の実施の形態の概略の構成を示す
主要部縦断正面図である。
FIG. 2 is a vertical sectional front view of a main part showing a schematic configuration of a second embodiment of the present invention.

【図3】本発明の第3の実施の形態の概略の構成を示す
説明図である。
FIG. 3 is an explanatory diagram showing a schematic configuration of a third embodiment of the present invention.

【図4】(a)、(b)、(c)、(f)、(g)、
(h)は夫々本発明のガス体昇温装置に使用できる異な
る発熱体の形態を通路と共に示す概略斜視図、(d)、
(e)は(c)の発熱体を構成する部材の異なる変形例
を示す斜視図である。
FIG. 4 (a), (b), (c), (f), (g),
(H) is a schematic perspective view showing, together with a passage, different types of heating elements that can be used in the gas heating apparatus of the present invention.
(E) is a perspective view showing a different modification of the members constituting the heating element of (c).

【図5】(a)、(b)、(c)、(d)、(e)、
(f)、(g)は夫々本発明のガス体昇温装置に使用で
きる異なる発熱体の形態を通路と共に示す概略斜視図で
ある。
FIG. 5 (a), (b), (c), (d), (e),
(F), (g) is a schematic perspective view which shows the form of the different heat generating body which can be used for the gas body temperature raising apparatus of this invention with a path | pass, respectively.

【符号の説明】[Explanation of symbols]

1 ガス体昇温装置 1a ガス体昇温装置 2 通路 3 発熱体 4 コイル 5 高周波電源 5a 高周波電源 10 穴 10a 穴 11 断熱材 20 ガス体昇温装置 22 通路 23 発熱体 24 コイル 25 小孔 30 被加熱ガス源 31 温度センサー 32 温度センサー 33 温度センサー 39 穴 40 発熱体 41 発熱体 42 板状体 43 発熱体 44 発熱体 45 部材 46 部材 47 部材 50 発熱体 51 円柱部材 52 発熱体 53 発熱体 54 角柱部材 55 発熱体 56 発熱体 57 円筒部材 58 発熱体 59 発熱体 REFERENCE SIGNS LIST 1 gas heating device 1 a gas heating device 2 passage 3 heating element 4 coil 5 high-frequency power supply 5 a high-frequency power supply 10 hole 10 a hole 11 heat insulating material 20 gas heating device 22 passage 23 heating element 24 coil 25 small hole 30 covered Heating gas source 31 Temperature sensor 32 Temperature sensor 33 Temperature sensor 39 Hole 40 Heating element 41 Heating element 42 Plate 43 Heating element 44 Heating element 45 Member 46 Member 47 Member 50 Heating element 51 Cylindrical member 52 Heating element 53 Heating element 54 Square pillar Member 55 Heating element 56 Heating element 57 Cylindrical member 58 Heating element 59 Heating element

フロントページの続き (72)発明者 川村 泰三 大阪府摂津市学園町1−7−3 瀬田興産 化工株式会社内 (72)発明者 内堀 義隆 大阪府摂津市学園町1−7−3 瀬田興産 化工株式会社内Continued on the front page (72) Inventor Taizo Kawamura 1-7-3 Gakuen-cho, Settsu-shi, Osaka Seta Kosan Kako Co., Ltd. (72) Inventor Yoshitaka Uchibori 1-7-3 Gakuen-cho, Settsu-shi, Osaka Seta Kosan Chemical Co., Ltd. In company

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ガス体が通るように非磁性体で形成され
た通路中に電磁誘導により発熱する発熱体を設置し、電
磁誘導加熱した前記発熱体に前記通路内を通るガス体を
接触させるガス体昇温装置において、前記発熱体を、炭
素・セラミックス複合材料で構成したことを特徴とする
ガス体昇温装置。
1. A heating element which generates heat by electromagnetic induction is provided in a passage made of a non-magnetic material so that a gas body passes therethrough, and the gas body passing through the passage is brought into contact with the heating element heated by electromagnetic induction. In the gas body heating apparatus, the heating element is made of a carbon / ceramic composite material.
【請求項2】 ガス体が通るように非磁性体で形成され
た通路中に電磁誘導により発熱する発熱体を設置し、電
磁誘導加熱した前記発熱体に前記通路内を通るガス体を
接触させるガス体昇温装置において、前記発熱体とその
コイルとで構成する加熱段を、前記ガス体の移動方向に
複数段設け、最初の加熱段の発熱体を金属で構成し、次
の加熱段以降の加熱段の発熱体を炭素・セラミックス複
合材料で構成したことを特徴とするガス体昇温装置。
2. A heating element which generates heat by electromagnetic induction is provided in a passage made of a non-magnetic material so that a gas body passes therethrough, and the gas body passing through the passage is brought into contact with the heating element heated by electromagnetic induction. In the gas body temperature raising device, a plurality of heating stages composed of the heating element and its coil are provided in the moving direction of the gas body, and the heating element of the first heating stage is composed of metal, and the subsequent heating stages Wherein the heating element of the heating stage is made of a carbon / ceramic composite material.
【請求項3】 請求項1、又は請求項2に記載のガス体
昇温装置において、前記炭素・セラミックス複合材料
が、カーボンを主体としこれに炭化硼素および炭化珪素
を複合させたものであることを特徴とするガス体昇温装
置。
3. The gas-body heating apparatus according to claim 1, wherein the carbon / ceramic composite material is mainly composed of carbon, and is made of a mixture of boron carbide and silicon carbide. A gas heating apparatus characterized by the above-mentioned.
【請求項4】 請求項1、請求項2、又は請求項3に記
載のガス体昇温装置において、前記炭素・セラミックス
複合材料が、800〜3500μΩcmの電気比抵抗を
有するものであることを特徴とするガス体昇温装置。
4. The gas-body heating apparatus according to claim 1, wherein the carbon-ceramic composite material has an electrical resistivity of 800 to 3500 μΩcm. Gas body heating device.
【請求項5】 請求項1、請求項2、請求項3、又は請
求項4に記載のガス体昇温装置において、前記炭素・セ
ラミックス複合材料で構成した発熱体を、前記通路内周
に嵌合する外周を有し前記ガス体通過用の孔を有する部
材に形成したことを特徴とするガス体昇温装置。
5. The heating device according to claim 1, wherein the heating element made of the carbon / ceramic composite material is fitted on the inner periphery of the passage. A gas body heating device formed on a member having an outer periphery to be fitted and having a hole for passing the gas body.
【請求項6】 請求項1、請求項2、請求項3、又は請
求項4に記載のガス体昇温装置において、前記炭素・セ
ラミックス複合材料で構成した発熱体が、複数の部材か
らなり、ガス通過路を形成するように前記通路内に非磁
性体で支持されていることを特徴とするガス体昇温装
置。
6. The gas heating apparatus according to claim 1, wherein the heating element made of the carbon / ceramic composite material comprises a plurality of members, A gas body heating device, which is supported by a nonmagnetic material in the passage so as to form a gas passage.
【請求項7】 請求項1、請求項2、請求項3、請求項
4、請求項5、又は請求項6に記載のガス体昇温装置
を、ガス体の脱臭装置に適用したことを特徴とするガス
体昇温装置。
7. A gas body temperature increasing apparatus according to claim 1, 2, 3, 4, 5, or 6, wherein the apparatus is applied to a gas body deodorizing apparatus. Gas body heating device.
JP04436598A 1998-02-10 1998-02-10 Gas body heating device Expired - Lifetime JP4004128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04436598A JP4004128B2 (en) 1998-02-10 1998-02-10 Gas body heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04436598A JP4004128B2 (en) 1998-02-10 1998-02-10 Gas body heating device

Publications (2)

Publication Number Publication Date
JPH11233245A true JPH11233245A (en) 1999-08-27
JP4004128B2 JP4004128B2 (en) 2007-11-07

Family

ID=12689495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04436598A Expired - Lifetime JP4004128B2 (en) 1998-02-10 1998-02-10 Gas body heating device

Country Status (1)

Country Link
JP (1) JP4004128B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305074A (en) * 2001-04-03 2002-10-18 Kogi Corp Induction heating equipment
JP2002343543A (en) * 2001-05-11 2002-11-29 Kogi Corp Heating body for induction heating device
JP2003326132A (en) * 2002-05-10 2003-11-18 Takeshi Kamisa Thermal decomposition processing device for organohalogen compound
JP2007080715A (en) * 2005-09-15 2007-03-29 Omron Corp Electromagnetic induction fluid heating device
JP2007333287A (en) * 2006-06-14 2007-12-27 Fuji Electric Systems Co Ltd Induction heating type steam generating device
JP2008025764A (en) * 2006-07-24 2008-02-07 Nitta Ind Corp Thermal expansion polymer wax actuator
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
JP2010108602A (en) * 2008-10-28 2010-05-13 Shimada Phys & Chem Ind Co Ltd High-frequency induction heating device
JP2010177069A (en) * 2009-01-30 2010-08-12 Dai Ichi High Frequency Co Ltd High-temperature fluid heating device
JP2010532215A (en) * 2007-07-05 2010-10-07 バクスター・インターナショナル・インコーポレイテッド Dialysis fluid heating system
EP2354704A1 (en) * 2009-12-30 2011-08-10 Rauschert Steinbach GmbH Heating device for generating extremely hot gases
JP5877920B1 (en) * 2015-04-28 2016-03-08 株式会社ワイエイシイデンコー Rapid heating / cooling heat treatment furnace
JP2016055222A (en) * 2014-09-05 2016-04-21 健 神佐 Harmful substance decomposition device, combustion gas decomposition system, and vaporized gas decomposition system
KR20190004102A (en) * 2017-07-03 2019-01-11 재단법인 자동차융합기술원 Auxiliary Heater Apparatus In A Car

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305074A (en) * 2001-04-03 2002-10-18 Kogi Corp Induction heating equipment
JP2002343543A (en) * 2001-05-11 2002-11-29 Kogi Corp Heating body for induction heating device
JP2003326132A (en) * 2002-05-10 2003-11-18 Takeshi Kamisa Thermal decomposition processing device for organohalogen compound
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
JP2007080715A (en) * 2005-09-15 2007-03-29 Omron Corp Electromagnetic induction fluid heating device
JP2007333287A (en) * 2006-06-14 2007-12-27 Fuji Electric Systems Co Ltd Induction heating type steam generating device
JP2008025764A (en) * 2006-07-24 2008-02-07 Nitta Ind Corp Thermal expansion polymer wax actuator
JP2010532215A (en) * 2007-07-05 2010-10-07 バクスター・インターナショナル・インコーポレイテッド Dialysis fluid heating system
JP2010108602A (en) * 2008-10-28 2010-05-13 Shimada Phys & Chem Ind Co Ltd High-frequency induction heating device
JP2010177069A (en) * 2009-01-30 2010-08-12 Dai Ichi High Frequency Co Ltd High-temperature fluid heating device
EP2354704A1 (en) * 2009-12-30 2011-08-10 Rauschert Steinbach GmbH Heating device for generating extremely hot gases
JP2016055222A (en) * 2014-09-05 2016-04-21 健 神佐 Harmful substance decomposition device, combustion gas decomposition system, and vaporized gas decomposition system
JP5877920B1 (en) * 2015-04-28 2016-03-08 株式会社ワイエイシイデンコー Rapid heating / cooling heat treatment furnace
KR20190004102A (en) * 2017-07-03 2019-01-11 재단법인 자동차융합기술원 Auxiliary Heater Apparatus In A Car

Also Published As

Publication number Publication date
JP4004128B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JPH11233245A (en) Gaseous mass body heating device
US10280821B2 (en) Gaseous emissions treatment structures with electrohydrodynamic heat and mass transfer
WO1996001394A1 (en) An electrode arrangement for use in a combustion chamber
JP2010024910A (en) Exhaust emission control device
CN106640292A (en) Apparatus and method for gaseous emissions treatment with directed induction heating
JP2019173600A (en) Exhaust emission control device for internal combustion engine
CN104975919A (en) Electrically heated catalyst device and its manufacturing method
KR0145097B1 (en) Heating apparatus utilizing microwaves
JP2000065312A (en) High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material
JP2002270351A (en) Fluid heating equipment
US7332690B2 (en) Hot wire igniter
DE102015112158A1 (en) Electrically heated catalyst device
JP2002305074A (en) Induction heating equipment
JP2001203069A (en) Electromagnetic induction heating device
JP2000230714A (en) Method and system for processing combustion exhaust gas
JP2023537828A (en) Electric heating unit for exhaust gas system and its manufacturing method
JP2000018526A (en) Dioxin decomposing device
JP2018202278A (en) Catalyst device
JP3719148B2 (en) Catalyst temperature raising device for internal combustion engine
JPH0988566A (en) Exhaust emission control system
JPH0355790A (en) High-frequency heating method and its device
JP6259739B2 (en) Hazardous substance decomposition apparatus, combustion gas decomposition system, and vaporized gas decomposition system
JPH10300054A (en) Combustion decomposition treatment apparatus for waste gas
KR102313682B1 (en) A catalytic combuster with an lgniter of an induction heater and method of catalytic combustion
KR20100051076A (en) Device to improve the burning inside a free combustion compartment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term