JPH11227078A - Honeycomb core material for honeycomb sandwich structure and its manufacture - Google Patents

Honeycomb core material for honeycomb sandwich structure and its manufacture

Info

Publication number
JPH11227078A
JPH11227078A JP4467898A JP4467898A JPH11227078A JP H11227078 A JPH11227078 A JP H11227078A JP 4467898 A JP4467898 A JP 4467898A JP 4467898 A JP4467898 A JP 4467898A JP H11227078 A JPH11227078 A JP H11227078A
Authority
JP
Japan
Prior art keywords
honeycomb
inorganic fiber
fiber material
treatment
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4467898A
Other languages
Japanese (ja)
Inventor
Eiji Shinba
英治 榛葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP4467898A priority Critical patent/JPH11227078A/en
Publication of JPH11227078A publication Critical patent/JPH11227078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a honeycomb core material for a honeycomb sandwich structure in which an inorganic fiber material is secure filled in a honeycomb cell without deforming a honeycomb edge or the cell. SOLUTION: The honeycomb core material 10 for a honeycomb structure is manufactured by enbrittling an inorganic fiber material 11 such as a glass wool having a density of 10 to 150 kg/m<2> and a thickness of 8 to 200 mm, a rock wool or the like by a method of steam treating or the like, laminating it at least one surface of a honeycomb 1, pressing it by a means such as a flat plate press or the like, and filling the material 11 in a cell 3 while pushing to cut the edge of the honeycomb 1. In this case, the in the case of filling the material 11 in the cell 3 by pressing the embrittled material 11, the fiber is simply cut by the edge of the honeycomb and can be filed without engagement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハニカム芯材を鋼
板などの表面材でサンドイッチしたハニカムサンドイッ
チ構造体用のハニカム芯材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a honeycomb core material for a honeycomb sandwich structure in which a honeycomb core material is sandwiched between surface materials such as steel plates, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、ハニカム芯材を、鋼板などの表面
材でサンドイッチしたハニカムサンドイッチ構造体は、
軽量性、剛性、遮音性、断熱性等の特性が良好であるこ
とからドアや間仕切りなどの建築材料パネル、航空機、
車両等の構造用材料として広く利用されている。それら
の一つとして、遮音性、断熱性を向上させるために、ハ
ニカムセル内に樹脂発泡体や無機質繊維材料を充填した
ハニカム芯材が提案されている。
2. Description of the Related Art Conventionally, a honeycomb sandwich structure in which a honeycomb core material is sandwiched between surface materials such as a steel plate,
Due to its excellent properties such as light weight, rigidity, sound insulation and heat insulation, building materials panels such as doors and partitions, aircraft,
It is widely used as a structural material for vehicles and the like. As one of them, a honeycomb core material in which a resin foam or an inorganic fiber material is filled in a honeycomb cell in order to improve sound insulation and heat insulation has been proposed.

【0003】しかし、近年では火災の予防ため不燃化等
の要求が高まり、樹脂発泡体を充填したハニカム芯材で
は、樹脂が有機物であるため、不燃材料としての用途で
は使用に限界があった。
However, in recent years, there has been an increasing demand for incombustibility and the like for preventing fire, and the use of honeycomb core materials filled with resin foam has been limited in use as noncombustible materials because the resin is an organic substance.

【0004】一方、無機質繊維材料をハニカムセルに充
填する場合においては、不燃性の要求を満足することは
できるが、この場合、無機質繊維の形状をハニカムセル
の形状と同一にして、ハニカムセル内に無機質繊維材料
を十分に充填する工夫が必要である。
On the other hand, when a honeycomb cell is filled with an inorganic fiber material, the requirement for nonflammability can be satisfied. In this case, however, the shape of the inorganic fiber is made the same as that of the honeycomb cell, and the inside of the honeycomb cell is formed. It is necessary to devise a method of sufficiently filling the inorganic fiber material.

【0005】無機質繊維材料をハニカムセル内に充填す
る方法としては、圧下ローラーでハニカムに無機質繊維
材料を押圧し、ハニカムエッジで繊維を切断しながら無
機質繊材料を押し込む方法(特開昭53−13327
7)、無機質繊維材料をゴムベルトを介して複数の圧下
ローラーによって押圧し、ハニカムエッジで繊維を切断
しながら無機質繊維材料を押し込む方法(特開昭54−
16532)又はハニカムの上下面に薄層の無機質繊維
材料を積層した状態で上下の対向ロールにより押圧し、
ハニカムエッジで繊維を切断しながら無機質繊維材料を
押し込み、更に次段ロール又は押込みスタンプでハニカ
ムセル内に押し込む方法(特開昭54−24985、特
開昭54−16533)等が提案されている。
[0005] As a method of filling the inorganic fiber material into the honeycomb cells, a method in which the inorganic fiber material is pressed against the honeycomb by a pressing roller and the inorganic fiber material is pressed while cutting the fiber at the honeycomb edge (Japanese Patent Laid-Open No. 53-13327).
7) A method in which the inorganic fiber material is pressed by a plurality of pressure rollers via a rubber belt, and the inorganic fiber material is pressed in while cutting the fiber at the honeycomb edge (Japanese Patent Laid-Open No. 54-1979).
16532) or by pressing the upper and lower opposing rolls in a state in which a thin layer of inorganic fiber material is laminated on the upper and lower surfaces of the honeycomb,
A method has been proposed in which an inorganic fiber material is pushed while cutting fibers at a honeycomb edge, and further pushed into a honeycomb cell by a next-stage roll or a stamp (Japanese Patent Application Laid-Open Nos. 54-24985 and 54-16533).

【0006】これらの方法はいずれもハニカムに無機質
繊維材料を積層した状態で押圧力を加えることにより、
無機質繊維材料をハニカムエッジで切断してハニカムセ
ル内へ充填するものである。
In each of these methods, a pressing force is applied in a state where an inorganic fiber material is laminated on a honeycomb,
The inorganic fiber material is cut at the honeycomb edge and filled into the honeycomb cells.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の方法で実際に無機質繊維材料、特に低密度の柔軟な無
機質繊維材料を挿入する場合、プレス又はローラー等の
押圧力が無機質繊維材料を通してハニカムエッジに伝わ
りにくいため、ハニカムエッジにおける繊維の切断が円
滑にできないという問題があった。
However, when an inorganic fiber material, particularly a low-density flexible inorganic fiber material is inserted by these methods, a pressing force of a press or a roller is applied to the honeycomb edge through the inorganic fiber material. There is a problem that it is difficult to transmit the fibers at the honeycomb edge because they are hardly transmitted.

【0008】すなわち、押圧の初期段階ではハニカムエ
ッジ上の繊維材料がハニカムエッジで切断されずに引っ
掛かった状態で押し込まれ、押圧の最終段階で繊維材料
が高密度に凝集された状態で切断される。その結果、積
層した無機質繊維材料の厚さの途中までしか無機繊維材
料が切断されておらず、ハニカム芯材はハニカムの端面
上に繊維材料が引っ掛かった状態になる。この様なハニ
カム芯材を用いたサンドイッチ構造体は、ハニカム芯材
と表面材との接着力が弱いため、表面材が剥離し易いと
いう問題があった。
That is, in the initial stage of pressing, the fibrous material on the honeycomb edge is pushed in while being caught without being cut by the honeycomb edge, and in the final stage of pressing, the fibrous material is cut in a state where the fibrous material is aggregated with high density. . As a result, the inorganic fiber material is cut only halfway through the thickness of the laminated inorganic fiber material, and the honeycomb core material is in a state where the fiber material is caught on the end face of the honeycomb. The sandwich structure using such a honeycomb core material has a problem that the surface material is easily peeled off because the adhesive force between the honeycomb core material and the surface material is weak.

【0009】一方、高密度の繊維材料の場合には、押圧
力は無機質繊維材料を通してハニカムエッジに伝わり易
くなる。しかし、高密度の繊維材料は繊維材料自体の柔
軟性がないため、ハニカムの端面に対して直角方向に押
圧力を加えないと無理な圧力がハニカムエッジに加わ
る。また、高密度の繊維材料を切断するためには押圧力
をより一層上げる必要がある。このため、ハニカムエッ
ジやハニカムセルが変形して、無機質繊維材料をハニカ
ムセル内に充填することが困難であった。
On the other hand, in the case of a high-density fiber material, the pressing force is easily transmitted to the honeycomb edge through the inorganic fiber material. However, since the high-density fiber material has no flexibility of the fiber material itself, an excessive pressure is applied to the honeycomb edge unless a pressing force is applied in a direction perpendicular to the end face of the honeycomb. Further, in order to cut a high-density fiber material, it is necessary to further increase the pressing force. For this reason, the honeycomb edges and the honeycomb cells were deformed, and it was difficult to fill the inorganic fiber material into the honeycomb cells.

【0010】したがって、本発明の目的は、ハニカムエ
ッジやハニカムセルを変形することなく、無機質繊維材
料がハニカムセル内に確実に充填されたハニカムサンド
イッチ構造体用ハニカム芯材及びその製造方法を提供す
ることにある。
Accordingly, an object of the present invention is to provide a honeycomb core material for a honeycomb sandwich structure in which an inorganic fiber material is securely filled in a honeycomb cell without deforming the honeycomb edge or the honeycomb cell, and a method of manufacturing the same. It is in.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の1つは、無機質繊維材料がハニカムセル内
に充填されたハニカムサンドイッチ構造体用ハニカム芯
材において、前記無機質繊維材料が脆化無機質繊維材料
であることを特徴とするハニカムサンドイッチ構造体用
ハニカム芯材を提供するものである。
Means for Solving the Problems To achieve the above object, one aspect of the present invention is to provide a honeycomb core material for a honeycomb sandwich structure in which an inorganic fiber material is filled in a honeycomb cell, wherein the inorganic fiber material is brittle. It is intended to provide a honeycomb core material for a honeycomb sandwich structure, wherein the honeycomb core material is a modified inorganic fiber material.

【0012】本発明のもう1つは、無機質繊維材料に脆
化処理を施して得られた脆化無機質繊維材料を、ハニカ
ムの少なくとも一面に積層し、押圧して、前記無機質繊
維材料をハニカムエッジで押し切りながらハニカムセル
内に充填することを特徴とするハニカム芯材の製造方法
を提供するものである。
Another aspect of the present invention is that an embrittled inorganic fiber material obtained by subjecting an inorganic fiber material to an embrittlement treatment is laminated on at least one surface of a honeycomb and pressed to apply the inorganic fiber material to a honeycomb edge. The present invention provides a method for manufacturing a honeycomb core material, wherein the honeycomb cell is filled into the honeycomb cells while pushing down.

【0013】本発明によれば、無機繊維材料に脆化処理
を施して得られた脆化無機質繊維材料を用いることによ
り、繊維が脆く折れやすくなるため、ハニカムに押圧し
たとき、少ない力でハニカムエッジにより繊維を切断す
ることができる。このため、ハニカム端面上に繊維材料
が引っ掛からないように、繊維材料をハニカムのセル内
に確実に充填することができ、ハニカム芯材を表面材で
サンドイッチして接着した際の芯材と表面材との接着状
態を良好にすることができる。また、高密度の無機質繊
維材料でもハニカムのセル内に充填することが可能とな
り、断熱性に優れたハニカム構造体が得られる。
According to the present invention, the use of an embrittled inorganic fiber material obtained by subjecting an inorganic fiber material to an embrittlement treatment makes the fibers brittle and easily broken. The edges can cut the fibers. For this reason, the fiber material can be reliably filled into the cells of the honeycomb so that the fiber material is not caught on the honeycomb end face, and the core material and the surface material when the honeycomb core material is sandwiched and bonded with the surface material And the state of adhesion with the resin can be improved. In addition, even a high-density inorganic fiber material can be filled in a honeycomb cell, and a honeycomb structure having excellent heat insulating properties can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。本発明において、無機質繊維材料としては特
に限定はないが、グラスウール(以下GWという)、ロ
ックウール(以下RWという)等の無機質繊維からなる
ものを使用することが好ましい。この無機質繊維材料
は、例えば繊維径が1〜15μの無機質繊維にバインダ
ーを固形分として1〜20%付着させ、更に無機質繊維
を堆積させた後にバインダーを硬化させ、マット状又は
ボード状に成形する方法によって得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the present invention, the inorganic fiber material is not particularly limited. However, it is preferable to use inorganic fiber materials such as glass wool (hereinafter referred to as GW) and rock wool (hereinafter referred to as RW). The inorganic fiber material is formed, for example, by attaching a binder as a solid matter to the inorganic fiber having a fiber diameter of 1 to 15 μm as a solid content in an amount of 1 to 20%, further curing the binder after depositing the inorganic fiber, and forming the mat into a mat or a board. Can be obtained by any method.

【0015】また、無機質繊維材料を得る際、バインダ
ーは無機質繊維を堆積させた後に付与してもよいし、バ
インダーが未硬化のままとしてもよい。更に密度が10
〜150Kg/m2 、厚みが8〜200mmの無機質繊
維材料を使用することが好ましい。
When obtaining the inorganic fiber material, the binder may be applied after depositing the inorganic fibers, or the binder may be left uncured. In addition, the density is 10
It is preferable to use an inorganic fiber material having a thickness of 150 to 150 kg / m 2 and a thickness of 8 to 200 mm.

【0016】なお、マット状又はボード状の形態とされ
ている無機質繊維材料であれば、バインダーは必ずしも
必要とされないが、通常は無機系バインダー又は有機系
バインダーを用いることが好ましい。更に、有機系バイ
ンダーを用いる場合は、無機質繊維材料の不燃性を低下
させないために、熱硬化性樹脂を用いることが好まし
く、例えばフェノール樹脂、メラミン樹脂などの熱硬化
性樹脂を用いることができる。
It is to be noted that a binder is not necessarily required as long as the material is an inorganic fiber material in a mat-like or board-like form, but it is usually preferable to use an inorganic binder or an organic binder. Further, when an organic binder is used, it is preferable to use a thermosetting resin in order not to reduce the nonflammability of the inorganic fiber material. For example, a thermosetting resin such as a phenol resin and a melamine resin can be used.

【0017】本発明において、脆化無機質繊維材料と
は、上記無機質繊維材料の繊維を後述する方法で、脆く
折れ易い状態にした無機質繊維材料を意味し、脆化によ
り、この繊維をハニカム芯材に充填する際に、ハニカム
エッジで切断し易くした無機質繊維材料のことである。
なお、脆く折れ易いといった脆化の確認は、脆化無機質
繊維材料における脆化繊維の強度物性を、脆化処理の前
後で比較することによって行うことができる。例えば処
理した無機質繊維材料又はその繊維が未処理のものに比
べ、引っ張り強度等の物性が低下することを観察するこ
とにより、脆化を確認することができる。
In the present invention, the embrittled inorganic fiber material means an inorganic fiber material in which fibers of the above-mentioned inorganic fiber material are made brittle and easily broken by a method described later. This is an inorganic fiber material that is easily cut at the honeycomb edge when filling with the honeycomb fiber.
The embrittlement, such as brittleness, can be confirmed by comparing the strength physical properties of the embrittlement fiber in the embrittlement inorganic fiber material before and after the embrittlement treatment. For example, embrittlement can be confirmed by observing that the treated inorganic fiber material or its fiber has reduced physical properties such as tensile strength as compared with untreated fibers.

【0018】更に、無機質繊維材料の脆化の度合いは、
脆化処理の条件や時間によって異なり、ハニカムの材
質、形状、寸法及び押圧する方法等も考慮して、確実に
充填できるように、脆化の度合いを適宜設定する。
Further, the degree of embrittlement of the inorganic fiber material is as follows:
The degree of embrittlement is appropriately set in consideration of the material, shape, dimensions, pressing method, and the like of the honeycomb, and the degree of embrittlement is appropriately set in consideration of the conditions and time of the embrittlement treatment.

【0019】本発明において、無機質繊維材料を脆化さ
せる方法としては、温水又は熱水処理、通常の水蒸
気処理、加圧雰囲気下での水蒸気処理、水蒸気処理
において水蒸気の水素イオン指数を変更させた処理、
無機繊維材料を酸性もしくはアルカリ性の溶液に接触さ
せる処理、非水蒸気による高温加熱処理等から選ばれ
た少なくとも1種を適宜採用することができ、特に限定
されないが、、、の方法が好ましく採用され、
の方法が最も好ましい。
In the present invention, as a method of embrittlement of the inorganic fiber material, the hydrogen ion index of steam is changed in hot or hot water treatment, ordinary steam treatment, steam treatment under a pressurized atmosphere, and steam treatment. processing,
At least one selected from a treatment in which the inorganic fiber material is brought into contact with an acidic or alkaline solution, a high-temperature heat treatment with non-steam, and the like can be appropriately adopted, and is not particularly limited.
Is most preferred.

【0020】上記において、の温水又は熱水処理は、
無機質繊維材料に温水又は熱水を浸水させることにより
行うことできる。
In the above, the hot or hot water treatment of
It can be carried out by immersing warm water or hot water in the inorganic fiber material.

【0021】また、の通常の水蒸気処理は、無機質繊
維材料に水蒸気を接触させることにより行うことでき
る。水蒸気処理による無機質繊維材料の脆化は、水蒸気
を無機質繊維材料に接触させる方法であれば特に限定さ
れないが、好ましくは無機質繊維材料の下面、側面およ
び上面の少なくとも1面に、飽和蒸気圧の状態の水蒸気
を吹き続けて脆化させる。水蒸気処理は、浸水や脱水時
における無機質繊維材料の形状の変形が少なく、乾燥が
容易で、コストがあまりかからないという利点がある。
The ordinary steam treatment can be carried out by bringing steam into contact with the inorganic fiber material. The embrittlement of the inorganic fiber material by the steam treatment is not particularly limited as long as it is a method of bringing water vapor into contact with the inorganic fiber material. Preferably, at least one of the lower surface, the side surface, and the upper surface of the inorganic fiber material is in a state of a saturated vapor pressure. To continue emulsification. The steam treatment has the advantage that the shape of the inorganic fiber material during immersion or dehydration is less deformed, drying is easy, and the cost is low.

【0022】更に、脆化時間を短縮させるため、の加
圧雰囲気下での水蒸気処理がより好ましく採用される。
この方法は、加圧蒸気雰囲気中に無機質繊維材料を存在
させる方法であれば特に限定はされないが、オートクレ
ーブのような耐圧性のある密封容器に無機質繊維材料を
入れ、加圧蒸気の条件を温度が80℃〜300℃の飽和
蒸気圧に設定することが好ましい。更に、脆化促進のた
めには100℃以上の飽和蒸気圧にし、かつ密封容器の
耐圧性、耐久性の観点から200℃以下の飽和蒸気圧に
することが好ましい。また、脆化処理の時間は飽和蒸気
圧の条件により適宜設定することができる。なお、飽和
蒸気は密封された状態での温度と圧力との相関関係で決
まるものである。
Further, in order to shorten the embrittlement time, steam treatment in a pressurized atmosphere is more preferably adopted.
This method is not particularly limited as long as the inorganic fiber material is present in a pressurized steam atmosphere, but the inorganic fiber material is placed in a pressure-resistant sealed container such as an autoclave, and the condition of the pressurized steam is adjusted to a temperature. Is preferably set to a saturated vapor pressure of 80 ° C to 300 ° C. Further, in order to promote embrittlement, the saturated vapor pressure is preferably set to 100 ° C. or higher, and the saturated vapor pressure is set to 200 ° C. or lower from the viewpoint of pressure resistance and durability of the sealed container. Further, the time of the embrittlement treatment can be appropriately set according to the conditions of the saturated vapor pressure. The saturated steam is determined by the correlation between temperature and pressure in a sealed state.

【0023】また、の水蒸気処理において水蒸気の水
素イオン指数を変更させた処理、及びの無機繊維材料
を酸性もしくはアルカリ性の溶液に接触させる処理は、
水蒸気を用いた処理に比べて脆化を更に促進させる効果
がある。特に、高密度の無機質繊維材料、厚みのある無
機質繊維材料又は無機質繊維の脆化時間を短縮する場合
は、これらの方法が好ましい。この場合、無機質繊維材
料の性質に応じて、脆化を促進させるように水素イオン
指数を適宜選択し処理を施す。
In the steam treatment, the treatment in which the hydrogen ion index of steam is changed, and the treatment in which the inorganic fiber material is brought into contact with an acidic or alkaline solution,
There is an effect of further promoting embrittlement as compared with the treatment using steam. In particular, when the embrittlement time of a high-density inorganic fiber material, a thick inorganic fiber material, or an inorganic fiber is to be shortened, these methods are preferable. In this case, depending on the properties of the inorganic fiber material, the treatment is performed by appropriately selecting the hydrogen ion index so as to promote embrittlement.

【0024】更に、の非水蒸気による高温加熱処理と
は、無機質繊維材料を電気炉等を用いて高温に加熱する
処理のことであり、300〜600℃の温度で加熱する
のが好適である。
Further, the high-temperature heating treatment using non-steam refers to a treatment in which the inorganic fiber material is heated to a high temperature using an electric furnace or the like, and is preferably heated at a temperature of 300 to 600 ° C.

【0025】更にまた、上述したような脆化処理をより
効果的にするため、無機質繊維材料自体の耐風化性、耐
水性を低下させたうえで、前述の脆化処理を施すことも
できる。無機質繊維材料自体の耐風化性、耐水性を低下
させる方法としては、通常、無機質繊維材料の原料組成
を耐風化性、耐水性に劣る組成にする。例えば、通常G
WはAガラスを使用しているが、Aガラスに含まれてい
るホウ酸成分の割合を少なくすることで、耐風化性、耐
水性を低下させることが可能である。
Furthermore, in order to make the above-mentioned embrittlement treatment more effective, the above-mentioned embrittlement treatment can be carried out after reducing the weathering resistance and water resistance of the inorganic fiber material itself. As a method for reducing the weathering resistance and water resistance of the inorganic fiber material itself, usually, the raw material composition of the inorganic fiber material is made to have a composition inferior in weathering resistance and water resistance. For example, usually G
Although W uses A glass, it is possible to reduce weathering resistance and water resistance by reducing the ratio of the boric acid component contained in A glass.

【0026】本発明におけるハニカムとは、例えば図1
に示すように、連続する紙や金属などからなる隔壁2に
よって仕切られたセル3を有する形態のものを意味す
る。このハニカム1のセル3の形状としては、平面的に
見て六角形、四角形、三角形等の多角形をなすものが好
ましく採用される。このようなハニカムとしては、ペー
パーハニカム、アルミ等の金属ハニカム、セラミックハ
ニカムなどが挙げられるが、使用するハニカムの材質、
形状、寸法(セルサイズ:JIS−A6931、ハニカ
ムの厚さ、隔壁厚等)は、無機質繊維材料の脆化の度合
いを変えることで各種ハニカムへ繊維材料を充填するこ
とができるので、特に限定されない。
The honeycomb in the present invention is, for example, as shown in FIG.
As shown in FIG. 1, this means a configuration having cells 3 separated by a partition wall 2 made of continuous paper, metal, or the like. As the shape of the cells 3 of the honeycomb 1, those having a polygonal shape such as a hexagon, a quadrangle or a triangle when viewed in plan are preferably adopted. Examples of such a honeycomb include a paper honeycomb, a metal honeycomb such as aluminum, a ceramic honeycomb, and the like.
The shape and dimensions (cell size: JIS-A6931, honeycomb thickness, partition wall thickness, etc.) are not particularly limited because various types of honeycomb can be filled with the fiber material by changing the degree of embrittlement of the inorganic fiber material. .

【0027】しかし、より好ましい実施形態としては、
図1中に示したセルサイズ4については、5〜200m
mが好ましい。セルサイズが200mmを超えるとハニ
カム構造体の強度が得られず、5mm未満だと繊維が入
りにくいため好ましくない。
However, in a more preferred embodiment,
The cell size 4 shown in FIG.
m is preferred. When the cell size exceeds 200 mm, the strength of the honeycomb structure is not obtained, and when the cell size is less than 5 mm, the fibers hardly enter, which is not preferable.

【0028】また、ハニカムの厚さについては、10〜
400mmが好ましい。ハニカムの厚さが400mmを
超えると、この厚みに対応する無機質繊維材料がなく、
10mm未満だとサンドイッチパネルの断熱効果が得ら
れないため好ましくない。
The thickness of the honeycomb is 10 to 10 mm.
400 mm is preferred. When the thickness of the honeycomb exceeds 400 mm, there is no inorganic fiber material corresponding to this thickness,
If it is less than 10 mm, the heat insulation effect of the sandwich panel cannot be obtained, which is not preferable.

【0029】更に、隔壁厚については、0.02〜5m
mが好ましい。隔壁厚が5mmを超えると繊維が切断し
にくくなり、0.02mm未満だとハニカムエッジが破
損する可能性が大きいため好ましくない。
Further, regarding the thickness of the partition wall, 0.02 to 5 m
m is preferred. When the partition wall thickness exceeds 5 mm, the fibers are hardly cut, and when the partition wall thickness is less than 0.02 mm, there is a high possibility that the honeycomb edge is broken, which is not preferable.

【0030】なお、得られるハニカムの圧縮強度、断熱
性等は、所望の特性となるように適宜設定できるが、押
圧した場合にハニカムセルの変形を防止し、無機質繊維
材料の充填をより確実にするために、ハニカムの圧縮強
度が3.0kgf/cm2 以上にすることが好ましい。
例えば、高密度の無機質繊維材料の場合では圧縮強度の
比較的高いハニカムを選択することが好ましいが、圧縮
強度の低いハニカムであっても、無機質繊維材料の脆化
を十分に行うことで、ハニカムセル内に繊維を充填する
ことが可能である。
The compressive strength, heat insulating property and the like of the obtained honeycomb can be appropriately set so as to have desired characteristics. However, when pressed, the honeycomb cell is prevented from being deformed, and the filling of the inorganic fiber material is more reliably performed. Therefore, it is preferable that the honeycomb has a compressive strength of 3.0 kgf / cm 2 or more.
For example, in the case of a high-density inorganic fiber material, it is preferable to select a honeycomb having a relatively high compressive strength. However, even in the case of a honeycomb having a low compressive strength, it is sufficient to sufficiently embrittle the inorganic fiber material to obtain a honeycomb. It is possible to fill the cells with fibers.

【0031】本発明のハニカム芯材は、上記ハニカムの
少なくとも一面に、前記脆化無機質繊維材料を積層し、
無機質繊維材料をハニカム端面に押圧することにより、
無機質繊維材料をハニカムの隔壁のエッジで押し切りな
がら、ハニカムのセル内に充填することによって製造す
ることができる。脆化無機質繊維材料をハニカムに押圧
する方法としては、軟質弾性体等で形成されたロールに
より押圧する方法、平板プレスなどの簡易プレスで押圧
する方法、ベルトコンベヤと該ベルトコンベヤ内に配置
された複数のローラで押圧する方法など、各種の方法を
採用することができる。
[0031] The honeycomb core material of the present invention is obtained by laminating the embrittled inorganic fiber material on at least one surface of the honeycomb,
By pressing the inorganic fiber material against the honeycomb end face,
The inorganic fiber material can be manufactured by filling in the cells of the honeycomb while pushing off the edges of the partition walls of the honeycomb. As a method of pressing the embrittled inorganic fiber material to the honeycomb, a method of pressing with a roll formed of a soft elastic body or the like, a method of pressing with a simple press such as a flat plate press, a belt conveyor and disposed in the belt conveyor Various methods such as a method of pressing with a plurality of rollers can be adopted.

【0032】こうして得られた本発明のハニカム芯材
は、例えば図2に示すように、ハニカム1のセル3内
に、無機質繊維材料11が充填されてできている。そし
て、このハニカム芯材の両面に表面材12を接着等の手
段により接合することにより、ハニカムサンドイッチ構
造体10が得られる。なお、表面材12としては、鋼
板、アルミ板、FRP、無機質板等が用いられる。この
ハニカムサンドイッチ構造体10は、例えば建築、土木
用の断熱遮音パネル、自動車、飛行機等のボディ、冷
蔵、冷凍室等の断熱壁など、幅広い用途に利用すること
ができる。
The thus obtained honeycomb core material of the present invention is made by filling the inorganic fiber material 11 into the cells 3 of the honeycomb 1 as shown in FIG. 2, for example. Then, the surface material 12 is bonded to both surfaces of the honeycomb core material by means such as adhesion, whereby the honeycomb sandwich structure 10 is obtained. In addition, as the surface material 12, a steel plate, an aluminum plate, FRP, an inorganic plate, or the like is used. The honeycomb sandwich structure 10 can be used for a wide range of applications, for example, heat insulation sound insulation panels for construction and civil engineering, bodies such as automobiles and airplanes, and heat insulation walls such as refrigeration and freezer compartments.

【0033】なお、本発明の実施に際して、脆化無機繊
維材料のみを充填したハニカム芯材以外に、例えば、ハ
ニカム芯材の片面から脆化無機繊維材料を充填し、反対
面からは発泡樹脂を充填するといった、脆化無機繊維材
料と発泡樹脂とを併用することも可能である。
In practicing the present invention, in addition to the honeycomb core material filled only with the brittle inorganic fiber material, for example, the brittle inorganic fiber material is filled from one side of the honeycomb core material, and the foamed resin is filled from the other side. It is also possible to use a brittle inorganic fiber material and a foamed resin together, such as filling.

【0034】[0034]

【実施例】実施例1 フェノール樹脂バインダーを固形分でGWに対し4重量
%付与し、加熱硬化させた、密度40kg/m3 、厚み
12mmのボード状のGWを、オートクレーブ中で、1
10℃、1.5kg/cm2 の飽和蒸気圧に設定し、3
時間水蒸気処理した後、水分がなくなるまで常温で放置
して脆化GWを得た。この脆化GWを、不燃ハニカム
(常磐電気製、GRANDEX(商標)、主成分:ケイ
酸マグネシウム、セルサイズ(JIS−A6931):
20mm、厚み:25mm、圧縮強度:4.0kgf/
cm2 )の上下に積層した。
Example 1 A board-shaped GW having a density of 40 kg / m 3 and a thickness of 12 mm, which was provided with a phenol resin binder at a solid content of 4% by weight based on the GW and cured by heating, was placed in an autoclave.
Set to a saturated vapor pressure of 1.5 kg / cm 2 at 10 ° C.
After steam treatment for an hour, the embrittled GW was obtained by being left at room temperature until water disappeared. This embrittled GW was prepared using a non-combustible honeycomb (GRANEX (trademark), manufactured by Joban Electric Co., Ltd., main component: magnesium silicate, cell size (JIS-A6931):
20 mm, thickness: 25 mm, compressive strength: 4.0 kgf /
cm 2 ).

【0035】充填後にGWの反発でハニカム端面より外
に押し出されることを想定し、GWをハニカム端面より
更に内部に充填する必要があるため、平板プレスの押圧
面に5mm厚の発泡ウレタンシートを設け、プレス押圧
面の上下の間隔(発泡ウレタンシート厚みを除く)を2
7mmに設定し、積層したGWを上下から圧力を3kg
f/cm2 で約10秒間押圧し、ハニカム芯材を得た。
得られた芯材の両面に接着剤を用いて厚さ0.4mmの
鋼板を接合し、ハニカムサンドイッチ構造体を得た。
Assuming that the GW is pushed out of the honeycomb end face by repulsion after filling, it is necessary to fill the GW further from the honeycomb end face. Therefore, a urethane foam sheet having a thickness of 5 mm is provided on the pressing face of the flat plate press. , The distance above and below the pressing surface (excluding the thickness of the urethane foam sheet)
7mm, pressure of 3kg from top and bottom of laminated GW
It was pressed at f / cm 2 for about 10 seconds to obtain a honeycomb core material.
A steel plate having a thickness of 0.4 mm was joined to both surfaces of the obtained core using an adhesive to obtain a honeycomb sandwich structure.

【0036】実施例2 ボード状のGWの密度を80kg/m3 にし、水蒸気処
理の時間を4時間にする以外は、実施例1と同様にして
ハニカムサンドイッチ構造体を得た。
Example 2 A honeycomb sandwich structure was obtained in the same manner as in Example 1 except that the density of the board-shaped GW was set to 80 kg / m 3 and the time of the steam treatment was set to 4 hours.

【0037】実施例3 ボード状のGWの密度を110kg/m3 、水蒸気処理
の時間を6時間にする以外は、実施例1と同様にしてハ
ニカムサンドイッチ構造体を得た。
Example 3 A honeycomb sandwich structure was obtained in the same manner as in Example 1, except that the density of the board-shaped GW was set to 110 kg / m 3 and the time of the steam treatment was changed to 6 hours.

【0038】比較例1 実施例1のGWを水蒸気処理をせずに、実施例1と同様
にハニカムに充填し、ハニカムサンドイッチ構造体を得
た。
Comparative Example 1 The GW of Example 1 was filled in a honeycomb in the same manner as in Example 1 without performing the steam treatment, to obtain a honeycomb sandwich structure.

【0039】比較例2 実施例2のGWを水蒸気処理をせずに、実施例1と同様
にハニカムに充填し、ハニカムサンドイッチ構造体を得
た。
Comparative Example 2 The GW of Example 2 was filled in a honeycomb in the same manner as in Example 1 without performing steam treatment to obtain a honeycomb sandwich structure.

【0040】比較例3 実施例3のGWを水蒸気処理をせずに、実施例1と同様
にハニカムに充填し、ハニカムサンドイッチ構造体を得
た。
Comparative Example 3 The GW of Example 3 was filled in a honeycomb in the same manner as in Example 1 without performing steam treatment, to obtain a honeycomb sandwich structure.

【0041】比較例4 実施例1で用いた不燃ハニカムの両面に接着剤を用いて
鋼板を接着したハニカムサンドイッチ構造体を得た。
Comparative Example 4 A honeycomb sandwich structure in which steel sheets were bonded to both surfaces of the non-combustible honeycomb used in Example 1 using an adhesive was obtained.

【0042】実施例1〜3及び比較例1〜3のハニカム
芯材について、ハニカム端面上に残存したGWの厚さ
(ハニカム端面上残存GW厚)を測定した結果、及び実
施例1〜3及び比較例1〜4のハニカムサンドイッチ構
造体について、ハニカム芯材と鋼板との接着性(比較例
4の無機質繊維材料を充填しないハニカムサンドイッチ
パネル構造体の接着性を○とし、これを基準として接着
性が、良好なものを◎、やや劣るものを△、劣るものを
×とした。)、ハニカムサンドイッチ構造体の熱伝導率
を測定した結果を表1に示す。
With respect to the honeycomb core materials of Examples 1 to 3 and Comparative Examples 1 to 3, the thickness of the GW remaining on the end face of the honeycomb (the thickness of the remaining GW on the end face of the honeycomb) was measured. With respect to the honeycomb sandwich structures of Comparative Examples 1 to 4, the adhesiveness between the honeycomb core material and the steel plate (the adhesiveness of the honeycomb sandwich panel structure not filled with the inorganic fiber material of Comparative Example 4 is represented by ○, and the adhesiveness is determined based on this. However, the results of the measurement of the thermal conductivity of the honeycomb sandwich structure are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】表1の結果から、比較例1、2では、ハニ
カムセル内にGWを完全に充填できず、芯材に鋼板を接
着させた場合、ハニカム端面上に残存したGWが鋼板と
接着している状態となり、接着が不十分なハニカムサン
ドイッチ構造体であった。比較例3では、ハニカムセル
の変形がおこりGWを充填することが不可能であり、こ
のため、ハニカムサンドイッチ構造体の作成が困難であ
った。
From the results shown in Table 1, in Comparative Examples 1 and 2, the GW could not be completely filled in the honeycomb cells, and when the steel sheet was bonded to the core material, the GW remaining on the honeycomb end face was bonded to the steel sheet. And a honeycomb sandwich structure with insufficient adhesion. In Comparative Example 3, the honeycomb cells were deformed and the GW could not be filled, and therefore, it was difficult to form the honeycomb sandwich structure.

【0045】一方、実施例1〜3では、ハニカムセル内
にGWを完全に充填することが可能であった。芯材と鋼
板の接着は、鋼板がハニカムエッジと充填されたGWに
接着しているため、接着性が良好なサンドイッチパネル
を得ることができた。
On the other hand, in Examples 1 to 3, it was possible to completely fill the honeycomb cells with the GW. As for the adhesion between the core material and the steel plate, since the steel plate was bonded to the honeycomb edge and the filled GW, a sandwich panel having good adhesiveness could be obtained.

【0046】また、高密度のGWを充填することが可能
であり、熱伝導率が低く、断熱性の高いサンドイッチパ
ネル構造体を得ることができた。
In addition, it was possible to fill a high density GW, to obtain a sandwich panel structure having a low thermal conductivity and a high heat insulating property.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
ハニカムセル内への充填材として、脆化された無機繊維
材料を使用することにより、繊維が脆く折れやすくなる
ので、これを押圧することにより、(1)少ない力でハ
ニカムエッジで繊維を切断することができる、(2)低
密度及び高密度の無機質繊維材料をより確実にハニカム
エッジで切断し、充填することができる、(3)無機質
繊維材料の脆化処理の度合いを調整することができるた
め、ハニカムの特性に対応させて無機質繊維材料を選択
し繊維を充填することができる、(4)ハニカム端面上
に繊維材料が引っ掛からないため、表面材と芯材の接着
状態が良好となり、表面材と無機質繊維材料及びハニカ
ムエッジが接着しているため強固な接着強度が得られ
る、(5)従来の方法では得られなかった高密度の無機
質繊維材料でも充填することが可能となるため、断熱性
の優れたハニカムサンドイッチ構造体が得られる、とい
う優れた効果が達成される。
As described above, according to the present invention,
By using a brittle inorganic fiber material as a filler in the honeycomb cell, the fiber becomes brittle and easily broken. By pressing this, (1) the fiber is cut by the honeycomb edge with a small force. (2) Low-density and high-density inorganic fiber materials can be more reliably cut and filled with honeycomb edges, and (3) The degree of embrittlement treatment of the inorganic fiber materials can be adjusted. Therefore, the inorganic fiber material can be selected and filled with fibers in accordance with the characteristics of the honeycomb. (4) Since the fiber material does not catch on the honeycomb end face, the adhesion between the surface material and the core material is improved, and Strong bonding strength can be obtained because the material is bonded to the inorganic fiber material and the honeycomb edge. (5) Even high density inorganic fiber material that cannot be obtained by the conventional method is filled. Since it becomes possible Rukoto heat insulation superior honeycomb sandwich structure is obtained, excellent effect that can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるハニカムの正面図。FIG. 1 is a front view of a honeycomb according to the present invention.

【図2】本発明におけるハニカムサンドイッチ構造体の
断面図。
FIG. 2 is a sectional view of a honeycomb sandwich structure according to the present invention.

【符号の説明】[Explanation of symbols]

1 ハニカム 2 隔壁 3 ハニカムセル 4 セルサイズ 10 ハニカムサンドイッチ構造体 11 無機質繊維材料 12 表面材 DESCRIPTION OF SYMBOLS 1 Honeycomb 2 Partition wall 3 Honeycomb cell 4 Cell size 10 Honeycomb sandwich structure 11 Inorganic fiber material 12 Surface material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無機質繊維材料がハニカムセル内に充填
されたハニカムサンドイッチ構造体用ハニカム芯材にお
いて、前記無機質繊維材料が脆化無機質繊維材料である
ことを特徴とするハニカムサンドイッチ構造体用ハニカ
ム芯材。
1. A honeycomb core for a honeycomb sandwich structure in which an inorganic fiber material is filled in a honeycomb cell, wherein the inorganic fiber material is a brittle inorganic fiber material. Wood.
【請求項2】 前記脆化無機質繊維材料が、前記無機質
繊維材料に、温水又は熱水処理、通常の水蒸気処
理、加圧雰囲気下での水蒸気処理、水蒸気処理にお
いて水蒸気の水素イオン指数を変更させた処理、無機
繊維材料を酸性もしくはアルカリ性の溶液に接触させる
処理、非水蒸気による高温加熱処理から選ばれた少な
くとも1種の処理を施したものである請求項1記載のハ
ニカムサンドイッチ構造体用ハニカム芯材。
2. The embrittled inorganic fiber material causes the inorganic fiber material to change the hydrogen ion index of steam in hot or hot water treatment, ordinary steam treatment, steam treatment under a pressurized atmosphere, and steam treatment. 2. The honeycomb core for a honeycomb sandwich structure according to claim 1, wherein the honeycomb core has been subjected to at least one kind of treatment selected from the group consisting of a treatment for bringing an inorganic fiber material into contact with an acidic or alkaline solution, and a high-temperature heat treatment using non-steam. Wood.
【請求項3】 無機質繊維材料に脆化処理を施して得ら
れた脆化無機質繊維材料を、ハニカムの少なくとも一面
に積層し、押圧して、前記無機質繊維材料をハニカムセ
ル内に充填することを特徴とするハニカムサンドイッチ
構造体用ハニカム芯材の製造方法。
3. A method in which an embrittled inorganic fiber material obtained by subjecting an inorganic fiber material to an embrittlement treatment is laminated on at least one surface of a honeycomb, pressed, and filled in the honeycomb cell with the inorganic fiber material. A method for producing a honeycomb core material for a honeycomb sandwich structure.
【請求項4】 前記無機質繊維材料に、温水又は熱水
処理、通常の水蒸気処理、加圧雰囲気下での水蒸気
処理、水蒸気処理において水蒸気の水素イオン指数を
変更させた処理、無機繊維材料を酸性もしくはアルカ
リ性の溶液に接触させる処理、非水蒸気による高温加
熱処理から選ばれた少なくとも1種の処理を施して脆化
させる請求項3記載のハニカムサンドイッチ構造体用ハ
ニカム芯材の製造方法。
4. The inorganic fiber material is treated with hot water or hot water, ordinary steam treatment, steam treatment under a pressurized atmosphere, a treatment in which the hydrogen ion index of steam is changed in steam treatment, and an inorganic fiber material is acidified. The method for producing a honeycomb core material for a honeycomb sandwich structure according to claim 3, wherein the material is embrittled by performing at least one kind of treatment selected from a treatment of contacting with an alkaline solution and a high-temperature heat treatment with non-steam.
JP4467898A 1998-02-10 1998-02-10 Honeycomb core material for honeycomb sandwich structure and its manufacture Pending JPH11227078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4467898A JPH11227078A (en) 1998-02-10 1998-02-10 Honeycomb core material for honeycomb sandwich structure and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4467898A JPH11227078A (en) 1998-02-10 1998-02-10 Honeycomb core material for honeycomb sandwich structure and its manufacture

Publications (1)

Publication Number Publication Date
JPH11227078A true JPH11227078A (en) 1999-08-24

Family

ID=12698106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4467898A Pending JPH11227078A (en) 1998-02-10 1998-02-10 Honeycomb core material for honeycomb sandwich structure and its manufacture

Country Status (1)

Country Link
JP (1) JPH11227078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210072560A (en) * 2019-12-09 2021-06-17 주식회사 케이피아이 Panel for truck door

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210072560A (en) * 2019-12-09 2021-06-17 주식회사 케이피아이 Panel for truck door

Similar Documents

Publication Publication Date Title
US4698278A (en) Three-layer laminated panel and method for production
EP2883673B1 (en) Method for manufacturing a phenolic foam body
CA2866607A1 (en) Thermally conductive composite element based on expanded graphite
US5545458A (en) Foamed phenolic composite molding
CN103587159A (en) Honeycomb sandwich panel and making method thereof
EP1989043A2 (en) Composite structural panel and relative method of production
JPS6332941B2 (en)
CN107215026A (en) A kind of lightweight grafting high-strength composite material floor
JPH11227078A (en) Honeycomb core material for honeycomb sandwich structure and its manufacture
KR102220944B1 (en) Composite insulating material and method of producing the same
JP2838982B2 (en) Fireproof panel
US20220379592A1 (en) Mica based sandwich structures
JPH0882021A (en) Heat insulating panel and manufacture thereof
KR102098490B1 (en) Nonflammability panel for a building and manufacturing apparatus thereof
JPS634722Y2 (en)
JPH0882020A (en) Manufacture of heat insulating panel
JPH09228507A (en) Composite heat insulative panel
JPS6116119Y2 (en)
JPH0820086A (en) Heat insulating panel and production thereof
JPH0611185Y2 (en) Flame retardant composite insulation board
JPH0267127A (en) Fireproof panel
JPH0538776A (en) Fire-resistant composite heat-insulating panel
JPH0243033A (en) Building panel
JPH01301236A (en) Improved phenol resin foamed material
JPS6139553Y2 (en)