JPH11185742A - Manufacture of electrode for battery - Google Patents

Manufacture of electrode for battery

Info

Publication number
JPH11185742A
JPH11185742A JP9365585A JP36558597A JPH11185742A JP H11185742 A JPH11185742 A JP H11185742A JP 9365585 A JP9365585 A JP 9365585A JP 36558597 A JP36558597 A JP 36558597A JP H11185742 A JPH11185742 A JP H11185742A
Authority
JP
Japan
Prior art keywords
active material
electrode
dimensional porous
material filler
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9365585A
Other languages
Japanese (ja)
Inventor
Takehito Matsubara
岳人 松原
Chikaichi Jinushi
親市 地主
Yasuaki Hiramura
泰章 平村
Yasuyuki Ida
康之 井田
Kazuya Miyazaki
和哉 宮崎
Yasuaki Ito
泰章 伊藤
Saburo Komai
三郎 駒井
Haruhiko Takemura
治彦 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS MERUKOTEC KK
Japan Storage Battery Co Ltd
Original Assignee
GS MERUKOTEC KK
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS MERUKOTEC KK, Japan Storage Battery Co Ltd filed Critical GS MERUKOTEC KK
Priority to JP9365585A priority Critical patent/JPH11185742A/en
Priority to DE69813164T priority patent/DE69813164T2/en
Priority to EP98124338A priority patent/EP0924783B1/en
Priority to CNB981258638A priority patent/CN1222060C/en
Priority to US09/218,451 priority patent/US6241790B1/en
Publication of JPH11185742A publication Critical patent/JPH11185742A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a current collecting member to be connected strongly without a decrease in the strength of a three-dimensional porous metal basic body by denaturating or deforming an active material filled into the three-dimensional porous metal basic body through the application of heated fluid to a specified part of the filler in a contact manner therewith, and removing the same with ultrasonic vibration. SOLUTION: An electrode 1 is formed by coating a nickel three-dimensional porous basic body of plating type of foaming nickel or the like with paste mainly composed of nickel hydroxide active material of powder type and composed of a conduction agent of such as cobalt compound, and a viscosity improver such as CMC. On a specified position of the electrode 1 formed in this way, heated fluid such as iron rod like body 3 of a quadrangular column shape with the thickness about 30 times larger than that of the electrode 1 and the length of about 3 cm is placed. It is moved so that a tip of flame of such as propane gas can contact with a slant surface portion to heat the whole part to thereby denatuarate or deform the active material filler. Then, while ultrasonic wave is applied, it is pressed against the electrode 1 to thereby remove the denaturated and deformed active material tiller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、三次元多孔金属基
体に活物質を充填したのち、該活物質の一部を除去して
三次元多孔金属基体の一部表面を露出し、該露出個所に
集電部材を接続する電池用電極の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method of filling a three-dimensional porous metal substrate with an active material, removing a part of the active material to expose a part of the surface of the three-dimensional porous metal substrate, and And a method for manufacturing a battery electrode for connecting a current collecting member to the battery.

【従来の技術】アルカリ蓄電池等に用いられる電極構造
の一つとして、発泡式金属等の三次元多孔金属基体に活
物質を充填した構造のものがある。この構造の電極は、
比較的製造工程が簡単であり、また、導電性の低い活物
質を用いる場合にも良好な集電特性が得られ、電極の高
容量化も可能である点で優れている。しかしながら、活
物質を充填する前に予め電極に電流出し入れのための集
電引き出し部を設けておくのが難しく、基体全体に活物
質を充填した後、基体の所定一部領域から活物質を除去
して、ここに集電部材を接続することによって集電引き
出し部を形成するいう方法が用いられている。この方法
により集電リードを接続する場合、基板から活物質や活
物質を保持するために用いられる樹脂等を基板表面から
完全に除去する必要があり、活物質を除去する好適な方
法として、基板の所定個所に超音波振動を加える方法が
用いられている。
2. Description of the Related Art As one of electrode structures used for an alkaline storage battery or the like, there is a structure in which a three-dimensional porous metal substrate such as a foamed metal is filled with an active material. The electrode of this structure
The method is excellent in that the manufacturing process is relatively simple, good current collecting characteristics can be obtained even when an active material having low conductivity is used, and the capacity of the electrode can be increased. However, it is difficult to provide a current collecting lead-out portion for supplying and removing current to the electrode before filling the active material, and after filling the entire base material with the active material, the active material is removed from a predetermined partial region of the base material. Then, a method of forming a current collection lead portion by connecting a current collection member here is used. When the current collecting lead is connected by this method, it is necessary to completely remove the active material and the resin used for holding the active material from the substrate surface from the substrate. A method of applying ultrasonic vibration to a predetermined location is used.

【発明が解決しようとする課題】できるだけ容量密度の
大きい電池を作製するためには、出来るだけ多くの活物
質を基体内に充填する必要がある。この要請を満たすた
めに、これまで上記三次元多孔金属基体に活物質を充填
した構造の電極において、活物質の粒径分布の調整、結
着樹脂の低減、三次元多孔金属基体骨格の細骨格化、三
次元多孔金属基体の目付けの減少、さらに三次元多孔金
属基体に活物質を充填した後のプレスと、プレス圧の増
大といった対策を講じてきた。そしてこれらの対策によ
り、これまで、電池の容量を徐々に大きくしてくること
に成功してきた。ところが一方で、基体内の活物質充填
密度の増大に伴い、製造工程における不良率の増大が生
じるようになってきた。そこでこの原因を調べた結果、
充填密度増大に伴って活物質はより強固に基体内に保持
されるようになり、従来の超音波振動等による物理的な
方法による活物質の除去が困難になっており、このた
め、活物質を除去すべき基板表面から活物質が完全に除
去されずに残り、接続した集電部材の接続強度が低下
し、後の電池組立工程において集電部材脱落という不良
を発生させていることがわかった。そこで、このような
不良発生を防ぐために、活物質除去の際の超音波振動の
強度を強くしたり、集電部材接続のためのスポット溶接
や超音波溶接等のエネルギー投入量を大きくしたりとい
った方法について検討を行ってきた。しかしながら、活
物質除去の際の超音波振動強度の増大という方法は、三
次元多孔金属基体への損傷を大きくし集電部材接続部の
基体強度の低下を引き起こし、結果として集電部材がそ
の接続部周辺の基体部分が切断して脱落し、問題の解決
にはならなかった。また、接続時のエネルギー投入量の
増大という方法においても、基体等に強度上の限界があ
りある一定以上にはエネルギー強度を上げることができ
ず、さらにはエネルギーの無駄となるため、この方法も
問題の解決にはならなかった。さらに、所定領域の結着
材のみを溶媒等によって除去して活物質の保持力を低下
させた後活物質を除去するといった方法についても検討
を行ったが、高容量電極では活物質の充填密度増大のた
めに結着材量が非常に少なくなっており、また、活物質
の保持力の大部分が基体がプレスされることによる圧力
に負うものとなっているため、このような結着材への処
理はあまり効果がなかった。
In order to manufacture a battery having as large a capacity density as possible, it is necessary to fill the substrate with as much active material as possible. In order to satisfy this demand, in an electrode having a structure in which the three-dimensional porous metal substrate has been filled with an active material, the particle size distribution of the active material has been adjusted, the binder resin has been reduced, and the fine skeleton of the three-dimensional porous metal substrate has been reduced. The following measures have been taken: reduction of the basis weight of the three-dimensional porous metal substrate, press after filling the three-dimensional porous metal substrate with the active material, and increase of the pressing pressure. These measures have been successful in gradually increasing the capacity of the battery. On the other hand, as the active material filling density in the substrate increases, the defect rate in the manufacturing process has increased. So after investigating the cause,
As the packing density increases, the active material is more firmly held in the substrate, and it is difficult to remove the active material by a physical method such as conventional ultrasonic vibration. It is understood that the active material is not completely removed from the surface of the substrate from which the current collector is to be removed, the connection strength of the connected current collector is reduced, and a defect that the current collector is detached in a later battery assembling process occurs. Was. Therefore, in order to prevent the occurrence of such defects, the intensity of ultrasonic vibration at the time of removing the active material is increased, and the amount of energy input such as spot welding or ultrasonic welding for connecting the current collecting member is increased. We have been studying the method. However, the method of increasing the ultrasonic vibration intensity at the time of removing the active material increases the damage to the three-dimensional porous metal base and causes the base strength of the current collecting member connecting portion to decrease, and as a result, the current collecting member cannot be connected to the current collecting member. The base part around the part was cut off and dropped off, which did not solve the problem. Also, in the method of increasing the amount of energy input at the time of connection, there is a limit in the strength of the base or the like, so that the energy intensity cannot be increased beyond a certain level, and energy is wasted. It did not solve the problem. Furthermore, a method was also studied in which only the binder in a predetermined area was removed with a solvent or the like to reduce the holding power of the active material and then the active material was removed. Since the amount of the binder is very small due to the increase, and most of the holding power of the active material is owed to the pressure due to the pressing of the base, such a binder is used. Treatment was not very effective.

【課題を解決するための手段】上記課題を解決するため
に、まず第1に、本願発明の電池用電極の製造方法は、
三次元多孔金属基体に活物質を含んでなる活物質充填材
を充填した後、該基体の所定個所に主として活物質充填
材を変成または変形する熱と、主として活物質充填材を
除去するための超音波振動とを加えることにより活物質
充填材を除去し、該基体所定個所に集電部材を電気的に
接続することを特徴としている。すなわち本発明の中心
となる思想は、三次元多孔金属基体の所定個所に熱を加
えることによって、活物質等の接触状態を熱による変形
等によって変化させて保持力を低減させようというもの
であって、すなわち、三次元多孔金属基体または活物質
充填材に熱を加え、これによって三次元多孔金属基体を
熱膨張させ、または活物質充填材中の少なくとも一つの
成分を変成または変形して、三次元多孔金属基体に対す
る活物質充填材の保持力を低下させ、該保持力の低下し
た活物質充填材を超音波振動により三次元多孔金属基体
より除去しようというものである。そして、より効果的
には、活物質充填材中の少なくとも一つの成分を変成ま
たは変形させようとするものである。三次元多孔金属基
体を熱膨張させることは、基体と接触している活物質充
填材との間に例えばせん断力を生じるようなずれを生じ
て表面からその活物質充填材を剥がすように作用し、ま
た基体中に保持されている活物質充填材全体を揺さぶる
ことにより新たな隙間を生じさせて保持力を低下させ
る。従って、このような効果を大きくするには、基体の
温度上昇は大きくするほうが良く、さらには収縮による
効果も加えるために温度上昇と冷却を速い周期で生じさ
せるのが良い。ただし、温度上昇は基体の強度や電気伝
導度を低下させないよう、その材質に応じた適当な温度
で行うのがよい。活物質充填材は、主として活物質(場
合によっては活物質のみ)からなり、これに樹脂等の結
着材、導電材、その他の添加材が加えられてなるもので
あって、この中の少なくとも一つの成分を変成させるこ
とは、各成分同士の結着力、基体との結着力を低下させ
るような変化を起こさせるものであって、これにより活
物質充填材の保持力を低下させるものである。また、少
なくとも一つの成分を変形させることは、活物質充填材
の充填状態を変化させ、また、新たな隙間を生じさせ、
また、接触面をずらして引き剥がすように作用し、活物
質充填材の保持力を低下させる。なお、この変形には、
基体と同様に熱膨張、熱収縮により生じるもの以外に、
変成の結果生じるものもあり、特に、活物質充填材中の
活物質の比率が高いものにおいては、活物質の変成と変
形が重要な役割を果たすようになる。この場合、活物質
の熱による酸化または還元反応が重要で、活物質の種類
に応じて温度や酸素存在、水素存在雰囲気といったよう
な雰囲気が調整される。熱と超音波振動を加える順番
は、熱を加える目的から、効率を上げるためには超音波
振動を熱より先に加えないほうが良く、同時に行うか、
熱を加えた後超音波振動を加えるのが良い。同時に加え
る場合には、活物質充填材除去工程を短時間で済ませる
ことが可能となるという利点があり、熱を加えた後超音
波振動を加える場合には、超音波印加までの時間や雰囲
気温度等を調整することによって冷却の効果を加えるこ
とも可能で、高いエネルギー効率での除去が可能とな
り、また、熱を加える条件も調整しやすくなるので好ま
しい。第2に、本願発明の電池用電極の製造方法は、基
体の所定個所に熱流体を接触させて主として活物質充填
材を変性または変形するための熱を与えることを特徴と
する。すなわち、本願発明の第2の特徴は、熱を与える
方法にあり、熱流体を用いることにより高温の熱を与え
ることが容易になり、また、大きな電極の大きな処理領
域にも対応しやすくなる。
Means for Solving the Problems In order to solve the above-mentioned problems, first, a method for manufacturing a battery electrode of the present invention is as follows.
After filling the three-dimensional porous metal substrate with the active material filler containing the active material, the heat for transforming or deforming the active material filler mainly at a predetermined portion of the substrate, and mainly for removing the active material filler. The active material filler is removed by applying ultrasonic vibration, and a current collecting member is electrically connected to a predetermined portion of the base. That is, the central idea of the present invention is to reduce the holding force by applying heat to a predetermined portion of the three-dimensional porous metal substrate to change the contact state of the active material or the like by deformation due to heat or the like. That is, heat is applied to the three-dimensional porous metal substrate or the active material filler, thereby thermally expanding the three-dimensional porous metal substrate, or denaturing or deforming at least one component in the active material filler to form a third order. It is intended to reduce the holding power of the active material filler with respect to the original porous metal substrate and to remove the active material filler having reduced holding power from the three-dimensional porous metal substrate by ultrasonic vibration. And, more effectively, at least one component in the active material filler is modified or deformed. The thermal expansion of the three-dimensional porous metal substrate acts to separate the active material filler from the surface by causing a shift between the substrate and the active material filler that is in contact, for example, to generate a shear force. In addition, by shaking the entire active material filler held in the base, a new gap is generated to lower the holding force. Therefore, in order to increase such an effect, it is better to increase the temperature of the substrate, and to increase the effect of shrinkage, it is preferable to cause the temperature increase and cooling to occur at a rapid cycle. However, the temperature is preferably raised at an appropriate temperature according to the material so as not to lower the strength and electric conductivity of the base. The active material filler is mainly composed of an active material (in some cases, only the active material), to which a binder such as a resin, a conductive material, and other additives are added. Denaturing one component causes a change that decreases the binding force between the components and the binding force with the substrate, thereby reducing the holding force of the active material filler. . Also, deforming at least one component changes the filling state of the active material filler, and also causes a new gap,
Further, it acts so as to shift and peel off the contact surface, thereby reducing the holding force of the active material filler. Note that this transformation includes
In addition to those caused by thermal expansion and thermal contraction like the base,
Metamorphosis and deformation of the active material play an important role, especially in those having a high proportion of active material in the active material filler, as a result of metamorphosis. In this case, the oxidation or reduction reaction of the active material by heat is important, and the temperature, the atmosphere such as the presence of oxygen, and the atmosphere such as the presence of hydrogen are adjusted according to the type of the active material. In order to apply heat and ultrasonic vibration, it is better not to apply ultrasonic vibration before heat in order to increase efficiency, or to perform simultaneously,
It is preferable to apply ultrasonic vibration after applying heat. If they are added simultaneously, there is an advantage that the active material filler removal step can be completed in a short time, and if ultrasonic vibration is applied after applying heat, the time until ultrasonic application and the ambient temperature By adjusting such factors, it is possible to add a cooling effect, which enables removal with high energy efficiency, and also facilitates adjustment of conditions for applying heat, which is preferable. Secondly, the method for manufacturing a battery electrode according to the present invention is characterized in that a heat fluid is brought into contact with a predetermined portion of a base to give heat mainly for modifying or deforming the active material filler. That is, the second feature of the present invention resides in a method of applying heat. By using a thermal fluid, it becomes easy to apply high-temperature heat, and it is easy to cope with a large processing area of a large electrode.

【発明の実施の形態】ニッケル水素電池等に用いられる
水酸化ニッケル電極の例を用いて本発明についてさらに
詳細に説明する。三次元多孔金属基体としては、金属繊
維焼結体や発泡式金属体を用いることが出来るが、水酸
化ニッケル電極を本発明の方法により製造する場合に
は、例えば、住友電工製の発泡ニッケル等のメッキ式ニ
ッケル三次元多孔基体を用いるのが最も本発明を生かす
ことができ適している。活物質充填材は、粉末状の水酸
化ニッケル(Ni(OH)2)活物質を主とし、種々の
方法で添加されたグラファイトや金属ニッケルまたは水
酸化コバルトまたは金属コバルト等のコバルト化合物の
導電剤等からなり、これに適宜CMC、MC等の増粘剤
やPFD、PTFE等の結着のための樹脂が加えられて
構成される。さらに必要に応じてこれにオキシ水酸化ニ
ッケル(NiOOH)粉末等の添加剤が加えられて構成
される。そして、この活物質充填材は、例えば水等が加
えられてペースト状にされ、三次元多孔金属基体に塗布
されて充填され、乾燥された後プレスされて充填密度が
上げられ電極とされる。例えば、水酸化ニッケル(Ni
(OH)2)粉末100重量部とオキシ水酸化ニッケル
(NiOOH)粉末15重量部と0.4wt%のカルボキ
シメチルセルロース(CMC)水溶液とを混合してペー
スト状にし、これを発泡ニッケル基板に塗布、乾燥、プ
レスして作製する。ついで、この電極に集電部材、例え
ばニッケル箔からなる集電タブを電気的に接続する。電
気的に接続するためには、例えば導電性のはんだや樹脂
を用いる方法もあるが、通常、スポット溶接や超音波接
合、レーザー溶接が行われる。この接合を強固にかつ導
電性を阻害することなく行うためには、接合部位の活物
質充填材を除去し、接合部位の金属基体を露出させる必
要がある。さらに、その表面は出来るだけ清浄で酸化皮
膜等の導電性阻害皮膜が形成されていないのが良い。こ
のような、表面状態を実現することにより、強固、かつ
良好な導電性を保った接合が実現され、さらに、接合の
ために必要とされるエネルギーを低減することが出来る
からである。本発明では、活物質充填材除去のためにま
ず基体の集電部材接続個所に熱を加える。熱を加える領
域は、接続部材接続時の余裕を考慮して、接続部材の接
続部の大きさよりも少し大きくしておくのが良い。熱を
加える方法としては、赤外線を照射する方法、レーザー
を照射する方法、バーナーの火炎を吹き付ける方法等種
々の方法が考えられるが、バーナーの火炎等の熱流体を
用いる方法が好ましい。さらに、三次元多孔金属基体を
ニッケル金属とし、主たる活物質を水酸化ニッケルとす
る場合、熱流体を可燃ガスの炎とするのが好ましい。さ
らに、より好ましくは、可燃ガスの炎を接触させる時間
を15秒以下とするのが良い。この場合、例えば、基体
の軟化点が700℃以下のものを用い、炎の温度が13
00℃程度のものを用いたとしても基体の強度を損なっ
たり、不必要な酸化皮膜を形成することはない。加える
熱の温度は、活物質充填材を変性または変形できる温度
とするのが好ましく、水酸化ニッケル電極の場合には、
主たる活物質が水酸化ニッケルであるため、その結晶水
を除くことのできる100℃以上が好ましく、より好ま
しくは水酸化ニッケルが酸化ニッケルとなる220℃以
上とするのが良い。また、樹脂が含まれている場合には
250℃以上とするのがさらにより好ましく、例えば、
CMC、MC等の増粘剤やPFD、PTFE等の結着樹
脂が含まれている場合には有効である。また、基体の温
度上昇の上限温度は、基体がニッケル金属からなる三次
元多孔金属基体の場合、特に上記発泡ニッケル等のメッ
キにより骨格が形成された三次元多孔金属基体の場合に
は、基体の変成が生じて強度低下、導電性低下を引き起
こすため650℃以下が好ましいのであるが、熱流体の
温度としては時間を調節すれば650℃以上を用いるこ
とができ、製造工程における時間の短縮のためには、6
50℃以上が良い。特に、可燃ガスの炎を用いれば基体
への影響を少なくすることができ、高温度を得るのも容
易である。また、主たる活物質が水酸化ニッケルの場
合、加熱時の周辺雰囲気は大気状態で良く、この場合設
備が簡略化できて好ましい。次に、熱を加えた接続個所
に超音波振動を加えて、保持力の低下した活物質充填材
を除去するのであるが、超音波振動を加える領域は、熱
により変成した活物質を残さないために、熱を加えた領
域を含んでしまうように熱を加えた領域よりも少し大き
目の方が良い。また、上記熱を与えた後、所定の時間を
おいて超音波振動を加えるのが良い。また、超音波振動
は、効率よく活物質充填剤を除去するために三次元多孔
金属基体を押しつぶしながら行うのが良く、さらに、除
去した活物質の除去の効率を高め、飛散を防ぐため吸引
を同時に行うのが好ましい。この場合、超音波振動を三
次元多孔金属基体の厚み方向の一方の側から加え、同時
に他方の側から活物質充填材の吸引を行うのが良い。以
上のような処理を行うことにより、効率良くまたよりき
れいに活物質充填材を除去することができ、接続部材の
接続を確実に効率よく行うことが可能となる。なお、発
泡メッキ式ニッケル三次元多孔基体を用いた水酸化ニッ
ケル電極の場合、プレスにより空隙率が30%以下、よ
り顕著には28%以下となるような電極において本発明
適用の顕著な効果が生じる。すなわち、30%より大き
い空隙率を有するものの場合、従来の超音波のみによる
方法でもその条件を調整することで、その接続部材の接
続強度低下による接続部材の脱落等不良発生率を本発明
の場合と同程度にまで抑えることが可能であるが、充填
密度がさらに大きくなり上記空隙率以下となると従来の
方法では対応できなくなり、本発明による不良発生率低
減の効果は顕著なものとなり、特に28%以下ではより
顕著に現れる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail with reference to an example of a nickel hydroxide electrode used for a nickel-metal hydride battery or the like. As the three-dimensional porous metal substrate, a metal fiber sintered body or a foamed metal body can be used. When a nickel hydroxide electrode is manufactured by the method of the present invention, for example, foamed nickel manufactured by Sumitomo Electric Industries, Ltd. It is most suitable to use the plated nickel three-dimensional porous substrate because the present invention can be utilized. The active material filler is mainly a powdery nickel hydroxide (Ni (OH) 2 ) active material, and is a conductive agent of graphite or metallic nickel or a cobalt compound such as cobalt hydroxide or metallic cobalt added by various methods. And a thickening agent such as CMC or MC, or a resin for binding such as PFD or PTFE. Further, if necessary, an additive such as nickel oxyhydroxide (NiOOH) powder is added thereto. The active material filler is formed into a paste by adding, for example, water or the like, applied to a three-dimensional porous metal substrate, filled, dried, and then pressed to increase the packing density to form an electrode. For example, nickel hydroxide (Ni
(OH) 2 ) 100 parts by weight of powder, 15 parts by weight of nickel oxyhydroxide (NiOOH) powder and 0.4 wt% of carboxymethylcellulose (CMC) aqueous solution are mixed to form a paste, which is applied to a foamed nickel substrate. It is made by drying and pressing. Next, a current collecting member, for example, a current collecting tab made of nickel foil, is electrically connected to the electrode. For electrical connection, for example, there is a method using conductive solder or resin, but usually, spot welding, ultrasonic bonding, or laser welding is performed. In order to perform this bonding firmly and without impairing the conductivity, it is necessary to remove the active material filler at the bonding site and expose the metal base at the bonding site. Further, it is preferable that the surface is as clean as possible and free of a conductive inhibition film such as an oxide film. By realizing such a surface state, bonding that is strong and maintains good conductivity is realized, and further, energy required for bonding can be reduced. In the present invention, heat is first applied to the current collector connecting portion of the base to remove the active material filler. The area to which heat is applied is preferably slightly larger than the size of the connection portion of the connection member in consideration of the margin when connecting the connection member. As a method of applying heat, various methods such as a method of irradiating an infrared ray, a method of irradiating a laser, and a method of blowing a flame of a burner can be considered, and a method using a heat fluid such as a flame of a burner is preferable. Further, when the three-dimensional porous metal base is made of nickel metal and the main active material is made of nickel hydroxide, it is preferable that the thermal fluid is a flame of a combustible gas. More preferably, the time for contacting the flame of the combustible gas is set to 15 seconds or less. In this case, for example, a substrate having a softening point of 700 ° C. or less and a flame temperature of 13 ° C.
Even if a material having a temperature of about 00 ° C. is used, the strength of the substrate is not impaired, and an unnecessary oxide film is not formed. The temperature of the applied heat is preferably a temperature at which the active material filler can be modified or deformed.In the case of a nickel hydroxide electrode,
Since the main active material is nickel hydroxide, the temperature is preferably 100 ° C. or higher at which water of crystallization can be removed, and more preferably 220 ° C. or higher at which nickel hydroxide becomes nickel oxide. When a resin is contained, the temperature is more preferably set to 250 ° C. or higher.
It is effective when a thickener such as CMC or MC or a binder resin such as PFD or PTFE is contained. Further, the upper limit temperature of the temperature rise of the substrate is, when the substrate is a three-dimensional porous metal substrate made of nickel metal, particularly in the case of a three-dimensional porous metal substrate having a skeleton formed by plating the above-mentioned foamed nickel or the like, Although 650 ° C. or lower is preferable in order to cause denaturation and decrease in strength and conductivity, the temperature of the thermal fluid can be 650 ° C. or higher if the time is adjusted. Has 6
50 ° C or higher is good. In particular, if a combustible gas flame is used, the influence on the substrate can be reduced, and a high temperature can be easily obtained. In addition, when the main active material is nickel hydroxide, the surrounding atmosphere during heating may be in the air state, and this case is preferable because the equipment can be simplified. Next, ultrasonic vibration is applied to the connection point to which heat is applied, and the active material filler whose holding force is reduced is removed, but the region where ultrasonic vibration is applied does not leave the active material denatured by heat. Therefore, it is better to be slightly larger than the heated region so as to include the heated region. Further, it is preferable to apply ultrasonic vibration at a predetermined time after applying the heat. In addition, ultrasonic vibration is preferably performed while crushing the three-dimensional porous metal substrate in order to efficiently remove the active material filler, and furthermore, suction is performed to enhance the efficiency of removal of the removed active material and prevent scattering. Preferably, they are performed simultaneously. In this case, it is preferable that ultrasonic vibration is applied from one side in the thickness direction of the three-dimensional porous metal base, and at the same time, the active material filler is sucked from the other side. By performing the processing described above, the active material filler can be efficiently and finely removed, and the connection of the connection member can be reliably and efficiently performed. In the case of a nickel hydroxide electrode using a foam-plated nickel three-dimensional porous substrate, a remarkable effect of the application of the present invention is obtained in an electrode whose porosity is reduced to 30% or less, more notably 28% or less by pressing. Occurs. That is, in the case of a material having a porosity of more than 30%, the condition of adjusting the condition even by a conventional method using only ultrasonic waves can be used to reduce the rate of occurrence of defects such as detachment of the connection member due to a decrease in connection strength of the connection member in the present invention. However, when the packing density is further increased and becomes lower than the above porosity, the conventional method cannot cope with the above problem, and the effect of the present invention on reducing the defect occurrence rate becomes remarkable. % Or less appears more remarkably.

【実施例】以下に実施例を示して本発明を説明する。8
ミクロンの径を有する水酸化ニッケル活物質粒子90重量部
と、6ミクロンの径を有する水酸化コバルト粒子10重量部
とを、0.4wt%カルボキシメチルセルロース水溶液
に分散させてペーストを調製した。これを多孔度95%
の発泡ニッケル(住友電工製、商品名セルメット)に塗
布充填し、ついで乾燥し、これをプレスしてほぼもとの
半分の厚さにして水酸化ニッケル電極を作製した。空隙
率は27%であった。この電極に本発明を適用してニッ
ケル箔からなる集電タブを超音波溶接により接続した。
図1は、熱流体を基体の所定の場所にのみ接触させるた
めの方法を説明する為の図、図2は、超音波印加除去方
法を説明する図、図3は、本発明に係る集電タブ取り付
け状態を示す概略図である。以下、図を参照しながら説
明する。図1に示されるように、熱流体を基体の所定の
場所にのみ接触させるために、電極1の厚さの30倍以
上の大きさである3cm角の四角柱形状の鉄製棒状体3
を電極1の上に載置する。そして、図中斜線で示される
部分にプロパンガスの火炎の先端部を一個所に5秒間当
たるようにして移動させながら斜線で示した部分全体を
熱する。この熱処理によって、処理部の電極の色が、ほ
ぼ斜線部分の形状に一致して、緑色から黒っぽく変色し
た。火炎先端部の温度は1300℃であった。なお、こ
の処理は通常の大気中でおこなった。このように、本発
明の製造方法においては、三次元多孔金属基体の厚み方
向の一の面において、熱流体の接触により活物質充填材
を変性または変形する領域と熱流体の接触による活物質
充填材の変性または変形を起こさせない領域との境界線
上に沿って、金属棒状体を載置することが好ましく、こ
れによって余分な個所の活物質を傷めたり脱落させたり
することがなくなる。この後、電極1が室温まで冷却さ
れた後、図2に示されるようにTiホーン4により超音
波を印加しながらこれを電極1に押し付ける。これによ
り、電極1が圧縮されながら活物質充填材が除去され
る。この際、同時に吸引を行い、除去された活物質充填
材を除去した。 Tiホーン4の当接面は、長方形平面
で、図1中斜線領域の短辺長に対して長く、長辺長に対
しては短くなっており、長辺方向に移動しながら、複数
回押し当てを繰り返して全領域の活物質を除去する。こ
れにより、周辺部ではごくわずかに活物質充填材が残る
が、斜線部では完全に活物質充填材の除去された非常に
きれいな発泡ニッケル骨格面が得られた。こうして活物
質充填材の除去された斜線部に集電タブ2を超音波溶接
により接続した。尚、比較の為、上記熱処理を行わず超
音波印加のみで活物質充填材を除去して集電タブを接続
した。そして各種条件を最適化した後得られたものの集
電タブ接続強度を測定し、上記本実施例のものと比較し
た結果、本実施例では、従来の方法によるものの3倍の
接続強度が得られた。また、本実施例により得られた電
極を用いて電池を組み立てると、従来の方法による場合
に比べて集電タブ接続不良に起因する不良率が、ほぼ半
分に低減した。また、これにより、これまでよりより高
容量、高密度の電極の製造が可能となった。図4は、本
実施例において同じ場所における加熱時間を変えて引っ
張りによる集電タブの接続強度を調べた結果を示す、加
熱時間と引っ張り強度との関係を示す図である。この結
果より、可燃ガスの炎の接触時間は、15秒以下が好ま
しく、より好ましくは10秒以下が好ましいことがわか
った。また、この結果では、3秒以上で活物質充填材の
完全除去が確認されたが、1秒では完全には除去されて
おらず、これらのことから可燃ガスの炎の接触時間は、
3秒以上が好ましいことがわかった。さらに、より好ま
しくは、5秒以上10秒以下が好ましいことがわかっ
た。
EXAMPLES The present invention will be described below with reference to examples. 8
A paste was prepared by dispersing 90 parts by weight of nickel hydroxide active material particles having a micron diameter and 10 parts by weight of cobalt hydroxide particles having a diameter of 6 microns in a 0.4 wt% aqueous solution of carboxymethyl cellulose. 95% porosity
Was coated and filled, and then dried and pressed to a thickness approximately half the original thickness to produce a nickel hydroxide electrode. The porosity was 27%. The present invention was applied to this electrode, and a current collecting tab made of nickel foil was connected by ultrasonic welding.
FIG. 1 is a diagram for explaining a method for bringing a thermal fluid into contact only with a predetermined place on a substrate, FIG. 2 is a diagram for explaining a method of applying and removing ultrasonic waves, and FIG. 3 is a current collector according to the present invention. It is the schematic which shows a tab attachment state. Hereinafter, description will be made with reference to the drawings. As shown in FIG. 1, in order to make the thermal fluid contact only a predetermined place of the base, a square pole-shaped iron rod 3 of 3 cm square, which is 30 times or more the thickness of the electrode 1.
Is placed on the electrode 1. Then, the entire portion shown by oblique lines is heated while moving the tip of the flame of propane gas to one portion for 5 seconds to the portion shown by oblique lines in the figure. As a result of this heat treatment, the color of the electrode in the treated part changed from green to black, almost conforming to the shape of the hatched portion. The temperature at the flame tip was 1300 ° C. This processing was performed in a normal atmosphere. As described above, in the manufacturing method of the present invention, on one surface in the thickness direction of the three-dimensional porous metal substrate, the region where the active material filler is modified or deformed by the contact of the hot fluid and the active material filling by the contact of the hot fluid It is preferable to place the metal rod along the boundary line with the region where the material is not modified or deformed, so that the active material at an extra portion is not damaged or dropped. Thereafter, after the electrode 1 is cooled to room temperature, the electrode 1 is pressed against the electrode 1 while applying an ultrasonic wave with the Ti horn 4 as shown in FIG. Thereby, the active material filler is removed while the electrode 1 is compressed. At this time, suction was simultaneously performed to remove the removed active material filler. The contact surface of the Ti horn 4 is a rectangular plane, which is longer than the shorter side length of the hatched area in FIG. 1 and shorter than the longer side length, and is pushed several times while moving in the long side direction. The application is repeated to remove the active material in the entire region. As a result, an extremely clean active nickel filler skeleton surface was obtained in which the active material filler was completely removed in the hatched portion, while the active material filler was completely removed in the peripheral portion. The current collecting tab 2 was connected by ultrasonic welding to the hatched portion from which the active material filler was removed. For comparison, the active material filler was removed only by applying ultrasonic waves without performing the above heat treatment, and the current collecting tab was connected. Then, the connection strength of the current-collecting tab obtained after optimizing various conditions was measured and compared with that of the present embodiment. As a result, in this embodiment, the connection strength was three times that of the conventional method. Was. In addition, when a battery was assembled using the electrodes obtained in this example, the failure rate due to poor connection of the current collecting tab was reduced to almost half as compared with the conventional method. This has made it possible to manufacture electrodes with higher capacity and higher density than before. FIG. 4 is a diagram showing the relationship between the heating time and the tensile strength, showing the result of examining the connection strength of the current collecting tab by pulling while changing the heating time at the same place in the present embodiment. From this result, it was found that the contact time of the combustible gas flame was preferably 15 seconds or less, more preferably 10 seconds or less. In addition, in this result, it was confirmed that the active material filler was completely removed in 3 seconds or more, but it was not completely removed in 1 second. From these facts, the contact time of the combustible gas flame was:
It has been found that 3 seconds or more are preferable. Furthermore, it was found that more preferably 5 seconds or more and 10 seconds or less.

【発明の効果】本発明によれば、基体の強度を低下させ
ることなく、また、少ない接続エネルギーでもって、三
次元多孔金属基体に活物質を含んでなる活物質充填材を
充填した電極に対して、集電部材を強く接続することが
出来る。また、活物質の除去時の超音波印加のエネルギ
ーも従来より小さく出来る。さらに、後の電池組立工程
において集電部材脱落という不良の発生を低減させるこ
とができる。また、三次元多孔金属基体がニッケル金属
からなり、主たる活物質が水酸化ニッケルである電極の
製造において本発明を適用した場合には、水酸化ニッケ
ルが酸化による変成、変形を受けやすいために効果が大
きく、基体も熱による悪影響を受けることが少ないので
良い。さらには、この場合従来の超音波を用いた除去に
比較して、理由は不明であるが、除去した後非常にきれ
いな基体表面がえられる。
According to the present invention, a three-dimensional porous metal substrate is filled with an active material filler containing an active material without lowering the strength of the substrate and with a small connection energy. Thus, the current collecting member can be strongly connected. In addition, the energy for applying ultrasonic waves when removing the active material can be made smaller than before. Furthermore, the occurrence of a defect of a current collecting member falling off in a later battery assembling step can be reduced. Further, when the present invention is applied to the production of an electrode in which the three-dimensional porous metal substrate is made of nickel metal and the main active material is nickel hydroxide, the effect is that nickel hydroxide is susceptible to transformation and deformation by oxidation. And the substrate is less likely to be adversely affected by heat. Furthermore, in this case, a very clean substrate surface can be obtained after the removal, although the reason is not clear as compared with the conventional removal using ultrasonic waves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱流体を基体の所定の場所にのみ接触させるた
めの方法を説明する為の図である。
FIG. 1 is a view for explaining a method for bringing a thermal fluid into contact only with a predetermined location of a base.

【図2】超音波印加除去方法を説明する図である。FIG. 2 is a diagram illustrating an ultrasonic application removing method.

【図3】本発明に係る集電タブ取り付け状態を示す概略
図である。
FIG. 3 is a schematic view showing a current collection tab mounting state according to the present invention.

【図4】加熱時間と引っ張り強度との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a heating time and a tensile strength.

【符号の説明】[Explanation of symbols]

1 電極 2 集電タブ 3 棒状体 4 Tiホーン DESCRIPTION OF SYMBOLS 1 Electrode 2 Current collection tab 3 Rod 4 Ti horn

フロントページの続き (72)発明者 平村 泰章 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 井田 康之 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 宮崎 和哉 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 伊藤 泰章 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 駒井 三郎 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 武村 治彦 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内Continuation of the front page (72) Inventor Yasuaki Hiramura 5th, Kichijoin Nitta Ichidandancho, Minami-ku, Kyoto City Inside S-Melcotech Co., Ltd. (72) Inventor Yasuyuki Ida Ichino, Kichijoin Minami-ku, Kyoto City 5th Danmachi, inside S-Melcotech Co., Ltd. (72) Inventor Kazuya Miyazaki 5th Kichijoin Nitta Ichino Danmachi, Minami-ku, Kyoto-shi Within 2nd S-Melcotech Co., Ltd. (72) Inventor Yasushi Ito Kyoto (72) Inventor: Saburo Komai 5th, Kichijoin Nitta Ichidandan-cho, Minami-ku, Kyoto City S-Melco-Tech Co., Ltd. (72) Inventor Haruhiko Takemura 5 Kichijoin Ichidantancho, Minami-ku, Kyoto J-S Melcotec Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】三次元多孔金属基体に活物質を含んでなる
活物質充填材を充填した後、該基体の所定個所に熱流体
を接触させて主として活物質充填材を変性または変形す
るための熱を与え、さらに主として活物質充填材を除去
するための超音波振動を加えることにより活物質充填材
を除去し、該活物質充填材の除去された基体所定個所に
集電部材を電気的に接続することを特徴とする電池用電
極の製造方法。
1. A method for filling a three-dimensional porous metal substrate with an active material filler containing an active material, and then bringing a hot fluid into contact with a predetermined portion of the substrate to mainly modify or deform the active material filler. The active material filler is removed by applying heat and further applying ultrasonic vibration mainly for removing the active material filler, and the current collector is electrically connected to a predetermined portion of the base where the active material filler has been removed. A method for producing an electrode for a battery, characterized by connecting.
【請求項2】三次元多孔金属基体をニッケル金属とし、
主たる活物質を水酸化ニッケルとし、熱流体を可燃ガス
の炎とすることを特徴とする請求項1記載の電池用電極
の製造方法。
2. The three-dimensional porous metal substrate is made of nickel metal,
2. The method for producing a battery electrode according to claim 1, wherein the main active material is nickel hydroxide, and the hot fluid is a flame of a combustible gas.
【請求項3】炎を接触させる時間を15秒以下とするこ
とを特徴とする請求項2記載の電池用電極の製造方法。
3. The method for producing an electrode for a battery according to claim 2, wherein the time for bringing the flame into contact is 15 seconds or less.
【請求項4】熱を与えた後、所定の時間をおいて主とし
て活物質充填材を除去するための超音波振動を三次元多
孔金属基体の厚み方向の一方の側から加え、同時に他方
の側から活物質充填材の吸引を行うことを特徴とする請
求項1、2または3記載の電池用電極の製造方法。
4. After the heat is applied, ultrasonic vibration for mainly removing the active material filler is applied from one side in the thickness direction of the three-dimensional porous metal substrate at a predetermined time, and at the same time, on the other side. 4. The method for producing a battery electrode according to claim 1, wherein the active material filler is sucked from the material.
【請求項5】三次元多孔金属基体の厚み方向の一の面に
おいて、熱流体の接触により活物質充填材を変性または
変形する領域と熱流体の接触による活物質充填材の変性
または変形を起こさせない領域との境界線上に沿って、
金属棒状体を載置することを特徴とすることを特徴とす
る請求項1、2、3または4記載の電池用電極の製造方
法。
5. A region in which the active material filler is modified or deformed by contact with a hot fluid on one surface in the thickness direction of the three-dimensional porous metal substrate, and the active material filler is denatured or deformed by contact with the hot fluid. Along the border with the area not to be
5. The method for manufacturing a battery electrode according to claim 1, wherein a metal rod is placed.
JP9365585A 1997-12-22 1997-12-22 Manufacture of electrode for battery Withdrawn JPH11185742A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9365585A JPH11185742A (en) 1997-12-22 1997-12-22 Manufacture of electrode for battery
DE69813164T DE69813164T2 (en) 1997-12-22 1998-12-21 Process for the production of a porous electrode filled with active material
EP98124338A EP0924783B1 (en) 1997-12-22 1998-12-21 Process for producing a porous pasted electrode
CNB981258638A CN1222060C (en) 1997-12-22 1998-12-22 Electrode, cell using the same and process for producing electrode
US09/218,451 US6241790B1 (en) 1997-12-22 1998-12-22 Electrode, cell using the same and process for producing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9365585A JPH11185742A (en) 1997-12-22 1997-12-22 Manufacture of electrode for battery

Publications (1)

Publication Number Publication Date
JPH11185742A true JPH11185742A (en) 1999-07-09

Family

ID=18484633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9365585A Withdrawn JPH11185742A (en) 1997-12-22 1997-12-22 Manufacture of electrode for battery

Country Status (1)

Country Link
JP (1) JPH11185742A (en)

Similar Documents

Publication Publication Date Title
US6241790B1 (en) Electrode, cell using the same and process for producing electrode
JP2936604B2 (en) Square sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP5089656B2 (en) Non-aqueous electrolyte secondary battery electrode structure, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP3661190B2 (en) Hydrogen storage electrode and manufacturing method thereof
JP2017027654A (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JP4527844B2 (en) Manufacturing method of battery electrode plate
JPH0992272A (en) Electrode of secondary battery, its manufacture and secondary battery
JPH11185742A (en) Manufacture of electrode for battery
CN106848182B (en) Manufacturing method of lithium ion battery negative pole piece
JPH11185741A (en) Manufacture of electrode for battery
JP4004124B2 (en) Method for manufacturing battery electrode
JPH11250893A (en) Electrode, and battery using it
JP3485738B2 (en) Method for producing hydrogen storage alloy powder and hydrogen storage alloy electrode used for negative electrode for nickel-hydrogen secondary battery
JPH09245777A (en) Electrode for secondary battery and manufacture thereof
JP3555118B2 (en) Manufacturing method of paste type electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
CN107834024A (en) The positive pole substrate and its manufacture method and alkaline secondary cell of alkaline secondary cell
JPH117939A (en) Manufacture of electrode plate for battery
JP3146014B2 (en) Method for producing paste-type nickel electrode
JP2000133277A (en) Porous substrate, its manufacture, and electrode for alkaline secondary battery using this porous substrate
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPH06251771A (en) Manufacture of electrode substrate
JPH01248473A (en) Manufacture of electrode for battery
KR20030012127A (en) Nickel tab welding method of nickel metal hydride battery
JP2000173623A (en) Porous nickel base material and electrode for alkaline secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331