JPH0992272A - Electrode of secondary battery, its manufacture and secondary battery - Google Patents

Electrode of secondary battery, its manufacture and secondary battery

Info

Publication number
JPH0992272A
JPH0992272A JP7266235A JP26623595A JPH0992272A JP H0992272 A JPH0992272 A JP H0992272A JP 7266235 A JP7266235 A JP 7266235A JP 26623595 A JP26623595 A JP 26623595A JP H0992272 A JPH0992272 A JP H0992272A
Authority
JP
Japan
Prior art keywords
electrode
foam
secondary battery
nonwoven fabric
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7266235A
Other languages
Japanese (ja)
Other versions
JP2984908B2 (en
Inventor
Hiroyuki In
浩之 因
Keiichiro Yamashita
敬一朗 山下
Katsuaki Kimura
勝昭 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP7266235A priority Critical patent/JP2984908B2/en
Publication of JPH0992272A publication Critical patent/JPH0992272A/en
Application granted granted Critical
Publication of JP2984908B2 publication Critical patent/JP2984908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode of a secondary battery by sealing particles or powder having conductivity in a nonwoven fabric or a foamed body having plasticity and conductivity. SOLUTION: A hydrogen storage alloy is prepared by a high frequency melting process, crushed in particles 12, the particles 12 are kneaded with a PVA aqueous solution in an agitating container 10 to prepare a pasty material 13. Agitating is continued so as not to precipitate the particles 12, a nickel fiber nonwoven fabric 1a is immersed in the pasty material 13, then the nonwoven fabric 1a is put in an ultrasonic bath 11 together with the pasty material 13. By applying vibration, the pasty material 13 containing particles 12 is made enter in the nickel fiber nonwoven fabric 1a, the filling amount is adjusted, the nonwoven fabric 1a is taken out from the ultrasonic bath 11, then naturally dried. The dried material is pressed with a mold M to plastically deform, and an electrode substrate 1 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は二次電池の電極及び
その製造方法、及び二次電池に関する。更に詳しくは、
導電性を有する不織布または発泡体内に導電性を有する
粒状物または粉状物が封じ込められている、二次電池の
電極及びその製造方法、及び二次電池に関するものであ
る。
TECHNICAL FIELD The present invention relates to an electrode for a secondary battery, a method for manufacturing the same, and a secondary battery. For more details,
The present invention relates to an electrode for a secondary battery in which a conductive granular material or a powdered material is enclosed in a conductive non-woven fabric or a foam, a manufacturing method thereof, and a secondary battery.

【0002】[0002]

【従来技術とその課題点】 電池は我々の生活に欠かせ
ないものとなっている。この電池には、一次電池と二次
電池(以下、特別な場合を除き二次電池を単に「電池」
という)とがある。近年電池の開発が進み、エネルギー
密度が高く家庭用ロードレベリング装置や自動車用動力
源としてリチュウム電池やニッケルカドミウム電池が開
発されている。
[Prior art and its problems] Batteries have become indispensable to our lives. This battery includes a primary battery and a secondary battery (hereinafter, the secondary battery is simply referred to as a "battery" unless special cases).
There is). In recent years, the development of batteries has progressed, and lithium battery and nickel-cadmium battery have been developed as load leveling devices for home use having high energy density and power sources for automobiles.

【0003】しかし、カドミウムは公害物質であるため
に一般の使用には問題があり、これに代わるものとして
水素吸蔵合金を使用したニッケル水素電池が開発されて
きた。この電池はニッケルカドミウム電池の二倍の容量
があり、現在は小型で丸型のものが開発されているが、
大型の電池はまだ開発されていない。
However, since cadmium is a pollutant, it has a problem in general use, and a nickel-hydrogen battery using a hydrogen storage alloy has been developed as an alternative to cadmium. This battery has twice the capacity of a nickel-cadmium battery, and a small and round type is currently being developed.
Large batteries have not yet been developed.

【0004】ところで、性能の良い電池を作る為には、
第1にエネルギー密度が高いこと、第2に起電力が大き
いこと、第3に自己放電を抑えること、第4に充・放電
が可逆的に何度でも行えること、等の条件が必要であ
る。特に第4の条件を満足する為には電極の溶解析出の
繰り返しにより、電極表面の形状に大きな変化を生じな
いことも重要である。
By the way, in order to make a battery with good performance,
First, conditions such as high energy density, second, large electromotive force, third, suppression of self-discharge, and fourth, reversible charge / discharge can be performed. . In particular, in order to satisfy the fourth condition, it is important that the shape of the electrode surface does not change significantly due to repeated dissolution and precipitation of the electrode.

【0005】ニッケル水素電池に使用される水素吸蔵合
金は、水素の吸収・排出作用により電気エネルギーを発
生する。上記合金は水素を吸収すると体積が増大し、排
出により体積が収縮し、これを繰り返す。
Hydrogen storage alloys used in nickel-hydrogen batteries generate electric energy by the action of absorbing and discharging hydrogen. When the above alloy absorbs hydrogen, the volume increases, and when the alloy is discharged, the volume contracts, which is repeated.

【0006】このように、体積の膨張・収縮を繰り返す
うちに上記合金自体は脆弱化し、徐々に崩壊してばらば
らになり、電極としての機能を失う。この為、上記合金
を板状に形成しただけでは長期の使用に堪えることがで
きない。
As described above, the alloy itself becomes brittle during repeated expansion and contraction of the volume, and gradually collapses into pieces and loses its function as an electrode. Therefore, long-term use cannot be endured only by forming the alloy into a plate shape.

【0007】そこで本発明者等は、粉状あるいは粒状に
した水素吸蔵合金(以下、特別な場合を除き「合金粒状
物」という)を有機バインダ、例えばポリビニルアルコ
ール(PVA)やカルボキシメチルセルロース(CM
C)を使用してペースト状物とし、これをパンチングメ
タルのような穴あきの金属板に塗布して板状の電極を作
ることを試みた。また、ポリビニルアルコール(PV
A)をバインダと使用して合金粒状物を結合させる方法
も試みた。
Therefore, the present inventors have made powdery or granular hydrogen storage alloys (hereinafter, referred to as "alloy particulates" unless special cases) organic binders such as polyvinyl alcohol (PVA) and carboxymethyl cellulose (CM).
An attempt was made to prepare a plate-like electrode by applying C) to form a paste and applying this to a perforated metal plate such as punching metal. In addition, polyvinyl alcohol (PV
A method of combining alloy particles using A) with a binder was also tried.

【0008】しかし、電流を多く取り出すためには内部
抵抗は小さくなければならず、PVAは絶縁物であるた
めに通電性能の点で問題があるばかりでなく、集電体と
しての構造が層状となり、接触抵抗が大きく集電効率が
悪いこともわかった。
However, in order to take out a large amount of current, the internal resistance must be small, and since PVA is an insulator, it not only has a problem in terms of current-carrying performance, but also has a layered structure as a current collector. It was also found that the contact resistance was large and the current collection efficiency was poor.

【0009】特開平6−325761号公報には水素吸
蔵合金粉末にニッケル粉末を混合して加圧成形し、加圧
成形したペレットをニッケルネットで包み込み再度プレ
スして電極としたものが開示してある。これによれば水
素吸蔵合金が崩壊してばらばらになり、電極としての機
能を失うことは防止できる。
Japanese Unexamined Patent Publication (Kokai) No. 6-325761 discloses a material in which nickel powder is mixed with hydrogen storage alloy powder and pressure-molded, and the pressure-molded pellet is wrapped in a nickel net and pressed again to form an electrode. is there. According to this, it is possible to prevent the hydrogen storage alloy from collapsing into pieces and losing the function as an electrode.

【0010】しかしながら、上記公報記載の発明は水素
吸蔵合金粉末に高価なニッケル粉末を重量比で20〜4
0%も混合して加圧成形する必要がある為製造コストが
高くつくという課題が生じる。
However, in the invention described in the above publication, expensive nickel powder is added to the hydrogen storage alloy powder in a weight ratio of 20-4.
Since it is necessary to mix 0% and perform pressure molding, there arises a problem that the manufacturing cost is high.

【0011】そればかりでなく、本発明者等は本発明の
開発中に合金粒状物を不織布中にプレスによって封じ込
めた電極基体をニッケルフェルト等の包被物で包み込
み、電極基体を包被物と共に強くプレスする場合と、電
極基体はプレスしないで包被した周囲のみをプレスする
場合とでは、充電反応及び放電反応とも後者の方が優れ
ていることを知見した(図7及び図8を参照)。つま
り、上記公報記載の電極の様に、電極を加圧成形してペ
レットとし更にそれをニッケルネットで包み再度プレス
するようにすると、その電極は充電反応及び放電反応と
も劣ることが判明した。
Not only that, during the development of the present invention, the inventors of the present invention wrapped the electrode base material in which the alloy granular material was confined in the non-woven fabric by a press with a cover material such as nickel felt, and the electrode base material together with the cover material. It was found that the latter is superior in both the charge reaction and the discharge reaction in the case of pressing strongly and in the case of pressing only the surrounding area without pressing the electrode substrate (see FIGS. 7 and 8). . That is, it was found that when the electrode was pressure-molded to form a pellet, which was then wrapped with a nickel net and pressed again, like the electrode described in the above publication, the electrode was inferior in charge reaction and discharge reaction.

【0012】なお、図7,8では電極基体を包被物と共
にプレスする場合を便宜上「低透過性サンドイッチ型」
と称し、電極基体はプレスしないで包被した周囲のみを
プレスする場合を「高透過性サンドイッチ型」と称して
いる。また、図8では過電圧は絶対値が小さい方が反応
が速く進むことを示している。
Incidentally, in FIGS. 7 and 8, the case of pressing the electrode substrate together with the encapsulant is a "low permeability sandwich type" for convenience.
The case where the electrode substrate is not pressed and only the surrounding area is pressed is called a "highly transparent sandwich type". In addition, FIG. 8 shows that the smaller the absolute value of the overvoltage, the faster the reaction.

【0013】本発明者等はこれらの課題を解決すべく更
に研究を重ね、合金粒状物を導電性を有する素材で包め
ば、合金が崩壊してもばらばらにならず、しかも合金粒
状物の体積が変化しても導通性能を確保できることを見
出した。また、これは特に振動に対する電極の劣化に対
しても有効であることが判明した。更には、特開平6−
325761号公報に開示されている電極の上記課題も
解決できることを見出した。本発明はこの知見に基づい
て完成したものである。
The inventors of the present invention have conducted further studies to solve these problems, and if the alloy particles are wrapped with a material having conductivity, they will not fall apart even if the alloy collapses, and the volume of the alloy particles will be reduced. It has been found that the conduction performance can be secured even when is changed. It has also been found that this is particularly effective for the deterioration of the electrode due to vibration. Furthermore, JP-A-6-
It has been found that the above problems of the electrode disclosed in Japanese Patent No. 325761 can be solved. The present invention has been completed based on this finding.

【0014】そこで本発明の目的は、可塑性と導電性を
有する不織布または発泡体内に導電性を有する粒状物ま
たは粉状物を封じ込めた、二次電池の電極及びその製造
方法、及び二次電池を提供することにある。
Therefore, an object of the present invention is to provide an electrode for a secondary battery, a method for producing the same, and a secondary battery in which a conductive granular material or a powdered material is enclosed in a non-woven fabric or foam having plasticity and conductivity. To provide.

【0015】[0015]

【課題を解決する為の手段】上記課題を解決し目的を達
成する為に講じた発明の手段は次の通りである。第1の
発明にあっては、可塑性と導電性を有する不織布または
発泡体と、上記不織布の繊維間または発泡体の気孔内に
存在しており導電性を有する無数の粒状物または粉状物
と、を含み、上記粒状物または粉状物は塑性変形によっ
て上記不織布または発泡体内に実質的に封じ込められて
電極基体を構成しており、上記電極基体は、当該電極基
体より広い面積の集電体で挟み込まれ当該電極基体の周
囲をプレスして当該電極基体と集電体とを実質的に一体
的に結合させてあることを特徴とする、二次電池の電極
である。
[Means for Solving the Problems] Means for solving the above problems and achieving the object are as follows. According to the first aspect of the present invention, a non-woven fabric or foam having plasticity and electrical conductivity, and a myriad of granular or powdery substances present between the fibers of the non-woven fabric or in the pores of the foam and having electrical conductivity. And the granular material or the powdery material is substantially enclosed by the plastic deformation in the non-woven fabric or the foamed body to form an electrode base, and the electrode base is a current collector having a larger area than the electrode base. The electrode of the secondary battery is characterized in that the electrode base and the current collector are substantially integrally combined by being sandwiched between and pressed around the electrode base.

【0016】第2の発明にあっては、第1の発明に係る
電極が導電性を有する基板に1または2以上取付けてあ
る、二次電池の電極である。
According to a second aspect of the invention, the electrode according to the first aspect of the invention is an electrode of a secondary battery in which one or more electrodes are attached to a conductive substrate.

【0017】第3の発明にあっては、可塑性と導電性を
有する不織布の繊維間または発泡体の気孔内に導電性を
有する粒状物または粉状物を進入させるステップ、上記
不織布または発泡体を塑性変形させて上記粒状物または
粉状物を上記不織布または発泡体内に実質的に封じ込め
るステップ、を含む、二次電池の電極の製造方法であ
る。
According to a third aspect of the invention, the step of injecting electrically conductive particles or powder into the spaces between the fibers of the nonwoven fabric having plasticity and conductivity or into the pores of the foam, And a step of substantially enclosing the granular material or the powdery material in the nonwoven fabric or the foamed body by plastically deforming the method.

【0018】第4の発明にあっては、所定の粒度分布を
もつ粒状物または粉状物にバインダを加えてペースト状
物を得、不織布または発泡体を超音波振動あるいは雰囲
気減圧下に置き、不織布または発泡体に荷重をかけない
で上記ペースト状物を不織布または発泡体内に進入させ
る、第3の発明に係る二次電池の電極の製造方法であ
る。
In the fourth invention, a binder is added to a granular material or a powdery material having a predetermined particle size distribution to obtain a paste-like material, and the nonwoven fabric or foam is placed under ultrasonic vibration or atmospheric decompression. A method for manufacturing an electrode of a secondary battery according to a third invention, wherein the paste-like material is allowed to enter the nonwoven fabric or the foam without applying a load to the nonwoven fabric or the foam.

【0019】第5の発明にあっては、所定の粒度分布が
100メッシュ前後を主分布とする、第5の発明に係る
二次電池の電極の製造方法である。
According to a fifth aspect of the present invention, there is provided a method for producing an electrode for a secondary battery according to the fifth aspect, wherein the predetermined particle size distribution is mainly about 100 mesh.

【0020】第6の発明にあっては、第1または2の発
明に係る電極を有する、二次電池である。
A sixth invention is a secondary battery having the electrode according to the first or second invention.

【0021】[0021]

【発明の実施の形態】本発明で使用する、可塑性と導電
性を有する不織布としては、例えば金属繊維からなる不
織布をあげることができる。この例としては、炭素繊維
の表面にニッケル、銅などの金属を電気メッキした後、
当該炭素繊維を除いて得られたものがある。
BEST MODE FOR CARRYING OUT THE INVENTION The non-woven fabric having plasticity and conductivity used in the present invention may be, for example, a non-woven fabric made of metal fiber. As an example of this, after electroplating a metal such as nickel or copper on the surface of the carbon fiber,
There is one obtained by excluding the carbon fiber.

【0022】上記した金属繊維のうち、炭素繊維の表面
にニッケルメッキを施して当該炭素繊維を燃焼させて得
られたニッケル繊維は、日本精線株式会社からCNPニ
ッケルマット(商標)の名称で発売されている。また、
片山特殊工業等からも発売されている。
Among the above-mentioned metal fibers, nickel fibers obtained by nickel-plating the surface of carbon fibers and burning the carbon fibers are sold by Nippon Seisen Co., Ltd. under the name of CNP Nickel Mat (trademark). Has been done. Also,
It is also sold by Katayama Special Industries.

【0023】本発明で使用する、可塑性と導電性を有す
る発泡体としては、例えば発泡ウレタンの表面に導電性
を付与するためにニッケルを電気メッキし、その後ウレ
タンを除去して得られた発泡ニッケルをあげることがで
きる。このような発泡ニッケルは、株式会社住友電工か
らセルメット(商標)の名称で発売されている。また、
片山特殊工業等からも発売されている。発泡体は不織布
よりも強度的に優位であり、内部の気孔が比較的に連続
であるために、充填もしやすい。
As the foam having plasticity and conductivity used in the present invention, for example, nickel foam obtained by electroplating nickel on the surface of urethane foam to give conductivity, and then removing the urethane. Can be raised. Such foamed nickel is sold by Sumitomo Electric Industries, Ltd. under the name of Celmet (trademark). Also,
It is also sold by Katayama Special Industries. The foam is superior in strength to the non-woven fabric and is easy to be filled because the internal pores are relatively continuous.

【0024】本発明で使用する、導電性を有する粉状物
または粒状物としては、例えば水素吸蔵合金や水酸化ニ
ッケルを粉状または粒状化したものをあげることができ
る。水素吸蔵合金は日本重化学工業、三徳金属などから
発売されている。
The powdery or granular material having conductivity used in the present invention may be, for example, a hydrogen storage alloy or nickel hydroxide in powdery or granular form. Hydrogen storage alloys are sold by Nippon Heavy Chemical Industry, Santoku Metal and others.

【0025】導電性を有する粉状物または粒状物は、粒
径が小さ過ぎると電池の通電特性が良くない。従って粉
状よりも粒状の方が好ましく、粒径もできるだけ大きい
ほうが好ましい。その粒度分布としては、100〜12
0メッシュ程度である。この範囲の粉状物または粒状物
を使用した電極は、通電性能が良く、放電容量を得やす
い。
If the particle size of the powdery or granular material having conductivity is too small, the current-carrying characteristics of the battery will be poor. Therefore, it is preferable to use the granular form rather than the powder form, and it is preferable that the particle size is as large as possible. The particle size distribution is 100 to 12
It is about 0 mesh. An electrode using a powder or granular material in this range has good current-carrying performance and is easy to obtain a discharge capacity.

【0026】このような粒径を有する導電物は、上記不
織布の繊維間や発泡体の気孔とほぼ同じ大きさかやや小
さいのが良い。このように繊維間の間隔や発泡体の気孔
とほぼ同じ程度の粒径を主分布とする粒状物を使用する
ことによって繊維内部に進入させた粒状物が繊維から脱
落するのを防止できる。
The conductive material having such a particle size is preferably the same size as the fibers of the non-woven fabric or the pores of the foam or slightly smaller. As described above, by using the granular material whose main distribution is the particle size of about the same as the spacing between the fibers or the pores of the foam, it is possible to prevent the granular material that has entered the inside of the fiber from falling off from the fiber.

【0027】不織布は内部が空隙で空隙率が90%以上
になっており、強度的には低下している。この為に、バ
インダを使用して合金粒状物をペースト状物化し、塗布
の為にこれを不織布に押しつける方法を採用すると、不
織布繊維間に形成されている空隙は簡単に潰れ、ペース
ト状物は表面に付着するだけで内部への充填が困難であ
る。
The nonwoven fabric has voids inside and a porosity of 90% or more, and the strength is lowered. For this reason, when a method is used in which the alloy granules are made into a paste using a binder and pressed against the non-woven fabric for application, the voids formed between the non-woven fabric fibers are easily crushed and the paste-like substance is It is difficult to fill the inside because it adheres to the surface.

【0028】そこで、不織布や発泡体をバインダと合金
粒状物からなるペースト状物中に浸漬し、不織布や発泡
体を含むペースト状物ごと超音波振動を加え、その振動
によってペースト状物を不織布の空隙内や発泡体の気孔
内へ進入させる。この為上記ペースト状物は蜂蜜程度の
粘度が好ましく、当該粘度は静置状態では合金粒状物が
沈殿する程度の粘性である。
Therefore, the non-woven fabric or foam is immersed in a paste-like material composed of a binder and alloy particles, and ultrasonic vibration is applied together with the paste-like material containing the non-woven fabric or foam, and the vibration causes the paste-like material to move into the non-woven fabric. It is allowed to enter the voids and the pores of the foam. For this reason, the above-mentioned paste-like material preferably has a viscosity of about honey, and the viscosity is such that the alloy particles are precipitated in a stationary state.

【0029】また、バインダと合金粒状物の配合割合
は、合金粒状物に対してバインダ0.5〜5重量%であ
り、好ましくは1重量%である。バインダの量が0.5
%以下だと合金粒状物をペースト状物化するのが困難で
あり、5%以上だと通電性能が悪くなる。
The blending ratio of the binder and the alloy particles is 0.5 to 5% by weight, and preferably 1% by weight, based on the alloy particles. The amount of binder is 0.5
If it is less than 5%, it is difficult to make the alloy particles into a paste, and if it is more than 5%, the current-carrying performance becomes poor.

【0030】超音波処理の振動周波数を調整することに
より、依存性のある所望の粒径の合金粒状物を上記繊維
間の空隙内に充填することができる。振動周波数は特に
限定されるものではなく所望の振動数を採用することが
できる。知見によれば特に38kHz近傍が好ましいよ
うである。
By adjusting the vibration frequency of the ultrasonic treatment, it is possible to fill the voids between the fibers with the alloy granules having a desired and dependent particle size. The vibration frequency is not particularly limited, and a desired frequency can be adopted. According to the findings, it seems that the vicinity of 38 kHz is particularly preferable.

【0031】また、不織布や発泡体を上記ペースト状物
中に浸漬し、ペースト状物を充填する雰囲気全体を減圧
し、浸漬した不織布や発泡体内部に存在する気泡が外部
へ出ていくときの気泡とペースト状物との置換作用によ
りペースト状物を不織布や発泡体内部に進入させること
もできる。これらの操作によって、不織布や発泡体内部
にペースト状物を均一に、かつ容易に進入させることが
できる。その場合の気圧はー0.08〜ー0.02MP
aである。
When the non-woven fabric or the foam is immersed in the paste-like material and the atmosphere filled with the paste-like material is decompressed, air bubbles existing inside the immersed non-woven fabric or the foam go out to the outside. It is also possible to cause the paste-like material to enter the inside of the nonwoven fabric or the foam by the replacement action of the bubbles and the paste-like material. By these operations, the paste-like material can uniformly and easily enter the inside of the nonwoven fabric or the foam. In that case, the atmospheric pressure is -0.08 to -0.02MP.
a.

【0032】本発明で使用されるバインダとしては、例
えばポリビニルアルコール(PVA)やカルボキシメチ
ルセルロースがあるが、バインダとしての働きをすれば
他の樹脂等を使用することもできる。なお、導電性を有
しないバインダは、電気特性の観点からは存在しない方
が好ましい。しかしペースト状のバインダがあると粒状
物または粉状物が散逸しないので上記充填作業がやりや
すい。また、PVAは水膨潤性がある為、それ自身は不
導体ではあるが、水を介して導電性を確保することがで
きる。また、その粘度はペースト状物を不織布や発泡体
内に進入させることが出来る範囲内で所望状態に設定さ
れる。
The binder used in the present invention includes, for example, polyvinyl alcohol (PVA) and carboxymethyl cellulose, but other resins can be used as long as they function as a binder. It is preferable that the binder having no conductivity is not present from the viewpoint of electrical characteristics. However, if there is a paste-like binder, the granular material or powdery material will not dissipate, so that the filling operation is easy. Further, since PVA has a water-swelling property, it is a non-conductor itself, but it is possible to secure conductivity through water. Moreover, the viscosity is set to a desired state within a range in which the paste-like material can enter the nonwoven fabric or the foamed body.

【0033】不織布や発泡体内にペースト状物を充填し
た後不織布あるいは発泡体をプレスして塑性変形し、繊
維間に形成されている空隙あるいは気孔を潰す。これに
よって導電性を有する不織布あるいは発泡体の中に合金
粒状物を封入することができる。なお、水素吸蔵合金は
負極に使用され、正極には水酸化ニッケルの粒状物が使
用されるが、この場合も上記した方法と同じ方法を採用
することができる。
After filling the non-woven fabric or the foamed body with the paste-like material, the non-woven fabric or the foamed body is pressed and plastically deformed to crush the voids or pores formed between the fibers. This allows the alloy particles to be encapsulated in a conductive non-woven fabric or foam. The hydrogen storage alloy is used for the negative electrode and nickel hydroxide particles are used for the positive electrode. In this case as well, the same method as described above can be adopted.

【0034】[0034]

【実施例】本発明の実施例を図面に基づき更に詳細に説
明する。 実施例1 図1は超音波振動によって電極を製造する様子を示した
説明図である。水素吸蔵合金(LmNi3.75Co0.75A
l0.35Mn0.15)を高周波溶解法により調整し、粉砕し
て100メッシュ程度を主分布とする粒状物12を得
た。この粒状物12を(a)に示すように撹拌容器10
内で溶液濃度1%のPVA水溶液25重量%と充分に混
練し、蜂蜜程度の粘度を有するペースト状物13とし
た。その後、ペースト状物13中の粒状物12が沈殿し
ないように攪拌を続け(b)に示すようにこのペースト
状物13中に空孔率95%以上のニッケル繊維不織布1
a(日本精線株式会社製 CPNニッケルマット 商
標)を浸漬した。
Embodiments of the present invention will be described in more detail with reference to the drawings. Example 1 FIG. 1 is an explanatory view showing a state of manufacturing an electrode by ultrasonic vibration. Hydrogen storage alloy (LmNi3.75Co0.75A
(0.35 Mn 0.15) was prepared by a high frequency melting method and pulverized to obtain granules 12 having a main distribution of about 100 mesh. As shown in (a), the agitation container 10
The mixture was sufficiently kneaded with 25% by weight of a PVA aqueous solution having a solution concentration of 1% to obtain a paste-like material 13 having a viscosity of about honey. Thereafter, stirring is continued so that the granular material 12 in the paste-like material 13 does not precipitate, and as shown in (b), the paste-like material 13 has a porosity of 95% or more in the nickel fiber nonwoven fabric 1
a (Nippon Seisen Co., Ltd. CPN nickel mat trademark) was immersed.

【0035】次に、(c)に示すようにニッケル繊維不
織布1aをペースト状物13ごと超音波浴槽11中に投
入し、38kHzの振動を与えてニッケル繊維不織布1
a内に粒状物12を含むペースト状物13を進入させ
((d)参照)、充填量を0.24g/cm2 に調整し
た。次に、超音波浴槽11からペースト状物13が充填
されているニッケル繊維不織布1aを取り出し、自然乾
燥した後、金型Mを使用してプレスして塑性変形し、上
記合金を充填した電極基体1を得た。この電極基体1は
そのままで電池の電極として使用できるが、更に次のよ
うな工程を経ることによって各種の電極とすることが出
来る。
Next, as shown in (c), the nickel fiber nonwoven fabric 1a is put into the ultrasonic bath 11 together with the paste material 13 and is oscillated at 38 kHz to give the nickel fiber nonwoven fabric 1 a.
The paste-like material 13 containing the particulate matter 12 was introduced into a (see (d)), and the filling amount was adjusted to 0.24 g / cm 2 . Next, the nickel fiber nonwoven fabric 1a filled with the paste-like material 13 is taken out from the ultrasonic bath 11, naturally dried, and then pressed using a mold M to be plastically deformed to fill the alloy with the above electrode substrate. Got 1. The electrode substrate 1 can be used as it is as an electrode of a battery, but can be made into various electrodes by further performing the following steps.

【0036】図2は電極基体を使用して振動等に強い電
極を製造する様子を示した説明図である。上記工程で得
られた電極基体1を(a)に示すように更に面積が大き
い多孔質の金属薄板、例えばニッケルフェルト2,2で
挟み、(b)で示すように全体を平板P1,P2でプレ
スし密着させた。次に、(c)で示すようにニッケルフ
ェルト2,2中電極基体1の部分を除いて周囲に張り出
ている縁部2aを整形用金枠Fを使用して高圧力でプレ
ス圧着して金属箔状に成型し、多孔性金属板化した金属
板化フェルト3を得た。そしてスポット溶接、レーザー
溶接等で金属板化フェルト3の周囲の接合を強度的、電
気的に強化し、(d)で示すようにニッケル板4を溶接
して二次電池の電極5(負極側)を得た。
FIG. 2 is an explanatory view showing how an electrode base is used to manufacture an electrode resistant to vibration and the like. The electrode substrate 1 obtained in the above step is sandwiched between porous metal thin plates having a larger area, for example, nickel felts 2 and 2 as shown in (a), and the whole is flat plates P1 and P2 as shown in (b). Pressed and brought into close contact. Next, as shown in (c), the edge 2a protruding around the nickel felt 2, 2 except for the intermediate electrode substrate 1 is press-pressed with a shaping metal frame F at high pressure. Metallic felt 3 was obtained by molding into a metal foil and forming a porous metal plate. Then, the joint around the metal plate felt 3 is strengthened and electrically strengthened by spot welding, laser welding, etc., and the nickel plate 4 is welded as shown in (d) to form the electrode 5 (negative electrode side) of the secondary battery. ) Got.

【0037】図3は金属板化フェルトを複数使用して大
型の電極にした状態を示す説明図である。図3に示すよ
うに大型の電極にする場合は、まず、金属基板20を電
極基体1が嵌入できる大きさに所望数打ち抜いて窓孔2
1を形成する。次いでこの窓孔21に金属板化フェルト
3のうち電極基体1の部分を嵌入し、縁部2aを利用し
てこれを金属基板20、例えばニッケル基盤に溶接する
ことで大きな放熱板を持つ電極6を作製することができ
る。
FIG. 3 is an explanatory view showing a state in which a plurality of metal plate felts are used to form a large electrode. In the case of forming a large-sized electrode as shown in FIG. 3, first, a desired number of metal substrates 20 are punched into a size in which the electrode substrate 1 can be fitted, and the window holes 2 are formed.
Form one. Next, the portion of the electrode substrate 1 of the metal plate felt 3 is fitted into the window hole 21 and the edge portion 2a is used to weld this to the metal substrate 20, for example, a nickel substrate, thereby forming an electrode 6 having a large heat dissipation plate. Can be produced.

【0038】図4はニッケル繊維不織布の繊維間に水素
吸蔵合金の粒状物が充填された状態の電子顕微鏡写真を
表した説明図である。符号1aはニッケル繊維不織布、
12は水素吸蔵合金の粒状物である。図からも明らかな
ようにニッケル繊維不織布1aの繊維間に水素吸蔵合金
の粒状物12が充填されていることがわかる。
FIG. 4 is an explanatory view showing an electron micrograph showing a state in which particles of the hydrogen storage alloy are filled between the fibers of the nickel fiber nonwoven fabric. Reference numeral 1a is a nickel fiber non-woven fabric,
12 is a granular material of hydrogen storage alloy. As is clear from the figure, it is understood that the particles 12 of the hydrogen storage alloy are filled between the fibers of the nickel fiber nonwoven fabric 1a.

【0039】図5は実施例1で得られた電極のサイクル
特性の影響を示したグラフである。実験は、直流を使用
して電池に充電し、満充電後放電させて1サイクルとし
てこれを繰り返して行った。横軸は充放電の繰り返し回
数、縦軸はグラム当たりの放電容量である。図5から明
らかなように、本実施例に係る電極は従来の電極に比べ
て充放電の繰り返しによる放電容量の低下が少ないこと
がわかる。
FIG. 5 is a graph showing the influence of the cycle characteristics of the electrode obtained in Example 1. The experiment was repeated by charging the battery using direct current, discharging the battery after fully charging it, and setting it as one cycle. The horizontal axis represents the number of charge / discharge cycles, and the vertical axis represents the discharge capacity per gram. As is clear from FIG. 5, the electrode according to the present example shows less decrease in discharge capacity due to repeated charging / discharging than the conventional electrode.

【0040】実施例2 図6は減圧によって電極を製造する様子を示した説明図
である。なお、図1に示した箇所やものと同一または同
等の箇所やものには同一符号を付してい示している。実
施例1で得られたペースト状物13を攪拌しながら、そ
の中に発泡ニッケル30(空孔率95%以上)を浸漬し
た。これを減圧装置7に入れて充填する雰囲気全体をー
0.06MPaに減圧し、浸漬した発泡ニッケル30内
部に存在する気泡が外部へ出ていくときの気泡とペース
ト状物13との置換作用によりペースト状物13を発泡
ニッケル30内部に進入させた。これを実施例1と同様
なプレス工程を経て二次電池の電極(負極側)を得た。
なお、実施例2で得られた電極のサイクル特性の影響を
実験したところ。実施例1の場合と大体において同じで
あった。
Example 2 FIG. 6 is an explanatory view showing a state of manufacturing an electrode by reducing pressure. It should be noted that the same reference numerals are given to the same or equivalent parts and things as those shown in FIG. While stirring the paste-like material 13 obtained in Example 1, nickel foam 30 (porosity 95% or more) was immersed therein. The entire atmosphere to be filled by putting this in the decompression device 7 is decompressed to -0.06 MPa, and by the action of displacing the bubbles existing inside the immersed nickel foam 30 with the paste-like material 13 when it goes out. The paste-like material 13 was introduced into the foamed nickel 30. This was subjected to the same pressing process as in Example 1 to obtain an electrode (negative electrode side) of a secondary battery.
The effect of the cycle characteristics of the electrode obtained in Example 2 was tested. It was roughly the same as in Example 1.

【0041】実施例3 市販の10μ程度の水酸化ニッケル粒子に対して1%の
カルボキシメチルセルロース水溶液を40重量%加え十
分に混練しペースト状物とした後撹拌を続けるペースト
状物中に実施例1と同様のニッケル繊維不織布を浸漬し
た。次いで図6に示したものと同じ減圧装置を使用して
雰囲気をー0.06MPaに減圧し、ぺースト状物の充
填量を0.2g/cm2 に調整した。これを実施例1と
同様なプレス工程を経て二次電池の電極(正極側)を得
た。これにより得られた電極は表面を金属で機械的に被
覆してある為に水酸化ニッケル粒子の脱落が生じにくか
った。
Example 3 40% by weight of a 1% aqueous solution of carboxymethyl cellulose was added to commercially available nickel hydroxide particles of about 10 μm, and the mixture was sufficiently kneaded to form a paste, and the mixture was continuously stirred in Example 1 The same nickel fiber non-woven fabric was immersed. Then, the atmosphere was depressurized to -0.06 MPa using the same depressurizing device as shown in Fig. 6, and the filling amount of the paste-like material was adjusted to 0.2 g / cm 2 . This was subjected to the same pressing process as in Example 1 to obtain an electrode (positive electrode side) of a secondary battery. Since the surface of the electrode thus obtained was mechanically coated with a metal, the nickel hydroxide particles were hard to fall off.

【0042】[0042]

【比較例】図7及び8は、実施例1作られた電極基体を
ニッケルフェルト等の包被物で包み込み、電極基体を包
被物と共にプレスする場合と、電極基体はプレスしない
で包被した周囲のみをプレスする場合の電極の充電反応
及び放電反応の比較を示した図である。図7,8では電
極基体を包被物と共にプレスする場合を便宜上「低透過
性サンドイッチ型」と称し、電極基体はプレスしないで
包被した周囲のみをプレスする場合を「高透過性サンド
イッチ型」と称している。
[Comparative Example] FIGS. 7 and 8 show the case where the electrode substrate prepared in Example 1 was wrapped with an encapsulant such as nickel felt and the electrode substrate was pressed together with the encapsulant, and the electrode substrate was encased without pressing. It is the figure which showed the comparison of the charge reaction and discharge reaction of the electrode at the time of pressing only the circumference. In FIGS. 7 and 8, the case where the electrode substrate is pressed together with the encapsulant is referred to as the “low permeability sandwich type” for convenience, and the case where the electrode substrate is not pressed and only the surrounding area is pressed is the “high permeability sandwich type”. Is called.

【0043】図8では過電圧は絶対値が小さい方が反応
が速く進むことを示している。図8から明らかなよう
に、充電反応及び放電反応とも「高透過性サンドイッチ
型」の方が優れていることがわかる。なお、本発明は図
示の実施例に限定されるものではなく、特許請求の範囲
の記載内において数々の変形が可能である。
FIG. 8 shows that the smaller the absolute value of the overvoltage, the faster the reaction. As is clear from FIG. 8, the “high-permeability sandwich type” is superior in both the charge reaction and the discharge reaction. The present invention is not limited to the illustrated embodiments, and various modifications can be made within the scope of the claims.

【0044】[0044]

【発明の効果】本発明は上記構成を有し、次の効果を有
する。 (1) 例えばニッケル水素電池に使用される合金は、充放
電により体積の膨張・収縮を繰り返すうちに徐々に崩壊
してばらばらになり、電極としての機能を失う。しかし
本発明によれば、導電性を有する粒状物または粉状物を
不織布または発泡体を塑性変形させることによって金属
粒子を内部に封じ込めるので、金属粒子が崩壊してもば
らばらになることもなく長期間の使用に堪えうる電極が
提供できる。 (2)(1)で説明した様に粒状物または粉状物は機械的に保
持される構造であるために、振動や衝撃によって電極か
ら粒状物または粉状物が脱落するのを防止できる。特に
電極より広い面積の集電体で電極を挟み込み、押圧力を
加えて上記電極と集電体とを実質的に一体的に結合させ
てあるものの場合は、より振動や衝撃に対する脱落防止
が可能である。その場合集電体が、同じか更に目の細か
い集電体で挟持したものは、崩壊により小さな粒子にな
った場合でも粒子の落下が防止できる。 (3) 粒状物または粉状物をペースト状物化し、超音波振
動あるいは雰囲気減圧下で不織布または発泡体内に充填
するものは、不織布の繊維間あるいは発泡体の気孔と同
じ程度の粒径の粒子を充填することが出来る。この為電
気特性が良く、通電性能が良好な電極が得られる。 (4) 請求項1または2で製造された電極を導電性を有す
る基板に1または2以上取付けることによって電極の表
面積を大きくすることができる。このため集電効率が良
く、充放電時に発生する熱の吸放熱板として機能させる
ことが出来る電極が提供できる。 (5) 上記 (1)で説明したように、粒状物または粉状物は
不織布または発泡体内に実質的に封じ込めてあり、不織
布や発泡体によって遮断された状態となっている。この
ため過充電時などに多く発生する酸素等のガスが直接電
極に接触するのを妨げることができ、腐食による活物質
が劣化しにくく、充放電サイクルの特性が向上する。ま
た、正極または負極から電解液に溶出し、それが反対の
電極に接触するとよくないものがあるが、これを不織布
や発泡体によって遮断することができる為に腐食と自己
放電性能が良くなる。 (6) 電極の製造に当たっては、電極基体を形成する際に
塑性変形される他は特にプレス工程が必要ではなく、こ
のため充電反応及び放電反応とも優れた電極が提供でき
る。
The present invention having the above-mentioned structure has the following effects. (1) For example, an alloy used for a nickel-hydrogen battery gradually collapses into pieces while repeatedly expanding and contracting in volume due to charge and discharge, and loses its function as an electrode. However, according to the present invention, since the metal particles are contained inside the non-woven fabric or the foam by plastically deforming the granular or powdery substance having conductivity, the metal particles do not fall apart even if they collapse. It is possible to provide an electrode that can be used for a period of time. (2) As described in (1), since the granular material or the powdery material has a structure of being mechanically held, it is possible to prevent the granular material or the powdery material from falling off from the electrode due to vibration or impact. In particular, in the case where the electrode is sandwiched by a current collector having a larger area than the electrode and a pressing force is applied to the electrode and the current collector to be substantially integrated, it is possible to prevent the electrode from falling off due to vibration or shock. Is. In that case, if the current collector is sandwiched between current collectors of the same size or finer, the particles can be prevented from falling even if the particles become small particles due to the collapse. (3) Granules or powders that are made into a paste and filled in a nonwoven fabric or foam under ultrasonic vibration or atmospheric decompression are particles with the same particle size as the fibers of the nonwoven fabric or the pores of the foam. Can be filled. Therefore, it is possible to obtain an electrode having good electric characteristics and good current-carrying performance. (4) The surface area of the electrode can be increased by attaching one or two or more of the electrodes manufactured in claim 1 or 2 to a substrate having conductivity. Therefore, it is possible to provide an electrode having a high current collecting efficiency and capable of functioning as a heat absorbing / dissipating plate for heat generated during charging / discharging. (5) As described in (1) above, the granular material or the powdery material is substantially contained in the nonwoven fabric or the foam, and is blocked by the nonwoven fabric or the foam. Therefore, it is possible to prevent a gas such as oxygen, which is often generated during overcharge, from coming into direct contact with the electrode, the active material is less likely to deteriorate due to corrosion, and the characteristics of the charge / discharge cycle are improved. In addition, there are some things that are not good if they are eluted from the positive electrode or the negative electrode into the electrolytic solution and come into contact with the opposite electrode, but since they can be blocked by the nonwoven fabric or the foam, the corrosion and self-discharge performance are improved. (6) In manufacturing the electrode, a pressing step is not particularly required except that the electrode base is plastically deformed when it is formed, and therefore an electrode excellent in both charge reaction and discharge reaction can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】超音波振動によって電極を製造する様子を示し
た説明図である。
FIG. 1 is an explanatory view showing a state of manufacturing an electrode by ultrasonic vibration.

【図2】電極基体を使用して振動等に強い電極を製造す
る様子を示した説明図である。
FIG. 2 is an explanatory diagram showing a state of manufacturing an electrode that is resistant to vibration and the like using an electrode base.

【図3】金属板化フェルトを複数使用して大型の電極と
した状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which a plurality of metal plate felts are used to form a large electrode.

【図4】ニッケル繊維不織布の繊維間に水素吸蔵合金の
粒状物が充填された状態の電子顕微鏡写真を表した説明
図である。
FIG. 4 is an explanatory view showing an electron micrograph showing a state in which particles of a hydrogen storage alloy are filled between the fibers of a nickel fiber nonwoven fabric.

【図5】実施例1で得られた電極のサイクル特性の影響
を示したグラフである。
5 is a graph showing the influence of the cycle characteristics of the electrode obtained in Example 1. FIG.

【図6】減圧によって電極を製造する様子を示した説明
図である。
FIG. 6 is an explanatory diagram showing a state of manufacturing an electrode by reducing pressure.

【図7】電極基体をニッケルフェルト等の包被物で包み
込み、電極基体を包被物と共にプレスする場合と、電極
基体はプレスしないで包被した周囲のみをプレスする場
合との状態を表した説明図でそれぞれ平面と断面を表し
ている。
FIG. 7 shows a state in which the electrode substrate is wrapped with an envelope such as nickel felt and the electrode substrate is pressed together with the envelope, and the electrode substrate is not pressed and only the periphery of the envelope is pressed. The explanatory view shows a plane and a cross section, respectively.

【図8】電極基体をニッケルフェルト等の包被物で包み
込み、電極基体を包被物と共にプレスする場合と、電極
基体はプレスしないで包被した周囲のみをプレスする場
合との充電反応及び放電反応の比較を示す図である。
FIG. 8: Charge reaction and discharge between the case where the electrode substrate is wrapped with an envelope such as nickel felt and the electrode substrate is pressed together with the envelope, and the case where the electrode substrate is not pressed and only the surrounding area is pressed. It is a figure which shows the comparison of reaction.

【符号の説明】[Explanation of symbols]

1 電極基体 2 ニッケルフェルト 3 金属板化フェルト 12 水素吸蔵合金の粒状物 13 ぺ−スト状物 1 Electrode Base 2 Nickel Felt 3 Metallic Felt 12 Hydrogen Storage Alloy Granules 13 Paste

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 可塑性と導電性を有する不織布または発
泡体と、 上記不織布の繊維間または発泡体の気孔内に存在してお
り導電性を有する無数の粒状物または粉状物と、 を含み、 上記粒状物または粉状物は塑性変形によって上記不織布
または発泡体内に実質的に封じ込められて電極基体を構
成しており、 上記電極基体は、当該電極基体より広い面積の集電体で
挟み込まれ当該電極基体の周囲をプレスして当該電極基
体と集電体とを実質的に一体的に結合させてあることを
特徴とする、 二次電池の電極。
1. A non-woven fabric or foam having plasticity and conductivity, and a myriad of electrically conductive particles or powders existing between fibers of the non-woven fabric or in pores of the foam, and The granular material or the powdery material is substantially enclosed by the plastic deformation in the non-woven fabric or the foamed body to form an electrode base, and the electrode base is sandwiched by a current collector having a larger area than the electrode base. An electrode for a secondary battery, characterized in that the electrode base and the current collector are substantially integrally bonded by pressing around the electrode base.
【請求項2】 請求項1記載の電極が導電性を有する基
板に1または2以上取付けてあることを特徴とする、 二次電池の電極。
2. An electrode for a secondary battery, wherein one or more of the electrodes according to claim 1 are attached to a substrate having conductivity.
【請求項3】 可塑性と導電性を有する不織布の繊維間
または発泡体の気孔内に導電性を有する粒状物または粉
状物を進入させるステップ、 上記不織布または発泡体を塑性変形させて上記粒状物ま
たは粉状物を上記不織布または発泡体内に実質的に封じ
込めるステップ、 を含む、 二次電池の電極の製造方法。
3. A step of injecting a conductive granular material or a powdery material between fibers of a plastic and conductive non-woven fabric or in pores of a foam, wherein the non-woven fabric or foam is plastically deformed to form the granular material. Or a step of substantially enclosing a powdery material in the nonwoven fabric or the foamed body, the method for producing an electrode of a secondary battery.
【請求項4】 所定の粒度分布をもつ粒状物または粉状
物にバインダを加えてペースト状物を得、不織布または
発泡体を超音波振動あるいは雰囲気減圧下に置き、不織
布または発泡体に荷重をかけないで上記ペースト状物を
不織布または発泡体内に進入させることを特徴とする、
請求項3記載の二次電池の電極の製造方法。
4. A paste is obtained by adding a binder to a granular material or a powdery material having a predetermined particle size distribution, and the nonwoven fabric or foam is placed under ultrasonic vibration or atmospheric decompression to apply a load to the nonwoven fabric or foam. Characterized by allowing the paste-like material to enter the non-woven fabric or the foam without being applied,
The method for manufacturing the electrode of the secondary battery according to claim 3.
【請求項5】 所定の粒度分布が100メッシュ前後を
主分布とすることを特徴とする、請求項4記載の二次電
池の電極の製造方法。
5. The method for manufacturing an electrode of a secondary battery according to claim 4, wherein the predetermined particle size distribution has a main distribution around 100 mesh.
【請求項6】 請求項1または2記載の電極を有する二
次電池。
6. A secondary battery having the electrode according to claim 1.
JP7266235A 1995-09-19 1995-09-19 Electrode of secondary battery and secondary battery having the same Expired - Lifetime JP2984908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266235A JP2984908B2 (en) 1995-09-19 1995-09-19 Electrode of secondary battery and secondary battery having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7266235A JP2984908B2 (en) 1995-09-19 1995-09-19 Electrode of secondary battery and secondary battery having the same

Publications (2)

Publication Number Publication Date
JPH0992272A true JPH0992272A (en) 1997-04-04
JP2984908B2 JP2984908B2 (en) 1999-11-29

Family

ID=17428155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266235A Expired - Lifetime JP2984908B2 (en) 1995-09-19 1995-09-19 Electrode of secondary battery and secondary battery having the same

Country Status (1)

Country Link
JP (1) JP2984908B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method
JP2006299423A (en) * 2005-04-15 2006-11-02 Kiyoshi Kawanaka Plated metal fiber-interlaced aggregate material, plated metal fiber nonwoven fabric and plated metal fiber-interlaced molded product
JP2013502698A (en) * 2009-08-27 2013-01-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Power storage device and electrode thereof
JP2013538002A (en) * 2010-09-22 2013-10-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Lithium battery electrode and manufacturing method thereof
CN104300156A (en) * 2013-07-19 2015-01-21 三菱综合材料株式会社 Method and equipment for manufacturing electrode sheet
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
CN112993275A (en) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 Batch preparation method of metal/seawater cathode

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644801B2 (en) * 2005-01-13 2011-03-09 国立大学法人福井大学 Composite sheet body and method for producing the same
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method
JP2006299423A (en) * 2005-04-15 2006-11-02 Kiyoshi Kawanaka Plated metal fiber-interlaced aggregate material, plated metal fiber nonwoven fabric and plated metal fiber-interlaced molded product
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
JP2013502698A (en) * 2009-08-27 2013-01-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Power storage device and electrode thereof
JP2013538002A (en) * 2010-09-22 2013-10-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Lithium battery electrode and manufacturing method thereof
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
JP2015022916A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Method and device for manufacturing electrode sheet
CN104300156A (en) * 2013-07-19 2015-01-21 三菱综合材料株式会社 Method and equipment for manufacturing electrode sheet
CN112993275A (en) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 Batch preparation method of metal/seawater cathode
CN112993275B (en) * 2019-12-12 2022-09-27 中国科学院大连化学物理研究所 Batch preparation method of metal/seawater cathode

Also Published As

Publication number Publication date
JP2984908B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
CN1156038C (en) Betteries
JP2984908B2 (en) Electrode of secondary battery and secondary battery having the same
US4792505A (en) Electrodes made from mixed silver-silver oxides
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
CN1163999C (en) Alkaline storage bettery with scroll electrode body
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JP2005129497A (en) Electrode plate for alkaline storage battery, its manufacturing method, and alkaline storage battery
JPH04284354A (en) Hydrogen storage electrode, its manufacture, and metal-oxide-hydrogen storage battery using the electrode
JP3093801B2 (en) Battery manufacturing method and battery
JP3220675B2 (en) Battery manufacturing method
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3416448B2 (en) Method for producing hydrogen storage alloy particles
US20070117022A1 (en) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof
JPH01248473A (en) Manufacture of electrode for battery
JPH11250893A (en) Electrode, and battery using it
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JP2002008645A (en) Hydrogen-storing alloy negative electrode and production method thereof
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH08236107A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH05109406A (en) Hydrogen battery electrode and its manufacture
JPH11144739A (en) Manufacture of paste type plate for alkaline storage batery
JP2981537B2 (en) Negative electrode for alkaline batteries
JP2854920B2 (en) Nickel-metal hydride battery