JPH11185741A - Manufacture of electrode for battery - Google Patents

Manufacture of electrode for battery

Info

Publication number
JPH11185741A
JPH11185741A JP9365584A JP36558497A JPH11185741A JP H11185741 A JPH11185741 A JP H11185741A JP 9365584 A JP9365584 A JP 9365584A JP 36558497 A JP36558497 A JP 36558497A JP H11185741 A JPH11185741 A JP H11185741A
Authority
JP
Japan
Prior art keywords
active material
dimensional porous
electrode
porous metal
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9365584A
Other languages
Japanese (ja)
Inventor
Takehito Matsubara
岳人 松原
Chikaichi Jinushi
親市 地主
Yasuaki Hiramura
泰章 平村
Yasuyuki Ida
康之 井田
Kazuya Miyazaki
和哉 宮崎
Yasuaki Ito
泰章 伊藤
Saburo Komai
三郎 駒井
Haruhiko Takemura
治彦 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS MERUKOTEC KK
Japan Storage Battery Co Ltd
Original Assignee
GS MERUKOTEC KK
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS MERUKOTEC KK, Japan Storage Battery Co Ltd filed Critical GS MERUKOTEC KK
Priority to JP9365584A priority Critical patent/JPH11185741A/en
Priority to DE69813164T priority patent/DE69813164T2/en
Priority to EP98124338A priority patent/EP0924783B1/en
Priority to CNB981258638A priority patent/CN1222060C/en
Priority to US09/218,451 priority patent/US6241790B1/en
Publication of JPH11185741A publication Critical patent/JPH11185741A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a current collecting member to be connected strongly without a decrease in the strength of a three-dimensional porous metal basic body by denaturating or deforming an active material filled into the three-dimensional porous metal basic body through the application of heat to a specified part of the filler, and removing the same with ultrasonic vibration. SOLUTION: An electrode 1 is formed by coating a nickel three-dimensional porous basic body of plating type of foaming nickel or the like with a conduction agent of nickel hydroxide and a cobalt compound, a viscosity improver such as CMC, and an active material filler composed of a binding resin such as PED. Heat is applied by a method of applying infrared rays, laser beam, or flame of a burner to connection portions of current collecting member such as a collection tab 2 of a basic body of the electrode 1 to thereby denaturate of deform the active material filler at that part. Then, ultrasonic vibration is applied thereto to remove the active material filler reduced in its retaining power. It is preferable that the ultrasonic vibration is carried out while the three-dimensional porous metal body is pressed and crushed for removing the filler efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、三次元多孔金属基
体に活物質を充填したのち、該活物質の一部を除去して
三次元多孔金属基体の一部表面を露出し、該露出個所か
ら集電を行う電池用電極の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method of filling a three-dimensional porous metal substrate with an active material, removing a part of the active material to expose a part of the surface of the three-dimensional porous metal substrate, and The present invention relates to a method for producing a battery electrode for collecting electricity from a battery.

【従来の技術】アルカリ蓄電池等に用いられる電極構造
の一つとして、発泡式金属等の三次元多孔金属基体に活
物質を充填した構造のものがある。この構造の電極は、
比較的製造工程が簡単であり、また、導電性の低い活物
質を用いる場合にも良好な集電特性が得られ、電極の高
容量化も可能である点で優れている。しかしながら、活
物質を充填する前に予め電極に電流出し入れのための集
電引き出し部を設けておくのが難しく、基体全体に活物
質を充填した後、基体の所定一部領域から活物質を除去
して、ここに集電部材を接続することによって集電引き
出し部を形成するいう方法が用いられている。この方法
により集電リードを接続する場合、基板から活物質や活
物質を保持するために用いられる樹脂等を基板表面から
完全に除去する必要があり、活物質を除去する好適な方
法として、基板の所定個所に超音波振動を加える方法が
用いられている。
2. Description of the Related Art As one of electrode structures used for an alkaline storage battery or the like, there is a structure in which a three-dimensional porous metal substrate such as a foamed metal is filled with an active material. The electrode of this structure
The method is excellent in that the manufacturing process is relatively simple, good current collecting characteristics can be obtained even when an active material having low conductivity is used, and the capacity of the electrode can be increased. However, it is difficult to provide a current collecting lead-out portion for supplying and removing current to the electrode before filling the active material, and after filling the entire base material with the active material, the active material is removed from a predetermined partial region of the base material. Then, a method of forming a current collection lead portion by connecting a current collection member here is used. When the current collecting lead is connected by this method, it is necessary to completely remove the active material and the resin used for holding the active material from the substrate surface from the substrate. A method of applying ultrasonic vibration to a predetermined location is used.

【発明が解決しようとする課題】できるだけ容量密度の
大きい電池を作製するためには、出来るだけ多くの活物
質を基体内に充填する必要がある。この要請を満たすた
めに、これまで上記三次元多孔金属基体に活物質を充填
した構造の電極において、活物質の粒径分布の調整、結
着樹脂の低減、三次元多孔金属基体骨格の細骨格化、三
次元多孔金属基体の目付けの減少、さらに三次元多孔金
属基体に活物質を充填した後のプレスと、プレス圧の増
大といった対策を講じてきた。そしてこれらの対策によ
り、これまで、電池の容量を徐々に大きくしてくること
に成功してきた。ところが一方で、基体内の活物質充填
密度の増大に伴い、製造工程における不良率の増大が生
じるようになってきた。そこでこの原因を調べた結果、
充填密度増大に伴って活物質はより強固に基体内に保持
されるようになり、従来の超音波振動等による物理的な
方法による活物質の除去が困難になっており、このた
め、活物質を除去すべき基板表面から活物質が完全に除
去されずに残り、接続した集電部材の接続強度が低下
し、後の電池組立工程において集電部材脱落という不良
を発生させていることがわかった。そこで、このような
不良発生を防ぐために、活物質除去の際の超音波振動の
強度を強くしたり、集電部材接続のためのスポット溶接
や超音波溶接等のエネルギー投入量を大きくしたりとい
った方法について検討を行ってきた。しかしながら、活
物質除去の際の超音波振動強度の増大という方法は、三
次元多孔金属基体への損傷を大きくし集電部材接続部の
基体強度の低下を引き起こし、結果として集電部材がそ
の接続部周辺の基体部分が切断して脱落し、問題の解決
にはならなかった。また、接続時のエネルギー投入量の
増大という方法においても、基体等に強度上の限界があ
りある一定以上にはエネルギー強度を上げることができ
ず、さらにはエネルギーの無駄となるため、この方法も
問題の解決にはならなかった。さらに、所定領域の結着
材のみを溶媒等によって除去して活物質の保持力を低下
させた後活物質を除去するといった方法についても検討
を行ったが、高容量電極では活物質の充填密度増大のた
めに結着材量が非常に少なくなっており、また、活物質
の保持力の大部分が基体がプレスされることによる圧力
に負うものとなっているため、このような結着材への処
理はあまり効果がなかった。
In order to manufacture a battery having as large a capacity density as possible, it is necessary to fill the substrate with as much active material as possible. In order to satisfy this demand, in an electrode having a structure in which the three-dimensional porous metal substrate has been filled with an active material, the particle size distribution of the active material has been adjusted, the binder resin has been reduced, and the fine skeleton of the three-dimensional porous metal substrate has been reduced. The following measures have been taken: reduction of the basis weight of the three-dimensional porous metal substrate, press after filling the three-dimensional porous metal substrate with the active material, and increase of the pressing pressure. These measures have been successful in gradually increasing the capacity of the battery. On the other hand, as the active material filling density in the substrate increases, the defect rate in the manufacturing process has increased. So after investigating the cause,
As the packing density increases, the active material is more firmly held in the substrate, and it is difficult to remove the active material by a physical method such as conventional ultrasonic vibration. It is understood that the active material is not completely removed from the surface of the substrate from which the current collector is to be removed, the connection strength of the connected current collector is reduced, and a defect that the current collector is detached in a later battery assembling process occurs. Was. Therefore, in order to prevent the occurrence of such defects, the intensity of ultrasonic vibration at the time of removing the active material is increased, and the amount of energy input such as spot welding or ultrasonic welding for connecting the current collecting member is increased. We have been studying the method. However, the method of increasing the ultrasonic vibration intensity at the time of removing the active material increases the damage to the three-dimensional porous metal base and causes the base strength of the current collecting member connecting portion to decrease, and as a result, the current collecting member cannot be connected to the current collecting member. The base part around the part was cut off and dropped off, which did not solve the problem. Also, in the method of increasing the amount of energy input at the time of connection, there is a limit in the strength of the base or the like, so that the energy intensity cannot be increased beyond a certain level, and energy is wasted. It did not solve the problem. Furthermore, a method was also studied in which only the binder in a predetermined area was removed with a solvent or the like to reduce the holding power of the active material and then the active material was removed. Since the amount of the binder is very small due to the increase, and most of the holding power of the active material is owed to the pressure due to the pressing of the base, such a binder is used. Treatment was not very effective.

【課題を解決するための手段】上記課題を解決するため
に、本願発明の電池用電極の製造方法は、三次元多孔金
属基体に活物質を含んでなる活物質充填材を充填した
後、該基体の集電引き出し部を形成する為の所定個所に
活物質充填材を変成または変形する熱と超音波振動を加
えることにより活物質充填材を除去することを特徴とし
ている。すなわち本発明の中心となる思想は、三次元多
孔金属基体の所定個所に熱を加えることによって、活物
質等の接触状態を熱による変形等によって変化させて保
持力を低減させようというものであって、すなわち、三
次元多孔金属基体または活物質充填材に熱を加え、これ
によって三次元多孔金属基体を熱膨張させ、または活物
質充填材中の少なくとも一つの成分を変成または変形し
て、三次元多孔金属基体に対する活物質充填材の保持力
を低下させ、該保持力の低下した活物質充填材を超音波
振動により三次元多孔金属基体より除去しようというも
のである。そして、より効果的には、活物質充填材中の
少なくとも一つの成分を変成または変形させようとする
ものである。三次元多孔金属基体を熱膨張させること
は、基体と接触している活物質充填材との間に例えばせ
ん断力を生じるようなずれを生じて表面からその活物質
充填材を剥がすように作用し、また基体中に保持されて
いる活物質充填材全体を揺さぶることにより新たな隙間
を生じさせて保持力を低下させる。従って、このような
効果を大きくするには、基体の温度上昇は大きくするほ
うが良く、さらには収縮による効果も加えるために温度
上昇と冷却を速い周期で生じさせるのが良い。ただし、
温度上昇は基体の強度や電気伝導度を低下させないよ
う、その材質に応じた適当な温度で行うのがよい。活物
質充填材は、主として活物質(場合によっては活物質の
み)からなり、これに樹脂等の結着材、導電材、その他
の添加材が加えられてなるものであって、この中の少な
くとも一つの成分を変成させることは、各成分同士の結
着力、基体との結着力を低下させるような変化を起こさ
せるものであって、これにより活物質充填材の保持力を
低下させるものである。また、少なくとも一つの成分を
変形させることは、活物質充填材の充填状態を変化さ
せ、また、新たな隙間を生じさせ、また、接触面をずら
して引き剥がすように作用し、活物質充填材の保持力を
低下させる。なお、この変形には、基体と同様に熱膨
張、熱収縮により生じるもの以外に、変成の結果生じる
ものもあり、特に、活物質充填材中の活物質の比率が高
いものにおいては、活物質の変成と変形が重要な役割を
果たすようになる。この場合、活物質の熱による酸化ま
たは還元反応が重要で、活物質の種類に応じて温度や酸
素存在、水素存在雰囲気といったような雰囲気が調整さ
れる。熱と超音波振動を加える順番は、熱を加える目的
から、効率を上げるためには超音波振動を熱より先に加
えないほうが良く、同時に行うか、熱を加えた後超音波
振動を加えるのが良い。同時に加える場合には、活物質
充填材除去工程を短時間で済ませることが可能となると
いう利点があり、熱を加えた後超音波振動を加える場合
には、超音波印加までの時間や雰囲気温度等を調整する
ことによって冷却の効果を加えることも可能で、高いエ
ネルギー効率での除去が可能となり、また、熱を加える
条件も調整しやすくなるので好ましい。
Means for Solving the Problems In order to solve the above problems, a method for manufacturing a battery electrode according to the present invention comprises the steps of: filling a three-dimensional porous metal substrate with an active material filler containing an active material; The present invention is characterized in that the active material filler is removed by applying heat and ultrasonic vibration for transforming or deforming the active material filler to a predetermined location for forming the current collection lead portion of the base. That is, the central idea of the present invention is to reduce the holding force by applying heat to a predetermined portion of the three-dimensional porous metal substrate to change the contact state of the active material or the like by deformation due to heat or the like. That is, heat is applied to the three-dimensional porous metal substrate or the active material filler, thereby thermally expanding the three-dimensional porous metal substrate, or denaturing or deforming at least one component in the active material filler to form a third order. It is intended to reduce the holding power of the active material filler with respect to the original porous metal substrate and to remove the active material filler having reduced holding power from the three-dimensional porous metal substrate by ultrasonic vibration. And, more effectively, at least one component in the active material filler is modified or deformed. The thermal expansion of the three-dimensional porous metal substrate acts to separate the active material filler from the surface by causing a shift between the substrate and the active material filler that is in contact, for example, to generate a shear force. In addition, by shaking the entire active material filler held in the base, a new gap is generated to lower the holding force. Therefore, in order to increase such an effect, it is better to increase the temperature of the substrate, and to increase the effect of shrinkage, it is preferable to cause the temperature increase and cooling to occur at a rapid cycle. However,
The temperature is preferably raised at an appropriate temperature according to the material so as not to lower the strength and electric conductivity of the substrate. The active material filler is mainly composed of an active material (in some cases, only the active material), to which a binder such as a resin, a conductive material, and other additives are added. Denaturing one component causes a change that decreases the binding force between the components and the binding force with the substrate, thereby reducing the holding force of the active material filler. . Also, deforming at least one component changes the filling state of the active material filler, creates a new gap, and acts to separate the contact surface and peel off the active material filler. Reduces the holding power of This deformation may be caused by denaturation other than that caused by thermal expansion and thermal shrinkage as in the case of the base. Particularly, in the case where the ratio of the active material in the active material filler is high, the active material Metamorphosis and deformation play an important role. In this case, the oxidation or reduction reaction of the active material by heat is important, and the temperature, the atmosphere such as the presence of oxygen, and the atmosphere such as the presence of hydrogen are adjusted according to the type of the active material. In order to apply heat and ultrasonic vibration, it is better not to apply ultrasonic vibration before heat in order to increase the efficiency, and to apply heat and ultrasonic vibration at the same time, or to apply ultrasonic vibration after applying heat Is good. If they are added simultaneously, there is an advantage that the active material filler removal step can be completed in a short time, and if ultrasonic vibration is applied after applying heat, the time until ultrasonic application and the ambient temperature By adjusting such factors, it is possible to add a cooling effect, which enables removal with high energy efficiency, and also facilitates adjustment of conditions for applying heat, which is preferable.

【発明の実施の形態】ニッケル水素電池等に用いられる
水酸化ニッケル電極の例を用いて本発明についてさらに
詳細に説明する。三次元多孔金属基体としては、金属繊
維焼結体や発泡式金属体を用いることが出来るが、水酸
化ニッケル電極を本発明の方法により製造する場合に
は、例えば、住友電工製の発泡ニッケル等のメッキ式ニ
ッケル三次元多孔基体を用いるのが最も本発明を生かす
ことができ適している。活物質充填材は、粉末状の水酸
化ニッケル(Ni(OH)2)活物質を主とし、種々の
方法で添加されたグラファイトや金属ニッケルまたは水
酸化コバルトまたは金属コバルト等のコバルト化合物の
導電剤等からなり、これに適宜CMC、MC等の増粘剤
やPFD、PTFE等の結着のための樹脂が加えられて
構成される。さらに必要に応じてこれにオキシ水酸化ニ
ッケル(NiOOH)粉末等の添加剤が加えられて構成
される。そして、この活物質充填材は、例えば水等が加
えられてペースト状にされ、三次元多孔金属基体に塗布
されて充填され、乾燥された後プレスされて充填密度が
上げられ電極とされる。例えば、水酸化ニッケル(Ni
(OH)2)粉末100重量部とオキシ水酸化ニッケル
(NiOOH)粉末15重量部と0.4wt%のカルボキ
シメチルセルロース(CMC)水溶液とを混合してペー
スト状にし、これを発泡ニッケル基板に塗布、乾燥、プ
レスして作製する。ついで、この電極に集電部材、例え
ばニッケル箔からなる集電タブを電気的に接続する。電
気的に接続するためには、例えば導電性のはんだや樹脂
を用いる方法もあるが、通常、スポット溶接や超音波接
合、レーザー溶接が行われる。この接合を強固にかつ導
電性を阻害することなく行うためには、接合部位(すな
わち、集電引き出し部を形成する為の所定個所)の活物
質充填材を除去し、接合部位の金属基体を露出させる必
要がある。さらに、その表面は出来るだけ清浄で酸化皮
膜等の導電性阻害皮膜が形成されていないのが良い。こ
のような、表面状態を実現することにより、強固、かつ
良好な導電性を保った接合が実現され、さらに、接合の
ために必要とされるエネルギーを低減することが出来る
からである。図1は、集電タブが取り付けられた電極構
造の一例を示す電極の概略平面図である。図において、
1は上記塗布、乾燥、プレスして作製される電極、2は
集電タブ、斜線領域は活物質充填材が除去された個所を
示す。以下に、活物質充填材除去の方法について説明す
る。本発明では、活物質充填材除去のためにまず基体の
集電部材接続個所に熱を加える。熱を加える領域は、接
続部材接続時の余裕を考慮して、接続部材の接続部の大
きさよりも少し大きくしておくのが良い。熱を加える方
法としては、赤外線を照射する方法、レーザーを照射す
る方法、バーナーの火炎を吹き付ける方法等種々の方法
を用いることができる。加える熱の温度は、活物質充填
材を変性または変形できる温度とするのが好ましく、水
酸化ニッケル電極の場合には、主たる活物質が水酸化ニ
ッケルであるため、その結晶水を除くことのできる10
0℃以上が好ましく、より好ましくは水酸化ニッケルが
酸化ニッケルとなる220℃以上とするのが良い。ま
た、樹脂が含まれている場合には250℃以上とするの
がさらにより好ましく、例えば、CMC、MC等の増粘
剤やPFD、PTFE等の結着樹脂が含まれている場合
には有効である。また、上限温度は、基体がニッケル金
属からなる三次元多孔金属基体の場合には650℃以下
が好ましい。特に、例えば上記発泡ニッケル等のメッキ
により骨格が形成された三次元多孔金属基体の場合に
は、この温度が好ましい。これは、温度がこれ以上に高
いと加熱時間が長くなった場合に、活物質充填材の変
成、変形以外に基体の変成が生じて強度低下、導電性低
下を引き起こすためである。また、水酸化ニッケルの場
合、加熱時の雰囲気は大気中で良く、この場合設備が簡
略化できて好ましい。次に、熱を加えた接続個所に超音
波振動を加えて、保持力の低下した活物質充填材を除去
するのであるが、超音波振動を加える領域は、熱により
変成した活物質を残さないために、熱を加えた領域を含
んでしまうように熱を加えた領域よりも少し大き目の方
が良い。また、超音波振動は、効率よく活物質充填剤を
除去するために三次元多孔金属基体を押しつぶしながら
行うのが良く、さらに、除去した活物質の除去の効率を
高め、飛散を防ぐため吸引を同時に行うのが好ましい。
以上のような処理を行うことにより、効率良くまたより
きれいに活物質充填材を除去することができ、接続部材
の接続を確実に効率よく行うことが可能となる。以上、
三次元多孔金属基体に活物質を含んでなる活物質充填材
を充填した後、該基体の所定個所に活物質充填材を変性
または変形する熱と超音波振動を加えることにより活物
質充填材を除去して三次元多孔金属基体の一部表面を露
出し、該露出個所から集電を行うために、上記基体所定
個所に集電部材を電気的に接続する電極の製造方法につ
いて説明した。しかしながら、本発明を用いれば、集電
部材を接続することなく集電引き出し部を形成し、上記
同様の電池用電極を製造することも可能である。この方
法について以下に説明する。図2は、集電タブが取り付
けられたのと同じ形状を有する電極構造の一例を示す電
極の概略平面図である。図において、1は上記同様に、
塗布、乾燥、プレスして作製される電極、斜線領域は活
物質充填材が除去された個所を示し、この部分がそのま
ま上記集電タブの役割を果たす部分である。以下に、こ
の電極の作製方法について説明する。まず、上記同様
に、塗布、乾燥、プレスして図2に示される集電タブ部
に相当する方形の耳部(斜線領域)を有する電極を作製
する。このような形状のものは、例えば、塗布、乾燥、
プレスして作製した大き目の電極母体をプレス等により
打ち抜いて作製することができる。ついで、上記耳部の
活物質充填材を上記説明した方法により除去し、以上に
より、集電部材を接続することなく上記集電タブを取り
付けたのと同様の機能を有する電池用電極を製造するこ
とができる。以上説明したような、活物質充填材の充填
された三次元多孔金属基体を準備し、ついで集電引き出
し部となる部分の活物質充填材を除去して集電引き出し
部を備えた電極を製造する方法は、これまでの検討で
は、実際の製造に用いることは出来なかった。これは、
例えば強度に問題があったからである。しかしながら、
従来の活物質充填材除去方法に代えて、本発明に係る活
物質充填材を変性または変形する熱と超音波振動を加え
る方法を用いることによって、実際の製造方法に用いる
ことができることがわかった。これは、本発明の製造方
法によれば、三次元多孔金属基体への活物質充填材除去
時の損傷度が著しく少なく金属基体の強度を損なうこと
がなく、さらに、活物質充填材を除去した金属基体表面
が非常にきれいで別途設ける集電部材の表面とほとんど
変わらないからである。なお、発泡メッキ式ニッケル三
次元多孔基体を用いた水酸化ニッケル電極の場合、プレ
スにより空隙率が30%以下より顕著には28%以下と
なるような電極において本発明適用の顕著な効果が生じ
る。すなわち、30%より大きい空隙率を有するものの
場合、従来の超音波のみによる方法でもその条件を調整
することで、その接続部材の接続強度低下による接続部
材の脱落等不良発生率を本発明の場合と同程度にまで抑
えることが可能であるが、充填密度がさらに大きくなり
上記空隙率以下となると従来の方法では対応できなくな
り、本発明による不良発生率低減の効果は顕著なものと
なり、特に28%以下ではより顕著に現れる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail with reference to an example of a nickel hydroxide electrode used for a nickel-metal hydride battery or the like. As the three-dimensional porous metal substrate, a metal fiber sintered body or a foamed metal body can be used. When a nickel hydroxide electrode is manufactured by the method of the present invention, for example, foamed nickel manufactured by Sumitomo Electric Industries, Ltd. It is most suitable to use the plated nickel three-dimensional porous substrate because the present invention can be utilized. The active material filler is mainly a powdery nickel hydroxide (Ni (OH) 2 ) active material, and is a conductive agent of graphite or metallic nickel or a cobalt compound such as cobalt hydroxide or metallic cobalt added by various methods. And a thickening agent such as CMC or MC, or a resin for binding such as PFD or PTFE. Further, if necessary, an additive such as nickel oxyhydroxide (NiOOH) powder is added thereto. The active material filler is formed into a paste by adding, for example, water or the like, applied to a three-dimensional porous metal substrate, filled, dried, and then pressed to increase the packing density to form an electrode. For example, nickel hydroxide (Ni
(OH) 2 ) 100 parts by weight of powder, 15 parts by weight of nickel oxyhydroxide (NiOOH) powder and 0.4 wt% of carboxymethylcellulose (CMC) aqueous solution are mixed to form a paste, which is applied to a foamed nickel substrate. It is made by drying and pressing. Next, a current collecting member, for example, a current collecting tab made of nickel foil, is electrically connected to the electrode. For electrical connection, for example, there is a method using conductive solder or resin, but usually, spot welding, ultrasonic bonding, or laser welding is performed. In order to perform this bonding firmly and without impairing the conductivity, the active material filler at the bonding site (that is, a predetermined portion for forming the current collection lead portion) is removed, and the metal base at the bonding site is removed. It needs to be exposed. Further, it is preferable that the surface is as clean as possible and free of a conductive inhibition film such as an oxide film. By realizing such a surface state, bonding that is strong and maintains good conductivity is realized, and further, energy required for bonding can be reduced. FIG. 1 is a schematic plan view of an electrode showing an example of an electrode structure to which a current collecting tab is attached. In the figure,
Reference numeral 1 denotes an electrode prepared by applying, drying, and pressing the above, 2 denotes a current collecting tab, and a hatched area denotes a portion from which the active material filler has been removed. Hereinafter, a method of removing the active material filler will be described. In the present invention, heat is first applied to the current collector connecting portion of the base to remove the active material filler. The area to which heat is applied is preferably slightly larger than the size of the connection portion of the connection member in consideration of the margin when connecting the connection member. As a method of applying heat, various methods such as a method of irradiating an infrared ray, a method of irradiating a laser, and a method of blowing a burner flame can be used. The temperature of the heat to be applied is preferably a temperature at which the active material filler can be denatured or deformed.In the case of a nickel hydroxide electrode, the main active material is nickel hydroxide, so that water of crystallization can be removed. 10
The temperature is preferably 0 ° C. or higher, more preferably 220 ° C. or higher at which nickel hydroxide becomes nickel oxide. It is even more preferable that the temperature be 250 ° C. or higher when a resin is contained. For example, it is effective when a thickener such as CMC or MC or a binder resin such as PFD or PTFE is contained. It is. The upper limit temperature is preferably 650 ° C. or less when the substrate is a three-dimensional porous metal substrate made of nickel metal. This temperature is particularly preferable in the case of a three-dimensional porous metal substrate having a skeleton formed by plating the above-mentioned foamed nickel or the like. This is because, if the temperature is higher than this, if the heating time is prolonged, denaturation of the base material occurs in addition to denaturation and deformation of the active material filler, resulting in a decrease in strength and conductivity. Further, in the case of nickel hydroxide, the atmosphere at the time of heating may be air, and in this case, the equipment can be simplified, which is preferable. Next, ultrasonic vibration is applied to the connection point to which heat is applied, and the active material filler whose holding force is reduced is removed, but the region where ultrasonic vibration is applied does not leave the active material denatured by heat. Therefore, it is better to be slightly larger than the heated region so as to include the heated region. In addition, ultrasonic vibration is preferably performed while crushing the three-dimensional porous metal substrate in order to efficiently remove the active material filler, and furthermore, suction is performed to enhance the efficiency of removal of the removed active material and prevent scattering. Preferably, they are performed simultaneously.
By performing the processing described above, the active material filler can be efficiently and finely removed, and the connection of the connection member can be reliably and efficiently performed. that's all,
After the active material filler containing the active material is filled in the three-dimensional porous metal substrate, the active material filler is modified by applying heat and ultrasonic vibration to modify or deform the active material filler at predetermined locations on the substrate. A method for manufacturing an electrode for electrically connecting a current collecting member to a predetermined portion of the base in order to expose a part of the surface of the three-dimensional porous metal substrate and to collect current from the exposed portion has been described. However, according to the present invention, it is also possible to form a current collecting lead portion without connecting a current collecting member, and to manufacture a battery electrode similar to the above. This method will be described below. FIG. 2 is a schematic plan view of an electrode showing an example of an electrode structure having the same shape as that on which a current collecting tab is attached. In the figure, 1 is similar to the above,
Electrodes and hatched regions produced by coating, drying, and pressing indicate locations where the active material filler has been removed, and these portions serve as the current collecting tabs as they are. Hereinafter, a method for manufacturing this electrode will be described. First, in the same manner as described above, an electrode having a rectangular ear (hatched area) corresponding to the current collecting tab shown in FIG. 2 is produced by applying, drying, and pressing. Such a shape, for example, coating, drying,
The large electrode matrix produced by pressing can be punched out by a press or the like. Then, the active material filler in the ear portion is removed by the method described above, and thus, a battery electrode having the same function as that of attaching the current collecting tab without connecting a current collecting member is manufactured. be able to. As described above, a three-dimensional porous metal substrate filled with an active material filler is prepared, and then the active material filler in a portion serving as a current collection lead portion is removed to manufacture an electrode having a current collection lead portion. In the previous studies, this method could not be used for actual manufacturing. this is,
For example, there was a problem in strength. However,
Instead of the conventional method of removing the active material filler, it was found that the method of applying heat and ultrasonic vibration to modify or deform the active material filler according to the present invention can be used in an actual manufacturing method. . According to the production method of the present invention, the degree of damage when the active material filler is removed from the three-dimensional porous metal substrate is extremely small, the strength of the metal substrate is not impaired, and the active material filler is further removed. This is because the surface of the metal base is very clean and hardly differs from the surface of the current collector provided separately. In the case of a nickel hydroxide electrode using a foam-plated nickel three-dimensional porous substrate, a remarkable effect of the application of the present invention occurs in an electrode having a porosity of 28% or less from 30% or less by pressing. . That is, in the case of a material having a porosity of more than 30%, the condition of adjusting the condition even by a conventional method using only ultrasonic waves can be used to reduce the rate of occurrence of defects such as detachment of the connection member due to a decrease in connection strength of the connection member in the present invention. However, when the packing density is further increased and becomes lower than the above porosity, the conventional method cannot cope with the above problem, and the effect of the present invention on reducing the defect occurrence rate becomes remarkable. % Or less appears more remarkably.

【発明の効果】本発明によれば、基体の強度を低下させ
ることなく、また、少ない接続エネルギーでもって、三
次元多孔金属基体に活物質を含んでなる活物質充填材を
充填した電極に対して、集電部材を強く接続することが
出来る。また、活物質の除去時の超音波印加のエネルギ
ーも従来より小さく出来る。さらに、後の電池組立工程
において集電部材脱落という不良の発生を低減させるこ
とができる。また、集電部材を別に取り付けることな
く、集電引き出し部を形成することができる。また、三
次元多孔金属基体がニッケル金属からなり、主たる活物
質が水酸化ニッケルである電極の製造において本発明を
適用した場合には、水酸化ニッケルが酸化による変成、
変形を受けやすいために効果が大きく、基体も熱による
悪影響を受けることが少ないので良い。さらには、この
場合従来の超音波を用いた除去に比較して、理由は不明
であるが、除去した後非常にきれいな基体表面がえられ
る。
According to the present invention, a three-dimensional porous metal substrate is filled with an active material filler containing an active material without lowering the strength of the substrate and with a small connection energy. Thus, the current collecting member can be strongly connected. In addition, the energy for applying ultrasonic waves when removing the active material can be made smaller than before. Furthermore, the occurrence of a defect of a current collecting member falling off in a later battery assembling step can be reduced. In addition, the current collecting lead-out portion can be formed without separately attaching a current collecting member. When the present invention is applied to the production of an electrode in which the three-dimensional porous metal substrate is made of nickel metal and the main active material is nickel hydroxide, the nickel hydroxide is transformed by oxidation,
The effect is great because it is easily deformed, and the substrate is less likely to be adversely affected by heat. Furthermore, in this case, a very clean substrate surface can be obtained after the removal, although the reason is not clear as compared with the conventional removal using ultrasonic waves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】集電タブが取り付けられた電極構造の一例を示
す電極の概略平面図である。
FIG. 1 is a schematic plan view of an electrode showing an example of an electrode structure to which a current collecting tab is attached.

【図2】集電タブが取り付けられたのと同じ形状を有す
る電極構造の一例を示す電極の概略平面図である。
FIG. 2 is a schematic plan view of an electrode showing an example of an electrode structure having the same shape as that on which a current collecting tab is attached.

【符号の説明】[Explanation of symbols]

1 電極 2 集電タブ 1 electrode 2 current collection tab

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平村 泰章 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 井田 康之 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 宮崎 和哉 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 伊藤 泰章 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 駒井 三郎 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 武村 治彦 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuaki Hiramura 5th, Ichidandancho, Kichijoin, Minami-ku, Kyoto-Z Inside S-Melcotech Co., Ltd. (72) Inventor Yasuyuki Ida, Kichijoin, Minami-ku, Kyoto 5th Ichidantancho, Taichi-no-S-Melco-Tech Co., Ltd. (72) Inventor Kazuya Miyazaki 5th Kichijoin Nitta-Ichidantancho, Minami-ku, Kyoto-shi Inside S-Melco-Tech Co., Ltd. (72) Inventor Yasuaki Ito 5th, Ichidandancho, Kichijoin, Minami-ku, Kyoto The S-Melcotech Co., Ltd. (72) Inventor Saburo Komai 5th, Ichidandancho, Kichijoin, Minami-ku, Kyoto 5th, S-Melcotech Inside (72) Inventor Haruhiko Takemura 5th, Ichidantancho, Nitta, Kichijoin, Minami-ku, Kyoto Inside S-Melcotech Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】三次元多孔金属基体に活物質を含んでなる
活物質充填材を充填した後、該基体の集電引き出し部を
形成する為の所定個所に活物質充填材を変性または変形
する熱と超音波振動を加えることにより活物質充填材を
除去することを特徴とする電池用電極の製造方法。
After filling an active material filler containing an active material into a three-dimensional porous metal substrate, the active material filler is modified or deformed at a predetermined position for forming a current collection lead portion of the substrate. A method for producing an electrode for a battery, comprising removing an active material filler by applying heat and ultrasonic vibration.
【請求項2】三次元多孔金属基体がニッケル金属からな
り、主たる活物質が水酸化ニッケルであることを特徴と
する請求項1記載の電池用電極の製造方法。
2. The method according to claim 1, wherein the three-dimensional porous metal substrate is made of nickel metal, and the main active material is nickel hydroxide.
【請求項3】熱を加える基体所定個所の温度を100℃
以上650℃以下とすることを特徴とする請求項2記載
の電池用電極の製造方法。
3. The temperature of a predetermined portion of a substrate to which heat is applied is set to 100 ° C.
The method for producing a battery electrode according to claim 2, wherein the temperature is not less than 650 ° C. or less.
【請求項4】熱を加える基体所定個所の温度を250℃
以上650℃以下とすることを特徴とする請求項3記載
の電池用電極の製造方法。
4. The temperature of a predetermined portion of a substrate to which heat is applied is set to 250 ° C.
The method for producing an electrode for a battery according to claim 3, wherein the temperature is not less than 650 ° C.
【請求項5】三次元多孔金属基体の厚み方向一方の側か
ら超音波を加えるとともに、他方の側から活物質充填材
の吸引をすることを特徴とする請求項1、2、3または
4記載の電池用電極の製造方法。
5. The method according to claim 1, wherein ultrasonic waves are applied from one side in the thickness direction of the three-dimensional porous metal base, and the active material filler is sucked from the other side. A method for producing a battery electrode.
JP9365584A 1997-12-22 1997-12-22 Manufacture of electrode for battery Pending JPH11185741A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9365584A JPH11185741A (en) 1997-12-22 1997-12-22 Manufacture of electrode for battery
DE69813164T DE69813164T2 (en) 1997-12-22 1998-12-21 Process for the production of a porous electrode filled with active material
EP98124338A EP0924783B1 (en) 1997-12-22 1998-12-21 Process for producing a porous pasted electrode
CNB981258638A CN1222060C (en) 1997-12-22 1998-12-22 Electrode, cell using the same and process for producing electrode
US09/218,451 US6241790B1 (en) 1997-12-22 1998-12-22 Electrode, cell using the same and process for producing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9365584A JPH11185741A (en) 1997-12-22 1997-12-22 Manufacture of electrode for battery

Publications (1)

Publication Number Publication Date
JPH11185741A true JPH11185741A (en) 1999-07-09

Family

ID=18484630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9365584A Pending JPH11185741A (en) 1997-12-22 1997-12-22 Manufacture of electrode for battery

Country Status (1)

Country Link
JP (1) JPH11185741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452490C (en) * 2005-11-01 2009-01-14 比亚迪股份有限公司 Method for fabricating anode plate electrode of alkaline secondary battery
KR20180060048A (en) * 2016-11-28 2018-06-07 주식회사 엘지화학 Electrode and manufacturing method for the electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452490C (en) * 2005-11-01 2009-01-14 比亚迪股份有限公司 Method for fabricating anode plate electrode of alkaline secondary battery
KR20180060048A (en) * 2016-11-28 2018-06-07 주식회사 엘지화학 Electrode and manufacturing method for the electrode

Similar Documents

Publication Publication Date Title
US6241790B1 (en) Electrode, cell using the same and process for producing electrode
JP2936604B2 (en) Square sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP3661190B2 (en) Hydrogen storage electrode and manufacturing method thereof
JP4527844B2 (en) Manufacturing method of battery electrode plate
CA2264134C (en) Hydrogen absorbing alloy powder and process for producing same
JP2017027654A (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JPH0992272A (en) Electrode of secondary battery, its manufacture and secondary battery
JPH11185741A (en) Manufacture of electrode for battery
JP4004124B2 (en) Method for manufacturing battery electrode
JPH11185742A (en) Manufacture of electrode for battery
JPH11250893A (en) Electrode, and battery using it
JP2005129497A (en) Electrode plate for alkaline storage battery, its manufacturing method, and alkaline storage battery
JP3113276B2 (en) Method for bonding a metal joint lug onto an electrode for an electrochemical cell having a sponge structure substrate, and an electrode obtained by the method
JP3485738B2 (en) Method for producing hydrogen storage alloy powder and hydrogen storage alloy electrode used for negative electrode for nickel-hydrogen secondary battery
JPH02250261A (en) Manufacture of paste type electrode for alkaline storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3555118B2 (en) Manufacturing method of paste type electrode
JPH0562666A (en) Manufacture of non-sintered type electrode for alkaline storage battery
JP3761763B2 (en) Hydrogen storage alloy electrode, battery using the same, and manufacturing method thereof
JPH09245777A (en) Electrode for secondary battery and manufacture thereof
JP2009187692A (en) Electrode for secondary battery, and secondary battery
JPH01248473A (en) Manufacture of electrode for battery
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JPH11144739A (en) Manufacture of paste type plate for alkaline storage batery
JP3184607B2 (en) Metal oxide / hydrogen battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411