JPH11183342A - Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it - Google Patents

Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it

Info

Publication number
JPH11183342A
JPH11183342A JP9367124A JP36712497A JPH11183342A JP H11183342 A JPH11183342 A JP H11183342A JP 9367124 A JP9367124 A JP 9367124A JP 36712497 A JP36712497 A JP 36712497A JP H11183342 A JPH11183342 A JP H11183342A
Authority
JP
Japan
Prior art keywords
sample
silicon
analysis
receiver
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9367124A
Other languages
Japanese (ja)
Inventor
Masafumi Tanaka
雅文 田中
Hideko Tanaka
英子 田中
Shozo Ariga
昌三 有賀
Yoshinobu Nagamine
義展 長峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP9367124A priority Critical patent/JPH11183342A/en
Publication of JPH11183342A publication Critical patent/JPH11183342A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably shorten the processing time, to avoid distortion and deformation of a processing container and to remarkably improve analysis accuracy. SOLUTION: In this processing method, a sample 10 of a silicon material 11 dipped in water is fed to the sample receiver 5 of a sealed container 3 provided with the sample receiver 5 and a liquid storage section 8 below it, an etching solution is fed to the liquid storage section 8, reactive vapor is generated from the etching solution, the generated vapor is absorbed in the dipping water 9 in the sample receiver 5 into contact with the a sample 10, the silicon component of the assay sample 10 is decomposed and removed, then the impurity- containing liquid remaining in the sample receiver 5 is recovered. The reactive vapor is generated from the etching solution by the temperature rise of the solution due to the reaction of the separately inserted silicon material 11 and the reaction heat caused by it. The analysis accuracy is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、珪素質材料の不純
物高精度分析に於ける分析試料前処理方法及びそれに用
いる処理器に関し、特に高純度が要求される半導体製造
用のシリコンやシリカを昇華・分解処理して除去し、外
部からの混入物を極力低減させて珪素質物質中に含有さ
れていた微量不純物を残存物として回収し、これを分析
定量することにより、従来法に比し著しく高精度、高確
度で珪素質材料の分析試料中の不純物を分析することの
出来る前処理方法及びその処理器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pretreating an analytical sample in a high-precision analysis of impurities in a silicon-based material and a processor used therefor, and more particularly to a method for sublimating silicon or silica for semiconductor production requiring high purity.・ Removal by decomposition treatment, minimizing contaminants from the outside, recovering trace impurities contained in the siliconaceous material as residuals, and analyzing and quantifying them. The present invention relates to a pretreatment method capable of analyzing impurities in an analysis sample of a silicon-based material with high accuracy and high accuracy, and a processing apparatus therefor.

【0002】[0002]

【従来の技術】近年、半導体の高集積化が進みデバイス
特性の高信頼性が求められ、そのため直接材料としての
シリコンウエハの不純物分析は、ppb(10-9)オー
ダーからppt(10-12 )オーダー以下の高感度、高
精度が必要となってきている。従って、シリコンウエハ
の電気特性等による間接的な検査では十分とは言えず、
ウエハの純度を直接評価する手法が導入されている。従
来、高純度シリコンの直接分析法としては、中性子放射
化分析法、珪素質分析試料の酸溶解分解液のフレームレ
ス原子吸光による分析法、ICPーMS法(誘導結合プ
ラズマ質量分析法)等が知られているが、これらの分析
法は、夫々納期や費用、分析感度や分析時の汚染の点で
難があり、定常的に半導体製造工程に用いる分析法とし
て採用するには問題がある。従って、高純度シリコンウ
エハ等珪素質材料の不純物高精度分析においては、シリ
コン等珪素質物質を酸により溶解乃至分解除去し、例え
ば、Fe、Al、Na、K、Ca、Mg、Cu、Cr、
Mn、Co等の不純物を残留物として濃縮回収する所
謂、酸溶解法と呼ばれる前処理操作を経て後、定量分析
に供するのが一般的で、これには直接溶解法と間接溶解
法とが知られている。
2. Description of the Related Art In recent years, semiconductors have been highly integrated, and high reliability of device characteristics has been demanded. Therefore, impurity analysis of a silicon wafer as a direct material has been carried out from the ppb (10 -9 ) order to the ppt (10 -12 ) order. Higher sensitivity and higher precision than the order are required. Therefore, indirect inspection based on the electrical characteristics of the silicon wafer cannot be said to be sufficient.
A technique for directly evaluating the purity of a wafer has been introduced. Conventional methods for direct analysis of high-purity silicon include neutron activation analysis, analysis by flameless atomic absorption of an acid-dissolved decomposition solution of a siliceous analysis sample, and ICP-MS (inductively coupled plasma mass spectrometry). However, these analytical methods are difficult in terms of delivery time, cost, analytical sensitivity, and contamination at the time of analysis, respectively, and there is a problem in adopting these analytical methods routinely in the semiconductor manufacturing process. Therefore, in the high-precision analysis of impurities of a silicon-based material such as a high-purity silicon wafer, a silicon-based material such as silicon is dissolved or decomposed and removed with an acid, for example, Fe, Al, Na, K, Ca, Mg, Cu, Cr,
In general, the solution is subjected to a so-called acid dissolution method, which is a so-called acid dissolution method, in which impurities such as Mn and Co are concentrated and recovered as a residue, and then subjected to quantitative analysis, which includes the direct dissolution method and the indirect dissolution method. Have been.

【0003】直接溶解法は、珪素質分析試料と酸とを混
合して試料を溶解分解するものであるが、高純度試薬を
用いるとは言え酸中の不純物が問題となり、そのため、
最近では酸を一旦揮発させてから気相で、乃至再び液相
に戻して分解する間接溶解法が多く実施されるようにな
ってきた。この間接溶解法には常圧で分解する方法と加
圧下で分解する方法とがあるが、常圧分解法では分解に
約10日間と著しく長時間を要し実用的でない。これに
対し、加圧分解法は、常圧分解法に比較して分解に要す
る時間が短く、半導体プロセスでの工程分析のような迅
速性が要求される場合の処理法としてより適した方法で
ある。この加圧分解法には、試料を純水に浸漬し、揮発
酸蒸気を一旦浸漬水に吸収させ、吸収液により試料の珪
素質成分を分解除去する所謂酸蒸気分解法と、揮発した
酸蒸気をガス状で直接試料に接触させ試料の珪素質成分
を分解昇華させる所謂気相昇華法とが有り、両者共に酸
中の不純物を低く抑えることができる他、気相昇華法に
おいては、純水使用に起因する汚染の可能性を完全に排
除できるという利点がある。これら両処理法は他の分析
処理法に比較して空試験値を低く抑えることが出来(酸
蒸気分解法では1011〜1012/cm3 、気相昇華法で
は1010〜1011/cm3 )結果として分析感度、精度
が良好である。
[0003] The direct dissolution method is to dissolve and decompose a sample by mixing a silicon analysis sample and an acid. However, although a high-purity reagent is used, impurities in the acid cause a problem.
Recently, many indirect dissolution methods have been practiced in which an acid is once volatilized and then decomposed in a gas phase or back to a liquid phase to decompose. The indirect dissolution method includes a method of decomposing under normal pressure and a method of decomposing under pressure, but the normal pressure decomposition method requires a remarkably long time of about 10 days for decomposition and is not practical. On the other hand, the pressure decomposition method has a shorter decomposition time than the normal pressure decomposition method, and is a method more suitable as a processing method when rapidity is required, such as in a process analysis in a semiconductor process. is there. The pressure decomposition method includes a so-called acid vapor decomposition method in which a sample is immersed in pure water, a volatile acid vapor is temporarily absorbed in the immersion water, and a silicon component of the sample is decomposed and removed by an absorbing solution. There is a so-called gas phase sublimation method in which the sample is brought into direct contact with the sample in a gaseous state to decompose and sublimate the silicon component of the sample. In both cases, impurities in the acid can be kept low. The advantage is that the possibility of contamination due to use can be completely eliminated. Both of these treatment methods can keep the blank value low compared to other analytical treatment methods (10 11 to 10 12 / cm 3 for acid vapor decomposition, and 10 10 to 10 11 / cm for gas phase sublimation). 3 ) As a result, analysis sensitivity and accuracy are good.

【0004】[0004]

【発明が解決しようとする課題】一般に製造工程管理等
に用いる分析方法は、可及的迅速に測定結果を得ること
の出来る方法で有ることが特に重要である。この点で気
相昇華法および酸蒸気分解法は従来知られたこの種の分
析処理法の中では最も適した方法であると言えるが、試
料珪素質成分の分解昇華にはなお可成りの時間を要し
(1gの分解におよそ2日)必ずしも充分に満足できる
ものではない。更に、従来の気相昇華法および酸蒸気分
解法では例えばテフロン製の密閉容器を用いて外部から
長時間加熱するため(120〜140℃で48Hrs)
局部加熱等による熱歪みのため容器の熱変形を生じがち
で、またテフロン治具等からの不純物溶出を招きがちで
ある等の不都合があった。また場合によっては、珪素質
材料の特定部分、例えばシリコンウエハの表層部分等の
不純物分析が必要とされるが、この場合、酸溶液、例え
ばHNO3 とHFの混酸、を外部より加熱して蒸気を生
成させる従来の処理法では、容器中の生成ガス雰囲気が
HFリッチになりがちで試料ウエハ上にステン膜が形成
されたりケイフッ化アンモニウム等の反応生成物が付着
したりする不都合がしばしば生ずる。
In general, it is particularly important that an analysis method used for manufacturing process control or the like is a method capable of obtaining a measurement result as quickly as possible. In this respect, the gas phase sublimation method and the acid vapor decomposition method can be said to be the most suitable methods among the conventionally known analytical treatment methods, but the decomposition sublimation of the sample silicon component still takes a considerable time. (About 2 days for 1 g of decomposition), which is not always satisfactory. Furthermore, in the conventional gas phase sublimation method and acid vapor decomposition method, for example, a long time external heating is performed using a Teflon sealed container (120 to 140 ° C., 48 Hrs).
There are inconveniences, such as thermal deformation of the container due to thermal distortion due to local heating and the like, and impurity elution from a Teflon jig or the like. In some cases, it is necessary to analyze impurities in a specific portion of the silicon-based material, for example, a surface layer portion of a silicon wafer. In this case, an acid solution, for example, a mixed acid of HNO 3 and HF is heated from the outside to form a vapor. In the conventional processing method for generating HF, the generated gas atmosphere in the container tends to be HF-rich, which often causes inconveniences such as formation of a stainless film on a sample wafer and adhesion of a reaction product such as ammonium silicofluoride.

【0005】本発明者等は上記した従来法の不都合を解
消すべく鋭意研究を重ねた結果、処理用密閉容器内のエ
ッチング液、例えばHNO3 とHFの混酸、にケイ素質
物質を投入し該液と反応を生じさせることにより、反応
とそれに伴う反応熱による液昇温とによりNOX とHF
ガスを生成させ、結果として系中を加圧状態にすること
により長時間の外部加熱により招来される従来法の上述
した問題点のすべてを解決できることを見出し、この知
見に基き本発明を完成するに至った。従って、本発明の
目的は、珪素質材料の不純物高精度分析に於ける分析試
料の処理方法に於いて従来法に比較して著しく処理時間
が短縮され、且つ処理容器の歪み、変形等が回避され、
しかも分析精度を著しく向上させることの出来る処理法
を提供することに有る。又、本発明の他の目的は、上記
方法に使用される耐圧密閉性処理容器を提供するに有
る。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned disadvantages of the conventional method. As a result, a silicon substance was introduced into an etching solution, for example, a mixed acid of HNO 3 and HF, in a closed vessel for processing. By causing a reaction with the liquid, NO x and HF are increased by the reaction and the accompanying temperature rise due to the heat of reaction.
It has been found that all of the above-mentioned problems of the conventional method caused by prolonged external heating can be solved by generating gas and, as a result, pressurizing the system, and based on this finding, completes the present invention. Reached. Accordingly, an object of the present invention is to significantly reduce the processing time in a method for processing an analysis sample in a high-precision analysis of impurities in a silicon material as compared with a conventional method, and to avoid distortion and deformation of a processing container. And
In addition, it is an object of the present invention to provide a processing method capable of significantly improving the analysis accuracy. Further, another object of the present invention is to provide a pressure-tight sealing treatment container used in the above method.

【0006】[0006]

【課題を解決するための手段】本発明によれば、試料受
器とその下方に位置する液貯留部とを器内に備えた密閉
性収容器の該試料受器に水に浸漬した珪素質材料の分析
試料を、該液貯留部にエッチング溶液を、夫々供給して
後、エッチング溶液から反応性蒸気を発生させ、該発生
蒸気を試料受器中の浸漬水に吸収させて分析試料と接触
させ、それにより分析試料の珪素質成分を分解除去し、
除去後試料受器内に残留した不純物含有液を回収する方
法に於いて、前記エッチング溶液からの反応性蒸気の発
生を、別途に投入供給した珪素質物質のエッチング溶液
中に於ける反応とそれに随伴する反応熱による溶液昇温
により達成することを特徴とする珪素質材料の不純物高
精度分析のための試料処理方法が提供される。又本発明
によれば、上記処理方法に使用される耐圧密閉性処理器
が提供される。
According to the present invention, a silicon container immersed in water in a sample container of a hermetically sealed container provided with a sample container and a liquid storage portion located below the sample container. After supplying an analysis sample of the material and an etching solution to the liquid storage portion, respectively, a reactive vapor is generated from the etching solution, and the generated vapor is absorbed in immersion water in a sample receiver to come into contact with the analysis sample. And thereby decompose and remove the silicon component of the analysis sample,
In the method of recovering the impurity-containing liquid remaining in the sample receiver after the removal, the generation of reactive vapor from the etching solution is determined by the reaction in the etching solution of the silicon substance separately supplied and supplied and the reaction thereof. A sample processing method for high-precision analysis of impurities in a silicon material, which is achieved by raising the temperature of a solution by accompanying reaction heat, is provided. Further, according to the present invention, there is provided a pressure-resistant hermetic treatment device used in the treatment method.

【0007】本発明の処理方法は、従来技術である加圧
酸蒸気分解法での外部加熱による分解反応性ガスの発生
を、エッチング溶液中に所定量の珪素質物質を投入する
ことによる該珪素質物質とエッチング溶液との反応によ
り達成するものであり、これにより外部から加熱する従
来法に比べて顕著な処理時間の短縮と長時間の外部加熱
に起因する処理容器の歪み、変形等の不都合の回避、器
具からの不純物溶出の低減による分析精度向上等の顕著
な諸効果を得るものである。
[0007] The treatment method of the present invention is a method for reducing the generation of a decomposition reactive gas by external heating in a prior art pressurized acid vapor decomposition method by introducing a predetermined amount of a silicon substance into an etching solution. This is achieved by the reaction between the porous material and the etching solution, thereby significantly shortening the processing time compared with the conventional method of heating from the outside, and causing inconveniences such as distortion and deformation of the processing container due to long-time external heating. And remarkable effects such as improvement of analysis accuracy by reducing elution of impurities from the instrument.

【0008】本発明のこの処理方法を、シリコンウエハ
を分析試料とし、HNO3 ・HF溶液をエッチング液と
し、シリコン細片を反応用珪素質物質として用いる場合
ついて説明する。図1(a)、(b)に例示した耐圧密
閉性処理器の試料受器に水中に浸漬したシリコンウエハ
の分析試料を入れ、該容器内底部に位置する液貯留部に
エッチング液としてHNO3 ・HF(1:2)溶液を所
定量注入する。次いで、別に用意したシリコン細片を、
処理条件に応じて予め定められた量該液貯留部に投入
し、直ちに容器を閉じ、内部系を密閉状態に保持する。
シリコン細片とエッチング液との間に直ちに反応が開始
され、反応の進行と反応熱の発生に伴う貯留液温の上昇
とによりNOX 及びHFからなる反応性蒸気が発生し、
この蒸気の発生により系内が加圧状態になる。系内に滞
留した該蒸気は、逐次受器中の浸漬水中に吸収され、N
X は水和されてHNO3 となり同様に浸漬水に吸収さ
れたHFと共に混酸溶液を形成し試料のSi成分を分解
し、揮散させる。
This processing method of the present invention will be described in the case where a silicon wafer is used as an analysis sample, an HNO 3 .HF solution is used as an etching solution, and silicon strips are used as a silicon substance for reaction. An analysis sample of a silicon wafer immersed in water is placed in a sample receiver of a pressure-resistant hermetic processing device exemplified in FIGS. 1A and 1B, and HNO 3 is used as an etching solution in a liquid storage portion located at the bottom of the container. Inject a predetermined amount of HF (1: 2) solution. Then, separately prepared silicon strips,
A predetermined amount is charged into the liquid storage unit according to the processing conditions, the container is immediately closed, and the internal system is kept in a sealed state.
Immediately reaction between the silicon strip and the etching liquid is started, the reactive vapors consisting NO X and HF by the progress of the reaction and increase the storage liquid temperature due to the generation of reaction heat is generated,
The generation of the steam puts the inside of the system in a pressurized state. The vapor retained in the system is successively absorbed into the immersion water in the receiver,
O X is hydrated to form a mixed acid solution with HF absorbed in HNO 3 next Similarly soaking water to decompose Si components of the sample, it is volatilized.

【0009】この反応を反応式で表示すると下記の通り
となる。 Si+4HNO3 =SiO2 +4NO2 ↑+2H2 O SiO2 +6HF=H2 SiF6 +2H2 O なお、HF蒸気は、主として貯留液(混酸エッチング
液)中の未反応HFが液温上昇に伴いガス化放出乃至揮
発することにより生成する。本発明の方法により生成す
る反応性蒸気は、外部加熱による従来法の発生蒸気に比
べて組成的にNOX リッチであることが顕著な特徴で、
このことは外部加熱によりHFリッチな蒸気を発生する
従来法に比べて、シリコンウエハ試料上にステン膜や珪
フッ化アンモニウムデポジット等好ましくない副次生成
物が生成するのを抑制出来るという利点を有する。未だ
完全に解明された訳ではないが、本発明の方法が従来法
に比べ、試料中の珪素質成分の分解速度が著しく速く、
しかも空試験閾値を低く抑えることが出来、高感度、高
精度分析の達成が可能である理由は従来法に比べてNO
X リッチな蒸気雰囲気を作り出せることによるところが
大きいものと推測される。
This reaction is represented by the following reaction formula. Si + 4HNO 3 = SiO 2 + 4NO 2 ↑ + 2H 2 O SiO 2 + 6HF = H 2 SiF 6 + 2H 2 O In the HF vapor, unreacted HF mainly in the storage liquid (mixed acid etching liquid) is gasified and released as the liquid temperature rises. Or by volatilization. Reactive vapors produced by the method of the present invention is a remarkable feature that is compositionally NO X rich compared to the steam generated in the conventional method by external heating,
This has an advantage that undesired by-products such as a stainless film and an ammonium silicate deposit can be suppressed from being generated on a silicon wafer sample as compared with the conventional method in which HF-rich vapor is generated by external heating. . Although not completely elucidated, the method of the present invention has a significantly higher decomposition rate of the silicon component in the sample than the conventional method,
In addition, the blank test threshold can be kept low, and high sensitivity and high accuracy analysis can be achieved.
It is presumed to be largely due to the ability to create an X- rich steam atmosphere.

【0010】[0010]

【発明の実施の形態】本発明の方法が適用できる珪素質
材料分析用試料としては特に限定されるものではなく、
例えば、シリコンウエハ、ポリシリコン、シリコンイン
ゴット等の実質的に珪素から成る材料、石英、トリジマ
イト、クリストバル石、シリカゲル等実質的に珪酸から
成る材料、その他珪素元素を主構成元素として含有する
無機系化合物等のいずれにも適用できる。又、上記珪素
質材料のバルク組成分析にも、表層組成分析の何れにも
適用できる。液貯留部に投入供給するエッチング液とし
ては、これも特に限定されるものではないが、通常、こ
の種の分析処理に用いられるフッ化水素酸系溶液が用い
られ、例えば、代表的なこの種のエッチング溶液として
常用される濃硝酸・濃フッ化水素酸の混酸等が好適に使
用される。
BEST MODE FOR CARRYING OUT THE INVENTION The sample for analyzing a silicon material to which the method of the present invention can be applied is not particularly limited.
For example, a material substantially composed of silicon such as silicon wafer, polysilicon, silicon ingot, etc., a material substantially composed of silicic acid such as quartz, tridymite, cristobalite, silica gel, and other inorganic compounds containing a silicon element as a main constituent element And so on. In addition, the present invention can be applied to both the bulk composition analysis of the silicon material and the surface layer composition analysis. The etchant to be supplied to the liquid storage unit is not particularly limited, but usually, a hydrofluoric acid-based solution used for this type of analysis treatment is used. A mixed acid of concentrated nitric acid and concentrated hydrofluoric acid, which is commonly used as an etching solution, is preferably used.

【0011】使用するエッチング液量は、収容器の形
状、液貯留部容量、分析すべき試料材質及び量、分析態
様(例えば、バルク分析、表面分析)、処理温度、圧力
等の諸条件に依存し、一義的に決定出来るものではな
く、上記条件を勘案して適宜、所定量を定めるが、通常
シリコンウエハ等の珪素試料のバルク分析の場合、試料
1g当たり15ml乃至30ml程度が使用される。エ
ッチング液と反応させる珪素質物質としては、珪素が使
用でき、細片状、粒状、粉末状の何れでも使用できる
が、高純度の、粒状乃至細片状シリコンの使用が反応の
定常持続性、反応速度、汚染防止等の観点から好まし
い。該珪素質物質の投入量は、これも処理条件に依存す
るが、通常、バルク分析の場合には、エッチング液10
0ml当たり1g乃至3g程度が好適に用いられる。分
析試料浸漬用の水としては汚染防止の観点から測定対象
となる不純物が1ppt以下の超純水の使用が好まし
い。
The amount of the etching solution used depends on various conditions such as the shape of the container, the capacity of the liquid storage part, the material and amount of the sample to be analyzed, the mode of analysis (for example, bulk analysis and surface analysis), the processing temperature and the pressure. However, it cannot be uniquely determined, and a predetermined amount is appropriately determined in consideration of the above conditions. However, in the case of bulk analysis of a silicon sample such as a silicon wafer, about 15 to 30 ml is used per 1 g of the sample. As the silicon substance to be reacted with the etchant, silicon can be used, and strips, granules, and powders can be used. It is preferable from the viewpoints of reaction speed, contamination prevention and the like. The amount of the siliconaceous material to be introduced also depends on the processing conditions, but usually, in the case of bulk analysis, the etching solution 10
About 1 g to 3 g per 0 ml is suitably used. As the water for immersing the analysis sample, it is preferable to use ultrapure water in which impurities to be measured are 1 ppt or less from the viewpoint of preventing contamination.

【0012】本発明の処理法においては、上記分析試料
材質、試料量、分析態様、使用収容器形状、密閉性収容
器の耐圧性能、容量等を勘案してエッチング液量および
組成、投入珪素質物質の種類、投入量等を予め決定し、
定常時の系内温度が約80乃至100℃、系内圧1.5
乃至3kg/cm2 程度の条件で反応が進行するよう調
整する。なお、ここでは、条件によっては投入する珪素
の反応状態が激しすぎると容器の耐圧性能を超える反応
性蒸気が発生し、爆発・酸の飛散を生じる虞れがある。
このため、エッチング液量、組成、投入量については危
険防止の観点から十分な配慮が必要である。このように
して得られた本発明の珪素質成分分解除去後の残留溶液
は、必要に応じて更に濃縮され、又はそのままフレーム
レス原子吸光光度分析や、ICP質量分析により定量分
析される。
In the treatment method of the present invention, the amount and composition of the etching solution, the amount of silicon, The type of substance, input amount, etc. are determined in advance,
The temperature inside the system is about 80 ~ 100 ℃, the system pressure is 1.5
The reaction is adjusted under conditions of about 3 kg / cm 2 to about 3 kg / cm 2 . Here, depending on the conditions, if the reaction state of silicon to be charged is too intense, reactive steam exceeding the pressure resistance of the container is generated, which may cause explosion and scattering of acid.
For this reason, sufficient consideration must be given to the amount, composition, and amount of the etching solution from the viewpoint of danger prevention. The residual solution thus obtained after the decomposition of the siliceous component of the present invention is further concentrated, if necessary, or quantitatively analyzed by flameless atomic absorption spectrometry or ICP mass spectrometry.

【0013】次に、本発明の処理方法に好適に用いられ
る処理器(耐圧密閉性容器)について述べる。図1
(a)は本発明の処理器の一例を示す断面説明図であ
り、図1(b)は図1(a)に於けるA−A断面図であ
る。図1(a)、(b)に於いて、処理器1は、夫々一
端が開放された円筒状の収容器蓋体2と収容器本体3と
から成り、この図の場合、両者の開放端において互いに
ネジにより螺嵌するように形成され、蓋と本体との嵌合
により収容器内にほぼ筒状の密閉空間Sを形成する。収
容器蓋体2と収容器本体3との嵌合は夫々の開放端にネ
ジ加工を施した螺嵌部4で螺合している。また、必要に
応じ、ネジ部を長くしたり肉厚にする等の設計により実
用的に5kg/cm2 までの耐圧性能をもつ容器の制作
が可能である。収容器本体3にはその内部側底部にエッ
チング液を貯留させる液貯留部8が設けられ該貯留部の
上方には間隔を隔てて試料受器5が配置されている。図
示されているように、試料受器は、密閉空間の天井部と
貯留液の液面の何れからも間隔を置いて設けられる。こ
の図に於いては試料受器は、中心部が貫通した円環状に
形成され、収容器本体の内壁面に設けられた段差部6上
に設置される。試料受器には、試料と浸漬水とを収容す
る凹部が少なくとも1個(この図の場合は6個)設けら
れている。
Next, a processing unit (pressure-tight container) suitably used in the processing method of the present invention will be described. FIG.
FIG. 1A is an explanatory cross-sectional view showing an example of a processor according to the present invention, and FIG. 1B is an AA cross-sectional view in FIG. 1A. 1 (a) and 1 (b), a processing unit 1 includes a cylindrical container lid 2 and a container main body 3 each having an open end, and in this case, both open ends. Are formed so as to be screwed to each other by screws, and a substantially cylindrical closed space S is formed in the container by fitting the lid and the main body. The container lid 2 and the container main body 3 are engaged with each other at a screw fitting portion 4 having a threaded open end. Further, if necessary, a container having a pressure resistance of up to 5 kg / cm 2 can be produced practically by designing the screw portion to be longer or thicker. The container main body 3 is provided with a liquid storage part 8 for storing an etching liquid at the inner bottom thereof, and a sample receiver 5 is arranged above the storage part at an interval. As shown in the figure, the sample receiver is provided at an interval from both the ceiling of the closed space and the liquid level of the stored liquid. In this figure, the sample receiver is formed in an annular shape with a central portion penetrating, and is set on a step 6 provided on the inner wall surface of the container body. The sample receiver is provided with at least one concave portion (six in this case) for storing the sample and the immersion water.

【0014】この図の収容器に試料を装填し本発明の処
理操作を実行する場合は、まず収容器蓋体を外し開放状
態の収容器本体の液貯留部に所定量のエッチング液を満
たし、次いで、エッチング液と反応させるシリコン細片
等の珪素質物質を貯留部に投入すると共に純水等の水に
浸漬した分析試料を凹部に収容した試料受器を収容器本
体段差部に装填する。しかる後、収容器蓋体と収容器本
体とをネジ止めして閉じ、収容器内の系を密閉状態にす
ると、系内で前述した本発明の所定反応が進行し、試料
の珪素質成分の分解処理が達成される。
When a sample is loaded into the container shown in this figure and the processing operation of the present invention is performed, first, the container lid is removed, and the liquid storage portion of the container main body in an open state is filled with a predetermined amount of etching solution. Next, a silicon substance such as a silicon strip to be reacted with the etching solution is charged into the storage portion, and a sample receiver in which the analysis sample immersed in water such as pure water is stored in the concave portion is loaded into the container main body step. Thereafter, the container lid and the container main body are screwed and closed to close the system in the container, and the above-described predetermined reaction of the present invention proceeds in the system, and the silicon component of the sample is removed. A decomposition process is achieved.

【0015】図2は、本発明の他の態様の処理器を示し
た説明図である。この処理器では、試料受器は収容器本
体内底面の中央部に設けられ、上方に延びる支持台7上
に配置される。この態様の処理器は、例えば、シリコン
ウエハ試料の表層分析処理用に特に好適である。本発明
の処理器に於いては、試料受器と、該受器の下方に位置
する貯留エッチング液面とが上下方向に間隔を隔てて配
置されていることが特に重要で、これにより反応性蒸気
揮発の際に生じる飛沫同伴等に起因する汚染を可及的に
低減し、分析精度の高度化を担保出来る。この間隔は、
長ければ長いほど上記の観点からは効果的であるが、飛
沫同伴はその距離に対し指数的に減少すること、耐圧密
閉性収容器サイズの製作的、コスト的限界、収容器が大
きく成り過ぎることにより生ずるその他の不利益等のバ
ランスから、通常30mm程度以上、好ましくは、30
乃至50mmの範囲に設定される。
FIG. 2 is an explanatory diagram showing a processor according to another embodiment of the present invention. In this processor, the sample receiver is provided at the center of the inner bottom surface of the container body, and is disposed on a support 7 extending upward. The processor of this aspect is particularly suitable for, for example, surface analysis processing of a silicon wafer sample. In the processing apparatus of the present invention, it is particularly important that the sample receiver and the stored etching liquid surface located below the receiver are vertically spaced apart from each other, thereby increasing the reactivity. Contamination caused by entrainment during vapor volatilization can be reduced as much as possible, and higher analytical accuracy can be ensured. This interval is
The longer, the more effective from the above point of view, but droplet entrainment decreases exponentially with distance, manufacturability and cost limitations of pressure-tight enclosure size, oversize container From the balance of other disadvantages caused by the above, usually about 30 mm or more, preferably 30 mm
It is set in the range of 50 to 50 mm.

【0016】また、本発明のこの処理器に於いて、処理
器の内部密閉空間Sの上部、即ち収容器蓋体の天井部
は、好ましくは試料受器中心部を通る垂直軸線上に頂点
を有する円錐型乃至逆円錐型に形成される。例えば、図
1の様に試料受受器が円環状をしている場合は、図に示
すように蓋体内部側の天井部が凸状、即ち円錐頂点が円
錐底面に対して下方に位置する形状に形成されているこ
とが好ましく、一方、図2の形状の試料受器の場合は、
凹状に、即ち円錐頂点が円錐底面に対して上方に位置す
る形状に形成されていることが好ましい。この容器内部
空間の天井部にはエッチング液貯留部から上昇してきた
反応性蒸気が液滴となって付着しがちで、これが試料受
器上に滴下して、分析試料を汚染する事がしばしば起こ
るが、該天井部の形状を上記のように形成することによ
りこのような不都合の発生頻度を著しく減少させること
が出来る。該円錐形状に於ける頂点角度(θ)は150
度以下にすることが好ましい。本発明の処理容器は、反
応温度下でエッチング溶液に耐食性を有し、且つ不活
性、即ち金属等の汚染物質を含まない材質で形成される
ことか必要で、この点からポリテトラフルオロエチレン
樹脂が好適に使用される。
In this processor of the present invention, the upper part of the inner closed space S of the processor, that is, the ceiling of the container lid preferably has a vertex on a vertical axis passing through the center of the sample receiver. It has a conical or inverted conical shape. For example, when the sample receiver has an annular shape as shown in FIG. 1, the ceiling on the inner side of the lid is convex as shown in FIG. It is preferable that the sample receiver is formed in a shape.
It is preferably formed in a concave shape, that is, a shape in which the conical apex is located above the conical bottom surface. Reactive vapor that has risen from the etchant reservoir tends to adhere to the ceiling of the interior space of the container as droplets, which often drop onto the sample receiver and contaminate the analysis sample. However, by forming the shape of the ceiling as described above, the frequency of occurrence of such inconvenience can be significantly reduced. The vertex angle (θ) in the conical shape is 150
It is preferable that the temperature be equal to or less than the temperature. The processing container of the present invention is required to be formed of a material having corrosion resistance to the etching solution at the reaction temperature and containing no inert material, that is, a contaminant such as metal. Is preferably used.

【0017】[0017]

【実施例】(実施例1)図1に示した処理器を用い、こ
れにフッ化水素酸(濃度50%)60mlと硝酸(濃度
68%)30mlより成る混酸を液貯留部に入れ、次い
でシリコン細片3gを該液中に投入し、純水に浸漬した
シリコンウエハ分析試料(バルク分析用試料片)6個を
各試料収容凹部に収容した試料受器を装填し、収容器蓋
を閉じて内部を密封状態とした。反応進行中の容器系内
圧は2.6kg/cm2 であった。約1時間後に容器を
開き、受器を観察したところ、すべての試料について珪
素は完全分解されていた。この残留液を、定量分析した
結果、不純物Feの検出下限値は5×1010(atoms/c
3 )であった。結果を表1に示す。
(Example 1) A mixed acid composed of 60 ml of hydrofluoric acid (concentration: 50%) and 30 ml of nitric acid (concentration: 68%) was put into the liquid storage unit using the treatment apparatus shown in FIG. 3 g of silicon strips were put into the liquid, and sample receivers each containing six silicon wafer analysis samples (sample pieces for bulk analysis) immersed in pure water in each sample accommodation recess were loaded, and the container lid was closed. To seal the inside. The internal pressure of the vessel during the reaction was 2.6 kg / cm 2 . After about one hour, the container was opened and the receiver was observed. As a result, silicon was completely decomposed in all samples. As a result of quantitative analysis of this residual liquid, the lower limit of detection of impurity Fe was 5 × 10 10 (atoms / c
m 3 ). Table 1 shows the results.

【0018】(比較例1)公知の従来法(酸蒸気分解
法)により実施例1と同様の試料片5個を処理・分析し
た結果を表1に示す。 (実施例2)エッチング液投入量(フッ化水素酸量+硝
酸量)を表2に示す通りに変化させた以外は実施例1と
同様に処理して投入エッチング液量と分析試料中の珪素
成分の分解速度(単位時間当たりの分解量)との関係を
調べた。結果を表2に示す。
Comparative Example 1 Table 1 shows the results of processing and analyzing five sample pieces similar to those in Example 1 by a known conventional method (acid vapor decomposition method). (Example 2) The processing was performed in the same manner as in Example 1 except that the amount of the etching solution (the amount of hydrofluoric acid + the amount of nitric acid) was changed as shown in Table 2, and the amount of the etching solution and the silicon in the analysis sample were measured. The relationship with the decomposition rate of the components (decomposition amount per unit time) was examined. Table 2 shows the results.

【0019】(実施例3)図2に示した処理器を用い、
これにフッ化水素酸(濃度50%)60ml、硝酸(濃
度68%)30mlより成る混酸を液貯留部に入れ、次
いでポリシリコン細片3gを該液中に投入し、純水に浸
漬した6インチシリコンウエハ分析試料(表層分析用試
料)を試料収容部に収容した試料受器を装填し、ウエハ
表面エッチング分析用処理を実施し、表面エッチング量
のばらつきの程度を評価した。反応処理時間は15分で
あった。このエッチング量はn回実験を行い、その平均
及び標準偏差を計算によって求めた。測定結果を表3に
示す。なお、従来法の直接酸分解法、加熱蒸気分解法の
評価結果を比較例として表3に示した。 (実施例4)エッチング試薬のフッ化水素酸と硝酸との
配合比を表4に示す通りに変えた以外は、実施例3と同
様に処理して試薬組成と分析試料のエッチング量との関
係を調べた。なお、それぞれの試薬組成について、エッ
チング量の測定を3回をなった。結果を表4 に示す。
(Embodiment 3) Using the processor shown in FIG.
A mixed acid consisting of 60 ml of hydrofluoric acid (concentration: 50%) and 30 ml of nitric acid (concentration: 68%) was put into the liquid reservoir, and then 3 g of polysilicon strips were put into the liquid and immersed in pure water. A sample receiver containing an inch silicon wafer analysis sample (sample for surface layer analysis) in a sample storage unit was loaded, and a wafer surface etching analysis process was performed to evaluate the degree of variation in the amount of surface etching. The reaction time was 15 minutes. This etching amount was obtained by performing an experiment n times, and calculating the average and standard deviation thereof. Table 3 shows the measurement results. In addition, the evaluation result of the conventional direct acid decomposition method and the heating steam decomposition method is shown in Table 3 as a comparative example. (Example 4) The relationship between the reagent composition and the etching amount of the analysis sample was treated in the same manner as in Example 3 except that the mixing ratio of hydrofluoric acid and nitric acid as the etching reagent was changed as shown in Table 4. Was examined. In addition, the measurement of the etching amount was performed three times for each reagent composition. Table 4 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 投入シリコン片:3g エッチング液組成(HF:HNO3 =2:1)[Table 2] Input silicon piece: 3 g Etching solution composition (HF: HNO 3 = 2: 1)

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【発明の効果】本発明の処理法は、半導体ウエハ用のシ
リコンや石英ガラス等、珪素質材料の分析試料中の不純
物を従来法に比べて著しく迅速に且つ高精度で分析する
ことが出来、又外部加熱を要しないためフッ素樹脂等で
作製された処理器の熱歪みによる変形を抑制できるとい
う利点を有する。
According to the processing method of the present invention, impurities in an analysis sample of a silicon-based material such as silicon or quartz glass for a semiconductor wafer can be analyzed much more quickly and with higher precision than the conventional method. In addition, since external heating is not required, there is an advantage that deformation due to thermal distortion of a processor made of a fluororesin or the like can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の処理器の一例を示す断面
説明図であって、(b)は図1(a)に於けるA−A断
面図である。
FIG. 1A is an explanatory cross-sectional view showing an example of a processor according to the present invention, and FIG. 1B is an AA cross-sectional view in FIG. 1A.

【図2】図2は、本発明の他の態様の処理器の一例を示
す説明図である。
FIG. 2 is an explanatory diagram illustrating an example of a processor according to another embodiment of the present invention.

【図3】図3は、本発明の方法で用いる処理器の頂部内
壁面形状を示す部分図である。
FIG. 3 is a partial view showing a top inner wall surface shape of a processor used in the method of the present invention.

【図4】図4は、本発明の方法で用いる他の処理器の頂
部内壁面形状 を示す部分図
FIG. 4 is a partial view showing a top inner wall shape of another processor used in the method of the present invention.

【符号の説明】 1 処理器 2 収容器蓋体 3 収容器本体 4 螺嵌部 5 試料受器 6 段差部 7 試料収容凹部 8 エッチング液貯留部 9 純水 10 分析試料 11 シリコン片 12 支持台 S 密閉空間 θ 円錐頂点角[Description of Signs] 1 Processor 2 Container lid 3 Container main body 4 Screw fitting part 5 Sample receiver 6 Step part 7 Sample storage recess 8 Etching liquid storage part 9 Pure water 10 Analysis sample 11 Silicon piece 12 Support base S Enclosed space θ cone vertex angle

フロントページの続き (72)発明者 長峯 義展 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内Continued on the front page (72) Inventor Yoshiyoshi Nagamine 30 Soya, Hadano-shi, Kanagawa Pref. Toshiba Ceramics Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 試料受器とその下方に位置する液貯留部
とを器内に備えた密閉性収容器の該試料受器に水に浸漬
した珪素質材料の分析試料を、該液貯留部にエッチング
溶液を、夫々供給した後、エッチング溶液から反応性蒸
気を発生させ、該発生蒸気を試料受器中の浸漬水に吸収
させて分析試料と接触させ、それにより分析試料の珪素
質成分を分解除去し、除去後試料受器内に残留した不純
物含有液を回収する方法に於いて、 前記エッチング溶液からの反応性蒸気の発生を、別途に
投入供給した珪素質物質のエッチング溶液中に於ける反
応とそれに随伴する反応熱による溶液昇温により達成す
ることを特徴とする珪素質材料の不純物高精度分析のた
めの試料処理方法。
1. An analysis sample of a silicon-based material immersed in water in a sample receiver of a hermetically sealed container provided with a sample receiver and a liquid storage portion located below the sample receiver. After each of the etching solutions is supplied, a reactive vapor is generated from the etching solution, and the generated vapor is absorbed in immersion water in a sample receiver and brought into contact with the analysis sample, thereby removing the silicon component of the analysis sample. In the method of recovering the impurity-containing liquid remaining in the sample receiver after the decomposition and removal, the generation of reactive vapor from the etching solution is performed in the silicon-containing substance etching solution separately supplied and supplied. A sample processing method for high-accuracy analysis of impurities in a silicon-based material, which is achieved by a reaction in a solution and a temperature rise of a solution due to reaction heat accompanying the reaction.
【請求項2】 前記珪素質材料が高純度シリコンウエハ
である請求項1記載の方法。
2. The method according to claim 1, wherein said silicon material is a high-purity silicon wafer.
【請求項3】 前記エッチング液がフッ化水素酸と硝酸
との混酸である請求項1または請求項2記載の方法。
3. The method according to claim 1, wherein the etching solution is a mixed acid of hydrofluoric acid and nitric acid.
【請求項4】 前記別途投入珪素質物質がシリコン細片
乃至粒状シリコンである請求項1乃至請求項3のいずれ
かに記載の方法。
4. The method according to claim 1, wherein the additional silicon material is silicon flakes or granular silicon.
【請求項5】 シリコン投入量が液貯留部エッチング液
100ml当たり1乃至3gである請求項1乃至請求項
4のいずれかに記載の方法。
5. The method according to claim 1, wherein the amount of silicon charged is 1 to 3 g per 100 ml of the etching solution in the liquid storage section.
【請求項6】 胴部、頂部、底部内壁面で画定されるほ
ぼ筒状の密閉性空間を有し、且つ開閉可能に形成された
収容器の該空間内に、水に浸漬した分析試料を収容する
上面開放型受器及びその下方にエッチング溶液を貯留す
る液貯留部とを備えて成る珪素質分析試料の不純物高精
度分析のための処理容器に於いて、 前記試料受器下部が液貯留部のエッチング貯留液面と、
該受器上部が頂部内壁最下部と、それぞれ所定の間隔を
保つように試料受器が配置され、且つ、収容器頂部内壁
面が、前記筒状密閉空間の中心垂直軸線上に頂点を有す
る円錐形状乃至逆円錐形状に形成されていることを特徴
とする珪素質分析試料の不純物高精度分析のための処理
容器。
6. An analysis sample immersed in water is provided in a container having a substantially cylindrical hermetic space defined by a body portion, a top portion, and a bottom inner wall surface and capable of being opened and closed. In a processing container for highly accurate analysis of impurities in a silicon-based analysis sample, the processing container comprising an upper open-type receiver for accommodating therein and a liquid storage section for storing an etching solution below the receiver, wherein the lower part of the sample receiver is a liquid storage. Part of the etching storage liquid,
A sample receiver is arranged such that the upper part of the receiver is kept at a predetermined distance from the lowermost part of the inner wall of the top, and the inner wall of the top of the container has a vertex on the center vertical axis of the cylindrical closed space. A processing container for highly accurate impurity analysis of a silicon analysis sample, wherein the processing container is formed in a shape or an inverted conical shape.
【請求項7】 前記試料受器下部と前記貯留液面との間
隔が30mm以上隔てられている請求項6記載の処理容
器。
7. The processing container according to claim 6, wherein a distance between the lower portion of the sample receiver and the liquid level is 30 mm or more.
【請求項8】前記収容器の円錐乃至逆円錐形頂部内壁面
の円錐頂点角(θ)が150度より鋭角である請求項6
または請求項7記載の処理容器。
8. A cone apex angle (θ) of a conical or inverted conical top inner wall surface of the container is greater than 150 degrees.
Or the processing container according to claim 7.
JP9367124A 1997-12-25 1997-12-25 Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it Pending JPH11183342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9367124A JPH11183342A (en) 1997-12-25 1997-12-25 Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9367124A JPH11183342A (en) 1997-12-25 1997-12-25 Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it

Publications (1)

Publication Number Publication Date
JPH11183342A true JPH11183342A (en) 1999-07-09

Family

ID=18488522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9367124A Pending JPH11183342A (en) 1997-12-25 1997-12-25 Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it

Country Status (1)

Country Link
JP (1) JPH11183342A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193570A (en) * 1998-09-24 2000-07-14 Toshiba Ceramics Co Ltd Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same
CN103411972A (en) * 2013-08-23 2013-11-27 北京科技大学 Counting method of delta ferritic phase area content in Martensite heat resistant steel
JP2018021852A (en) * 2016-08-04 2018-02-08 株式会社トクヤマ Method for measuring concentration of metal impurity in polycrystalline silicon
WO2018123490A1 (en) * 2016-12-27 2018-07-05 株式会社Sumco Method for decomposing quartz sample, method for analyzing metal contamination of quartz sample, and method for manufacturing quartz member
US11440804B2 (en) 2009-09-16 2022-09-13 Shin-Etsu Chemical Co., Ltd. Process for producing polycrystalline silicon mass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193570A (en) * 1998-09-24 2000-07-14 Toshiba Ceramics Co Ltd Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same
US11440804B2 (en) 2009-09-16 2022-09-13 Shin-Etsu Chemical Co., Ltd. Process for producing polycrystalline silicon mass
CN103411972A (en) * 2013-08-23 2013-11-27 北京科技大学 Counting method of delta ferritic phase area content in Martensite heat resistant steel
CN103411972B (en) * 2013-08-23 2016-04-27 北京科技大学 Delta ferrite phase area content statistical method in a kind of martensite heat-resistant steel
JP2018021852A (en) * 2016-08-04 2018-02-08 株式会社トクヤマ Method for measuring concentration of metal impurity in polycrystalline silicon
WO2018123490A1 (en) * 2016-12-27 2018-07-05 株式会社Sumco Method for decomposing quartz sample, method for analyzing metal contamination of quartz sample, and method for manufacturing quartz member
JP2018105793A (en) * 2016-12-27 2018-07-05 株式会社Sumco Decomposition method of quartz sample, method for analyzing metal contamination of quartz sample and manufacturing method of quartz member
KR20190084300A (en) * 2016-12-27 2019-07-16 가부시키가이샤 사무코 A method of decomposing quartz samples, a method of analyzing metal contamination of quartz samples, and a method of manufacturing quartz members
US11421342B2 (en) 2016-12-27 2022-08-23 Sumco Corporation Method of decomposing quartz sample, method of analyzing metal contamination of quartz sample, and method of manufacturing quartz member

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
JP2944099B2 (en) Method and instrument for measuring impurity
KR100225832B1 (en) Method and apparatus for etching the silicon material
US6995834B2 (en) Method for analyzing impurities in a silicon substrate and apparatus for decomposing a silicon substrate through vapor-phase reaction
EP0137409B1 (en) Resolution device for semiconductor thin films
JP3832204B2 (en) Method for analyzing trace impurities in silicon substrates
US5877027A (en) Method for the analysis of impurity contents in silicon dioxide
JP3473699B2 (en) Silicon wafer etching method and apparatus and impurity analysis method
JPH11183342A (en) Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it
US3933440A (en) Chemical reaction vessel
JP3755586B2 (en) Silicon desorption method and silicon wafer impurity analysis method
US5849597A (en) Treatment apparatus for high-precision analysis of impurities in silicic material
JP3414976B2 (en) Impurity analysis sample container and sample storage member used therein
JP3753805B2 (en) Semiconductor sample decomposition apparatus and sample decomposition method
JP3804864B2 (en) Impurity analysis method
JP3286215B2 (en) Surface analysis method for silicon wafer
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP4337607B2 (en) Method for analyzing Ni concentration in alkaline solution
KR101064657B1 (en) Apparatus and method for processing poly silicon
JPH01189558A (en) Analyzing method of surface of si semiconductor substrate
JPH06213805A (en) Etching method in ultramicroanalysis of metal on surface of silicon wafer
JP2006156766A (en) Impurity analyzing method for silicon wafer
JP6424742B2 (en) Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal
JPH10178077A (en) Preparation of quantitative contamination sample of semiconductor substrate
JPS5899113A (en) Treatment of si or sio2 sample by gas reaction

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040312