JP6424742B2 - Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal - Google Patents

Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal Download PDF

Info

Publication number
JP6424742B2
JP6424742B2 JP2015113935A JP2015113935A JP6424742B2 JP 6424742 B2 JP6424742 B2 JP 6424742B2 JP 2015113935 A JP2015113935 A JP 2015113935A JP 2015113935 A JP2015113935 A JP 2015113935A JP 6424742 B2 JP6424742 B2 JP 6424742B2
Authority
JP
Japan
Prior art keywords
sample
mixed acid
closed container
phase decomposition
semiconductor silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015113935A
Other languages
Japanese (ja)
Other versions
JP2017003271A (en
Inventor
実 日下
実 日下
弘 大石
弘 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2015113935A priority Critical patent/JP6424742B2/en
Publication of JP2017003271A publication Critical patent/JP2017003271A/en
Application granted granted Critical
Publication of JP6424742B2 publication Critical patent/JP6424742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、半導体シリコン結晶の不純物分析のための前処理方法、及び半導体シリコン結晶の不純物分析方法に関する。   The present invention relates to a pretreatment method for impurity analysis of semiconductor silicon crystals, and an impurity analysis method of semiconductor silicon crystals.

半導体シリコン結晶の表層やバルク中の金属不純物を分析する手法として、半導体シリコン結晶から採取した試料(Siサンプル片)を全溶解させ、誘導結合プラズマ質量分析(ICP−MS:Inductively Coupled Plasma−Mass Spectrometry)や原子吸光分析(AAS:Atomic Absorption Spectrometry)で分析する方法(以下、「全溶解分析法」と呼ぶ)が広く行われている。   As a method of analyzing metal impurities in the surface layer and bulk of semiconductor silicon crystal, a sample (Si sample piece) taken from the semiconductor silicon crystal is completely dissolved, and inductively coupled plasma mass spectrometry (ICP-MS: Inductively Coupled Plasma-Mass Spectrometry) ) And atomic absorption spectrometry (AAS) (hereinafter referred to as "total dissolution analysis method") are widely used.

このような全溶解分析法において、ICP−MSやAASによる測定を精度よく行う(即ち、検出下限を低くする)ためには、ICP−MS等の測定に使用する試料溶液において、測定の外乱となるSi成分をできるだけ少なくするとともに、Si成分の濃度に比べて被測定金属不純物の濃度をできるだけ高くすることが求められる。これは、ICP−MS等の測定に使用する試料溶液中にフッ化ケイ素のようなSi成分が多く含まれていると、被測定金属不純物の質量ピークの位置にSiの複合分子によるゴーストピークが現れたり、ノイズが発生したりして分析感度が大きく損なわれるためである。従って、上記のような全溶解分析法では、ICP−MS等の測定を行う前に、Siサンプル片を全溶解させSi成分を除去する前処理を行う。   In such a total dissolution analysis method, in order to accurately perform measurement by ICP-MS or AAS (that is, to lower the lower limit of detection), in the sample solution used for measurement such as ICP-MS, measurement disturbance and It is required to reduce the Si component as much as possible and to make the concentration of the metal impurity to be measured as high as possible compared to the concentration of the Si component. This is because if the sample solution used for measurement such as ICP-MS contains a large amount of Si component such as silicon fluoride, a ghost peak due to the Si complex molecule is located at the position of the mass peak of the metal impurity to be measured. This is because the analysis sensitivity is greatly impaired due to appearance or noise. Therefore, in the total dissolution analysis method as described above, before the measurement of ICP-MS or the like, pretreatment is performed to completely dissolve the Si sample piece and remove the Si component.

Siサンプル片を全溶解させる方法としては、液相分解と気相分解が挙げられる。液相分解では、Siサンプル片をフッ化水素酸及び硝酸からなる混酸(HF・HNO混酸)に浸漬して溶解させるが、例えば5gのSiサンプル片を全溶解する場合、少なくとも100mL程度の混酸が必要になる。市販されている超高純度試薬の保証純度は各金属不純物元素について10pptw以下であるが、これを使用してSiサンプル片を全溶解させた溶液を蒸発乾固後に1mLの硝酸で再抽出すると、混酸が予め含有していた金属不純物は1ppbwに濃縮される。この金属不純物量は5gのSiサンプル片に含有される被測定金属不純物量を超えてしまう。このように、液相分解では分解に使用する混酸由来の金属不純物が試料の分析に影響を与えてしまうという問題がある。また、Siサンプル片を液相分解によって全溶解させた場合には、溶解したSi成分が混酸中に全量残留してしまうという問題もある。 Methods for completely dissolving the Si sample pieces include liquid phase decomposition and gas phase decomposition. In liquid phase decomposition, the Si sample piece is immersed and dissolved in a mixed acid (HF · HNO 3 mixed acid) consisting of hydrofluoric acid and nitric acid, but for example, when 5 g of the Si sample piece is totally dissolved, the mixed acid of at least about 100 mL Is required. The guaranteed purity of commercially available ultra-high purity reagents is 10 pptw or less for each metal impurity element, but using this solution to completely dissolve a sample of Si sample after evaporation to dryness and reextraction with 1 mL of nitric acid, The metal impurities previously contained in the mixed acid are concentrated to 1 ppbw. The amount of metal impurities exceeds the amount of metal impurities to be measured contained in the 5 g Si sample piece. As described above, in liquid phase decomposition, there is a problem that metal impurities derived from a mixed acid used for decomposition affect analysis of a sample. In addition, when the Si sample pieces are completely dissolved by liquid phase decomposition, there is also a problem that all the dissolved Si components remain in the mixed acid.

一方、気相分解では、HF・HNO混酸のガスによってSiサンプル片を溶解させる。より具体的には、閉塞容器内に、サンプルカップに入ったSiサンプル片と、HF・HNO混酸を入れた後、これを高温チャンバー内で100℃程度に加熱することで混酸蒸気を発生させ、この混酸蒸気でSiサンプル片を溶解させる。あるいは、キャリアガスをHF・HNO混酸にバブリングさせて得られたガスを閉塞容器内に導入し、Siサンプル片を溶解させる方法(特許文献1)や、キャリアガスにHFガスを混合したガスとキャリアガスにHNOガスを混合したガスを閉塞容器内に導入し、Siサンプル片を溶解させる方法(特許文献2)なども知られている。 On the other hand, in the gas phase decomposition, the Si sample piece is dissolved by the gas of HF · HNO 3 mixed acid. More specifically, after putting the Si sample piece in the sample cup and the HF / HNO 3 mixed acid in the closed vessel, the mixed acid vapor is generated by heating this to about 100 ° C. in a high temperature chamber Dissolve the Si sample piece with this mixed acid vapor. Alternatively, a gas obtained by bubbling a carrier gas into a mixed solution of HF and HNO 3 is introduced into the closed vessel and the Si sample piece is dissolved (Patent Document 1), or a gas obtained by mixing the carrier gas with HF gas A method is also known in which a gas in which HNO 3 gas is mixed with a carrier gas is introduced into a closed container to dissolve Si sample pieces (Patent Document 2).

気相分解では、Siが揮発性のSiF(四フッ化ケイ素)に分解されるため、気相分解や後工程の蒸発乾固の過程でSi成分を系外へ効率良く除去することができる。また、気相分解では混酸蒸気中の金属不純物量が少ないため、液相分解に比べて混酸由来の金属不純物による外乱を抑えることができるというメリットもある。 In the gas phase decomposition, Si is decomposed into volatile SiF 4 (silicon tetrafluoride), so the Si component can be efficiently removed out of the system in the process of gas phase decomposition and evaporation to dryness in the subsequent steps. . In addition, since the amount of metal impurities in the mixed acid vapor is small in gas phase decomposition, there is also an advantage that disturbance due to metal impurities derived from the mixed acid can be suppressed as compared with liquid phase decomposition.

しかしながら、気相分解は分解反応に時間がかかるため、単位時間あたりに処理できる試料の量が少なく、被測定金属不純物の濃度を高める(多量の試料を処理する)には長時間を要するという問題がある。   However, since the decomposition reaction takes time for decomposition reaction, the amount of sample that can be processed per unit time is small, and the concentration of the metal impurity to be measured is increased (processing a large amount of samples) takes a long time. There is.

国際公開第WO2011/083719号パンフレットInternational Publication No. WO2011 / 083719 Brochure 特開2005−326219号公報JP 2005-326219 A

本発明は、上記問題を解決するためになされたものであり、半導体シリコン結晶の不純物分析のための前処理において、より短時間でより多量の試料を気相分解によって全溶解させることができる前処理方法を提供することを目的とする。   The present invention has been made to solve the above problems, and in the pretreatment for impurity analysis of semiconductor silicon crystals, it is possible to completely dissolve a larger amount of sample in a shorter time in a shorter time. The purpose is to provide a treatment method.

上記課題を達成するために、本発明では、半導体シリコン結晶中の不純物を分析する際の前処理において、閉塞容器内に、前記半導体シリコン結晶から採取した試料と、フッ化水素酸及び硝酸からなる混酸を入れた後、前記混酸を加熱することで混酸蒸気を発生させて前記試料全体を気相分解する方法であって、
前記閉塞容器として圧力調整バルブが設けられたものを用い、前記閉塞容器内部の圧力が絶対圧で0.20MPa以上0.40MPa以下となるように、前記閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を前記圧力調整バルブから漏洩させながら気相分解を行う半導体シリコン結晶の不純物分析のための前処理方法を提供する。
In order to achieve the above object, in the present invention, in the pretreatment for analyzing the impurities in the semiconductor silicon crystal, the sample is collected from the semiconductor silicon crystal in the closed container, and is made of hydrofluoric acid and nitric acid. A mixed acid is added, and then the mixed acid is heated to generate a mixed acid vapor, thereby vapor phase decomposing the whole sample.
A volatile decomposition product generated inside the closed container such that the pressure inside the closed container is 0.20 MPa or more and 0.40 MPa or less in absolute pressure, using a pressure control valve as the closed container. And a pretreatment method for impurity analysis of semiconductor silicon crystals in which vapor phase decomposition is performed while leaking mixed acid vapor from the pressure control valve.

このような前処理方法であれば、より短時間でより多量の試料を気相分解によって全溶解させることができるため、試料の単位量あたりの前処理に要する時間を短縮し、また単位時間あたりに処理する試料の量を増やすことができる。   With such a pretreatment method, a larger amount of sample can be completely dissolved by gas phase decomposition in a shorter time, so that the time required for pretreatment of the sample per unit amount is shortened, and also per unit time The amount of sample to be processed can be increased.

また、本発明では、上記の前処理方法で前処理した試料を、誘導結合プラズマ質量分析又は原子吸光分析によって分析する半導体シリコン結晶の不純物分析方法を提供する。   Further, the present invention provides a method for analyzing impurities of semiconductor silicon crystals in which a sample pretreated by the above pretreatment method is analyzed by inductively coupled plasma mass spectrometry or atomic absorption spectrometry.

このような不純物分析方法であれば、より短時間でより多量の試料の前処理を行うことができるため、効率良く不純物の分析を行うことができ、また試料の量を従来よりも増やしてSi成分の濃度に比べて不純物の濃度を高めることで、不純物の測定精度を高めることもできる。   With such an impurity analysis method, it is possible to carry out pretreatment of a larger amount of samples in a shorter time, so that analysis of impurities can be performed efficiently, and the amount of samples can be increased more than in the prior art to make Si The measurement accuracy of impurities can also be enhanced by increasing the concentration of impurities as compared to the concentration of components.

以上のように、本発明の前処理方法であれば、より短時間でより多量の試料を気相分解によって全溶解させることができるため、前処理に要する時間を大幅に短縮して不純物分析の作業効率を改善することができ、また試料の量を従来よりも増やしてSi成分の濃度に比べて不純物の濃度を高めることで、不純物の測定精度を高めることもできる。   As described above, according to the pretreatment method of the present invention, a larger amount of sample can be completely dissolved by gas phase decomposition in a shorter time, so the time required for pretreatment can be greatly shortened and impurity analysis The working efficiency can be improved, and the measurement accuracy of impurities can also be enhanced by increasing the concentration of the impurities as compared to the concentration of the Si component by increasing the amount of the sample than in the past.

本発明の前処理方法に使用される気相分解装置の一例を示す概略図である。It is the schematic which shows an example of the gaseous-phase decomposition apparatus used for the pre-processing method of this invention. 本発明の不純物分析方法の一例を示すフロー図である。It is a flowchart which shows an example of the impurity analysis method of this invention. 閉塞容器内部の圧力とSiサンプル片の溶解量の相関を示すグラフである。It is a graph which shows the correlation of the pressure inside a closure container, and the dissolution amount of a Si sample piece. 従来の前処理方法に使用される気相分解装置の一例を示す概略図である。It is the schematic which shows an example of the vapor phase decomposition apparatus used for the conventional pre-processing method.

上述のように、半導体シリコン結晶の不純物分析のための前処理において、より短時間でより多量の試料を気相分解によって全溶解させることができる前処理方法の開発が求められていた。   As described above, in the pretreatment for impurity analysis of semiconductor silicon crystals, there has been a demand for development of a pretreatment method capable of totally dissolving a larger amount of samples by gas phase decomposition in a shorter time.

従来の前処理に使用される気相分解装置は、図4に示されるような容器本体101a、内蓋101b、及び外蓋101cからなる閉塞容器101と、高温チャンバー102を備えたものである。このような閉塞容器101を使用して気相分解を行う際には、サンプルカップ103に入れたSiサンプル片104と、フッ化水素酸及び硝酸からなる混酸105を入れた後、閉塞容器101を高温チャンバー102内に設置して、混酸105を100℃程度に加熱することで混酸蒸気を発生させ、Siサンプル片104を溶解させる。   The conventional vapor phase decomposition apparatus used for pretreatment includes a closed container 101 including a container body 101a, an inner lid 101b, and an outer lid 101c as shown in FIG. 4, and a high temperature chamber 102. When performing gas phase decomposition using such a closed vessel 101, after putting the Si sample piece 104 put in the sample cup 103 and the mixed acid 105 composed of hydrofluoric acid and nitric acid, the closed vessel 101 is The mixed acid 105 is placed in the high temperature chamber 102 and heated to about 100 ° C. to generate mixed acid vapor, thereby dissolving the Si sample piece 104.

このような従来の気相分解装置を用いた気相分解では、例えば容積100mLの閉塞容器と、50wt%HF・発煙HNO混酸を使用し、100℃で16時間気相分解を行っても、約1.4gのSiサンプル片を分解するのが限界であった。 In the vapor phase decomposition using such a conventional vapor phase decomposition apparatus, the vapor phase decomposition is carried out at 100 ° C. for 16 hours using, for example, a closed vessel with a volume of 100 mL and a 50 wt% HF-fuming HNO 3 mixed acid The limit was to disassemble about 1.4 g of Si sample pieces.

本発明者らは、気相分解を行う際の閉塞容器内部の圧力と試料の溶解量に着目した。まず、上記のような従来の閉塞容器を使用して気相分解を行う際に、閉塞容器内に圧力センサを挿入して、気相分解中の閉塞容器内部の圧力変化を測定した。その結果、閉塞容器内部の圧力は絶対圧で約0.3MPaをピークとして周期的に上昇・下降を繰り返していることが分かった。即ち、従来の閉塞容器101では、閉塞容器内部の圧力によって容器本体101aと外蓋101cの間に間隙ができて、閉塞容器内部の気体が周期的に閉塞容器の外へ漏洩(リーク)しており、これによって気相分解反応が断続的に継続していることが分かった。   The present inventors paid attention to the pressure inside the closed container at the time of performing gas phase decomposition and the amount of dissolution of the sample. First, when performing the gas phase decomposition using the conventional closed container as described above, a pressure sensor was inserted into the closed container to measure the pressure change inside the closed container during the gas phase decomposition. As a result, it was found that the pressure inside the closed vessel was cyclically rising and falling with a peak of about 0.3 MPa in absolute pressure. That is, in the conventional closed container 101, a pressure is created between the container body 101a and the outer lid 101c due to the pressure inside the closed container, and the gas inside the closed container periodically leaks outside the closed container. Thus, it was found that the gas phase decomposition reaction continued intermittently.

本発明者らは、上記の結果から、まず、閉塞容器内部の圧力を更に高めれば、混酸蒸気の濃度を上げて気相分解を促進できると予想した。従来の閉塞容器101は、容器本体101aの外面と外蓋101cの内面にネジを切って密閉構造としているが、フッ素樹脂製(特に、ポリテトラフルオロエチレン、即ちテフロン(登録商標)製)であるために、閉塞容器内部の圧力が高まると容器本体101aと外蓋101cの間に間隙ができリークが発生すると考え、ステンレス製の容器本体とステンレス製の外蓋に細目のネジを切った完全密閉型の閉塞容器を製作してSiサンプル片の気相分解を行ったところ、逆に気相分解反応が進まず、多くのSiサンプル片が未溶解のまま残留した。このことから、閉塞容器内部の圧力を高めるだけでは気相分解を促進できないことが判明した。   From the above results, the present inventors first predicted that if the pressure inside the closed vessel is further increased, the concentration of the mixed acid vapor can be increased to promote the vapor phase decomposition. In the conventional closed container 101, the outer surface of the container body 101a and the inner surface of the outer lid 101c are screwed to form a sealed structure, but they are made of a fluorine resin (in particular, made of polytetrafluoroethylene, that is, Teflon (registered trademark)). Therefore, it is thought that a gap may be created between the container body 101a and the outer lid 101c if the pressure inside the closed container is increased, and leakage may occur. A completely sealed stainless steel container body and a stainless steel outer lid are completely sealed. When a closed type container was produced and the gas phase decomposition of the Si sample piece was performed, the gas phase decomposition reaction did not proceed, and many Si sample pieces remained undissolved. From this, it was found that the gas phase decomposition can not be promoted only by increasing the pressure inside the closed vessel.

本発明者らは、ここで気相分解過程で起こっている反応に着目した。HF・HNO混酸によるSiの気相分解過程の素反応式には諸説があるが、下記に一例を示す。
・Si+2HNO→SiO+NO+NO+HO (1)
・SiO+4HF→SiF+2HO (2)
・SiO+6HF→HSiF+2HO (3)
・HSiF→SiF+2HF (4)
つまり、反応系全体では以下の反応が起こっていると考えられる。
・Si+2HNO+4HF→SiF+NO+NO+3HO (5)
The present inventors focused attention on the reaction occurring in the gas phase decomposition process here. Although there are various theories in the elementary reaction process of the gas phase decomposition process of Si by HF · HNO 3 mixed acid, an example is shown below.
Si + 2HNO 3 → SiO 2 + NO 2 + NO + H 2 O (1)
· SiO 2 + 4HF → SiF 4 + 2H 2 O (2)
· SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (3)
H 2 SiF 6 → SiF 4 + 2HF (4)
In other words, the following reaction is considered to occur in the whole reaction system.
-Si + 2HNO 3 + 4HF → SiF 4 + NO 2 + NO + 3H 2 O (5)

気相分解では、このように、Siが揮発性のSiF(四フッ化ケイ素)に分解される。従って、閉塞容器内で反応が進むにつれて閉塞容器内の分解生成物の濃度が高くなり、Siの気相分解反応が起こりにくくなると考えられる。つまり、閉塞容器内部の気体が周期的に閉塞容器の外へ漏洩すると、閉塞容器内部の圧力は低下するものの、揮発性が高い分解生成物であるSiFガスが反応の系外へ排出されて、Siの気相分解反応が促進されると考えられる。 In gas phase decomposition, Si is thus decomposed into volatile SiF 4 (silicon tetrafluoride). Therefore, as the reaction proceeds in the closed vessel, the concentration of decomposition products in the closed vessel increases, and it is considered that the gas phase decomposition reaction of Si is less likely to occur. That is, when the gas inside the closed container periodically leaks out of the closed container, the pressure inside the closed container decreases, but SiF 4 gas, which is a highly volatile decomposition product, is discharged out of the reaction system. It is believed that the gas phase decomposition reaction of Si is promoted.

より多量のSiサンプル片を気相分解するために従来の閉塞容器をそのまま大型化しても、容器本体と外蓋の間に偶然にできた間隙から内部の気体が安定してリークする保証はない。そこで、本発明者らは、閉塞容器に圧力調整バルブを設置し、閉塞容器内部の圧力を所定の範囲内に保ち、かつ閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を意図的に漏洩させながら気相分解を行うことで、従来よりも効率良く気相分解を行えることを見出し、本発明を完成させた。   There is no guarantee that the internal gas will stably leak from the gap created accidentally between the container body and the outer lid even if the conventional closed container is upsized as it is in order to vapor-degrade a larger amount of Si sample pieces . Therefore, the present inventors install a pressure control valve in the closed container, keep the pressure inside the closed container within a predetermined range, and intentionally use volatile decomposition products and mixed acid vapor generated inside the closed container. The inventors have found that gas phase decomposition can be performed more efficiently than in the past by performing gas phase decomposition while leaking, and the present invention has been completed.

即ち、本発明は、半導体シリコン結晶中の不純物を分析する際の前処理において、閉塞容器内に、前記半導体シリコン結晶から採取した試料と、フッ化水素酸及び硝酸からなる混酸を入れた後、前記混酸を加熱することで混酸蒸気を発生させて前記試料全体を気相分解する方法であって、
前記閉塞容器として圧力調整バルブが設けられたものを用い、前記閉塞容器内部の圧力が絶対圧で0.20MPa以上0.40MPa以下となるように、前記閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を前記圧力調整バルブから漏洩させながら気相分解を行う半導体シリコン結晶の不純物分析のための前処理方法である。
That is, according to the present invention, in the pretreatment for analyzing the impurities in the semiconductor silicon crystal, the mixed sample of hydrofluoric acid and nitric acid is placed in the closed container after the sample collected from the semiconductor silicon crystal, A method of generating mixed acid vapor by heating the mixed acid, and vapor phase decomposing the entire sample,
A volatile decomposition product generated inside the closed container such that the pressure inside the closed container is 0.20 MPa or more and 0.40 MPa or less in absolute pressure, using a pressure control valve as the closed container. And a pretreatment method for impurity analysis of semiconductor silicon crystals in which vapor phase decomposition is performed while leaking mixed acid vapor from the pressure control valve.

以下、図面を参照しながら本発明について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

本発明の前処理方法では、閉塞容器内部の圧力が絶対圧で0.20MPa以上0.40MPa以下となるように、閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を漏洩させるため、閉塞容器として圧力調整バルブが設けられたものを用いる。図1は、本発明の前処理方法に使用される気相分解装置の一例を示す概略図である。   In the pretreatment method of the present invention, since the volatile decomposition product and mixed acid vapor generated inside the closed container are leaked so that the pressure inside the closed container becomes 0.20 MPa or more and 0.40 MPa or less in absolute pressure, A container provided with a pressure control valve is used. FIG. 1 is a schematic view showing an example of a vapor phase decomposition apparatus used in the pretreatment method of the present invention.

図1の気相分解装置は、容器本体1a、内蓋1b、外蓋1c、及び圧力調整バルブ1dからなる閉塞容器1と、高温チャンバー2を備えたものである。このような閉塞容器1を使用して気相分解を行う際には、サンプルカップ3に入れたSiサンプル片4と、フッ化水素酸及び硝酸からなる混酸5を入れた後、閉塞容器1を高温チャンバー2内に設置して、混酸5を100℃程度に加熱することで混酸蒸気を発生させ、Siサンプル片4を溶解させる。その際、閉塞容器1内部の圧力が絶対圧で0.20MPa以上0.40MPa以下となるように、閉塞容器1内部で発生した揮発性分解生成物及び混酸蒸気を圧力調整バルブ1dから漏洩させる。   The gas phase decomposition apparatus shown in FIG. 1 comprises a closed container 1 comprising a container body 1a, an inner lid 1b, an outer lid 1c, and a pressure control valve 1d, and a high temperature chamber 2. When performing gas phase decomposition using such a closed vessel 1, after putting the Si sample piece 4 placed in the sample cup 3 and the mixed acid 5 composed of hydrofluoric acid and nitric acid, the closed vessel 1 is The mixed acid 5 is placed in the high temperature chamber 2 and heated to about 100 ° C. to generate mixed acid vapor, thereby dissolving the Si sample piece 4. At that time, the volatile decomposition product and mixed acid vapor generated inside the closed container 1 are leaked from the pressure control valve 1 d so that the pressure inside the closed container 1 becomes 0.20 MPa or more and 0.40 MPa or less in absolute pressure.

なお、閉塞容器及びサンプルカップとしては、特に限定されないが、従来と同様に、フッ素樹脂製のものを好適に使用することができる。また、圧力調整バルブとしては、特に限定されないが、フッ素樹脂製のものを好適に使用することができる。フッ素樹脂としては、ポリテトラフルオロエチレンが特に好適である。また、圧力調整バルブを設ける位置は、特に限定されないが、例えば、図1のように、閉塞容器1の内蓋1bと外蓋1cを貫通するように設けることができる。また、高温チャンバーとしては、排気機能のあるものを用いるのが好ましい。   The closed container and the sample cup are not particularly limited, but, as in the prior art, those made of fluorocarbon resin can be suitably used. Further, the pressure control valve is not particularly limited, but one made of a fluorine resin can be suitably used. As the fluorine resin, polytetrafluoroethylene is particularly preferable. Further, the position at which the pressure control valve is provided is not particularly limited. For example, as shown in FIG. 1, the pressure control valve can be provided so as to penetrate the inner lid 1 b and the outer lid 1 c of the closed container 1. In addition, as the high temperature chamber, it is preferable to use one having an exhaust function.

本発明の前処理方法では、気相分解に使用する混酸蒸気は、閉塞容器内に入れたフッ化水素酸及び硝酸からなる混酸を100℃前後に加熱することで発生させる。このような方法で発生させた混酸蒸気であれば、上記の特許文献1や特許文献2に記載の方法で得られる混酸成分(フッ化水素酸及び硝酸)を含むガスよりも混酸成分の濃度の高いものとなるため、Siサンプル片全体を効率的に分解することができる。   In the pretreatment method of the present invention, the mixed acid vapor used for gas phase decomposition is generated by heating the mixed acid consisting of hydrofluoric acid and nitric acid placed in the closed vessel to around 100 ° C. In the case of mixed acid vapor generated by such a method, the mixed acid component concentration is higher than that of the gas containing mixed acid components (hydrofluoric acid and nitric acid) obtained by the methods described in Patent Document 1 and Patent Document 2 above. Because it is high, the entire Si sample piece can be efficiently disassembled.

また、本発明では、気相分解中の閉塞容器内部の圧力を絶対圧で0.20MPa以上0.40MPa以下に保つ。閉塞容器内部の圧力とSiサンプル片の溶解量の相関を調べたところ、図3に示される相関が得られた。なお、図3のグラフでは、閉塞容器内部の圧力が絶対圧で0.10MPaのときのSiサンプル片の溶解量を1として溶解量を相対値で示している。図3に示されるように、閉塞容器内部の圧力が増すとSiサンプル片の溶解量は増加するが、溶解量が急激に増加しているのは圧力が0.20MPa以上からである。このことから、気相分解中の閉塞容器内部の圧力を絶対圧で0.20MPa未満とすると、Siサンプル片気相分解効率が大幅に低下する恐れがある。一方、閉塞容器内部の圧力が0.40MPaを超えると、フッ素樹脂製の閉塞容器の実用的な強度限界を超え、閉塞容器が破損するなどの問題が発生する恐れがある。   Further, in the present invention, the pressure inside the closed vessel during the gas phase decomposition is maintained at 0.20 MPa or more and 0.40 MPa or less in absolute pressure. When the correlation between the pressure inside the closed vessel and the dissolution amount of the Si sample piece was examined, the correlation shown in FIG. 3 was obtained. In the graph of FIG. 3, the amount of dissolution of the Si sample piece when the pressure inside the closed container is 0.10 MPa in absolute pressure is 1 and the amount of dissolution is shown as a relative value. As shown in FIG. 3, the dissolution amount of the Si sample piece increases as the pressure inside the closed container increases, but the dissolution amount increases rapidly because the pressure is 0.20 MPa or more. From this, when the pressure inside the closed vessel during the gas phase decomposition is made less than 0.20 MPa in absolute pressure, there is a possibility that the efficiency of the gas phase decomposition of the Si sample piece is significantly reduced. On the other hand, if the pressure inside the closed container exceeds 0.40 MPa, the practical strength limit of the closed container made of fluorocarbon resin may be exceeded, and problems such as breakage of the closed container may occur.

このような前処理方法であれば、以下のような効果が期待できる。
(i)閉塞容器内部の圧力を絶対圧で0.20MPa以上0.40MPa以下に保持することで、高い混酸蒸気の濃度によってSiの気相分解反応が促進される。
(ii)閉塞容器内部の気体(閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気)がリークすることで、揮発性が高い分解生成物であるSiFガスが反応の系外へ多く排出され、Siの気相分解反応が促進される。即ち、上記反応式(5)において、反応生成物であるSiFを系外へ除去することで、Siが分解する方向へ平衡が移動する。
(iii)HF・HNO混酸蒸気の一部も閉塞容器の外へリークするため、常に新鮮な(より純度の高い)混酸蒸気が提供されることで、Siの気相分解反応が促進される。
With such a pretreatment method, the following effects can be expected.
(I) By maintaining the pressure inside the closed vessel at an absolute pressure of 0.20 MPa or more and 0.40 MPa or less, the vapor phase decomposition reaction of Si is promoted by the concentration of the high mixed acid vapor.
(Ii) Leakage of the gas inside the closed vessel (volatile decomposition products and mixed acid vapor generated inside the closed vessel) causes a large amount of highly volatile decomposition product SiF 4 gas to be discharged to the outside of the reaction system And the gas phase decomposition reaction of Si is promoted. That is, in the above reaction formula (5), by removing the reaction product SiF 4 out of the system, the equilibrium moves in the direction in which Si decomposes.
(Iii) Since a part of the HF / HNO 3 mixed acid vapor also leaks out of the closed vessel, the fresh (higher purity) mixed acid vapor is always provided, thereby promoting the vapor phase decomposition reaction of Si. .

このように、本発明の前処理方法であれば、より短時間でより多量の試料を気相分解によって全溶解させることができる。つまり、試料の単位量あたりの前処理に要する時間を従来法に比べて短縮することができ、また単位時間あたりに処理する試料の量を従来法に比べて増やすことができる。   Thus, with the pretreatment method of the present invention, a larger amount of sample can be completely dissolved by gas phase decomposition in a shorter time. That is, the time required for pretreatment per unit amount of sample can be shortened as compared to the conventional method, and the amount of sample to be treated per unit time can be increased as compared to the conventional method.

また、本発明では、上記の本発明の前処理方法で前処理した試料を、誘導結合プラズマ質量分析(ICP−MS)又は原子吸光分析(AAS)によって分析する半導体シリコン結晶の不純物分析方法を提供する。   The present invention also provides a method for analyzing impurities of semiconductor silicon crystals in which a sample pretreated by the above pretreatment method of the present invention is analyzed by inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption spectrometry (AAS). Do.

なお、このような不純物分析方法では、上記のようにして前処理した試料から測定用の試料溶液を調製し、ICP−MSやAAS等で不純物の分析を行うが、前処理後のサンプルカップ内には、被測定金属不純物とともにHSiF(ヘキサフルオロケイ酸)などのSi分解残渣が残留する場合がある。そこで、更にサンプルカップを加熱(蒸発乾固)することで、サンプルカップ内に残ったSi分解残渣を除去した後、残留物を硝酸によって再抽出して、測定用の試料溶液を調製し、ICP−MSやAAS等で不純物の分析を行うのが好ましい。 In such an impurity analysis method, a sample solution for measurement is prepared from the sample pretreated as described above, and analysis of impurities is performed by ICP-MS, AAS, etc. In some cases, Si decomposition residue such as H 2 SiF 6 (hexafluorosilicic acid) may remain together with the metal impurity to be measured. Therefore, the sample cup is further heated (evaporated to dryness) to remove the Si decomposition residue remaining in the sample cup, and then the residue is reextracted with nitric acid to prepare a sample solution for measurement, ICP It is preferable to analyze the impurities by MS, AAS or the like.

図2に本発明の不純物分析方法のフローの一例を示す。図2の不純物分析方法では、まず、上述の本発明の前処理方法で前処理を行う。この前処理では、半導体シリコン結晶から試料を採取し、サンプルカップに入れた試料とHF・HNO混酸を、圧力調整バルブを設けた閉塞容器内に入れる。次に、混酸を100℃程度に加熱し、閉塞容器内部の圧力が絶対圧で0.20MPa以上0.40MPa以下となるように、閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を圧力調整バルブから漏洩させながら試料を気相分解する。次に、前処理(気相分解)後のサンプルカップを閉塞容器内から取り出し、蒸発乾固を行う。蒸発乾固後、硝酸で残留物を再抽出し、測定用試料溶液を調製する。最後に、このようにして調製した測定用試料溶液を用いて、ICP−MSで不純物の分析を行う。 FIG. 2 shows an example of the flow of the impurity analysis method of the present invention. In the impurity analysis method of FIG. 2, first, pretreatment is performed by the above-described pretreatment method of the present invention. In this pretreatment, a sample is taken from a semiconductor silicon crystal, and the sample and HF / HNO 3 mixed acid placed in a sample cup are placed in a closed container provided with a pressure control valve. Next, the mixed acid is heated to about 100 ° C., and the pressure of the volatile decomposition product and mixed acid vapor generated inside the closed container is reduced so that the pressure inside the closed container becomes 0.20 MPa or more and 0.40 MPa or less in absolute pressure. Gas phase decomposition of the sample while leaking from the adjustment valve. Next, the sample cup after the pretreatment (gas phase decomposition) is taken out from the closed vessel and evaporated to dryness. After evaporation to dryness, the residue is re-extracted with nitric acid to prepare a sample solution for measurement. Finally, analysis of impurities by ICP-MS is performed using the sample solution for measurement thus prepared.

このような本発明の不純物分析方法であれば、より短時間でより多量の試料の前処理を行うことができるため、効率良く不純物の分析を行うことができ、また試料の量を従来よりも増やしてSi成分の濃度に比べて不純物の濃度を高めることで、不純物の測定精度を高めることもできる。   According to such an impurity analysis method of the present invention, it is possible to carry out pretreatment of a larger amount of samples in a shorter time, so that analysis of impurities can be performed efficiently, and the amount of samples is larger than that of the prior art. The measurement accuracy of the impurities can also be enhanced by increasing the concentration of the impurities by increasing the concentration as compared to the concentration of the Si component.

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below using Examples and Comparative Examples, but the present invention is not limited to these.

[実施例1]
図1に示される圧力調整バルブが設けられた閉塞容器1(容積:約1,500mL)の底に、50wt%HFと発煙HNOからなる混酸5(50wt%HF:発煙HNO=1:1)を360mL入れた。次に、3個のテフロン(登録商標)製サンプルカップ3のそれぞれに約7gのSiサンプル片4を入れたものを閉塞容器1の中に載置した。次に、閉塞容器1を排気機能のある高温チャンバー(オーブン)2中で100℃に加熱し、16時間保持した。16時間経過後にサンプルカップ3を取り出して計量し、気相分解前後の重量差を溶解量として求めた。なお、気相分解中の閉塞容器1内部の圧力は絶対圧で0.30MPaとした。結果を表1に示す。なお、分解前のSi重量(g)、分解後のSi重量(g)、溶解量(g)の有効数字は小数点以下2桁とした。これは以降の表でも同様である。
Example 1
In the bottom of the closed vessel 1 (volume: about 1,500 mL) provided with the pressure control valve shown in FIG. 1, mixed acid 5 (50 wt% HF: fume HNO 3 = 1: 1) consisting of 50 wt% HF and fuming HNO 3 ) Was added. Next, each of three Teflon (registered trademark) sample cups 3 containing about 7 g of the Si sample piece 4 was placed in the closed container 1. Next, the closed vessel 1 was heated to 100 ° C. in a high temperature chamber (oven) 2 having an evacuation function and held for 16 hours. After 16 hours, the sample cup 3 was taken out and weighed, and the weight difference before and after the gas phase decomposition was determined as the dissolved amount. The pressure inside the closed vessel 1 during the gas phase decomposition was 0.30 MPa in absolute pressure. The results are shown in Table 1. The significant figures of Si weight (g) before decomposition, Si weight (g) after decomposition, and dissolved amount (g) were two decimal places. The same applies to the following tables.

Figure 0006424742
Figure 0006424742

[実施例2]
50wt%HF:発煙HNO=1:1の混酸440mLを使用する以外は実施例1と同様にして、合計約21g(約7g×3)のSiサンプル片4の気相分解を行い、気相分解前後の重量差からSiサンプル片4の溶解量を求めた。結果を表2に示す。
Example 2
Gas phase decomposition of a total of about 21 g (about 7 g × 3) of the Si sample piece 4 is carried out in the same manner as in Example 1 except that 440 mL of mixed acid of 50 wt% HF: fuming HNO 3 = 1: 1 is used. The amount of dissolution of the Si sample piece 4 was determined from the difference in weight before and after decomposition. The results are shown in Table 2.

Figure 0006424742
Figure 0006424742

[実施例3]
50wt%HF:発煙HNO=2:1の混酸450mLを使用する以外は実施例1と同様にして、合計約21g(約7g×3)のSiサンプル片4の気相分解を行い、気相分解前後の重量差からSiサンプル片4の溶解量を求めた。結果を表3に示す。
[Example 3]
Gas phase decomposition of a total of about 21 g (about 7 g × 3) of the Si sample piece 4 is carried out in the same manner as in Example 1 except that 50 mL of mixed acid of 50 wt% HF: fuming HNO 3 = 2: 1 is used. The amount of dissolution of the Si sample piece 4 was determined from the difference in weight before and after decomposition. The results are shown in Table 3.

Figure 0006424742
Figure 0006424742

[実施例4]
気相分解中の閉塞容器1内部の圧力を絶対圧で0.20MPaとする以外は実施例1と同様にして、合計約21g(約7g×3)のSiサンプル片4の気相分解を行い、気相分解前後の重量差からSiサンプル片4の溶解量を求めた。結果を表4に示す。
Example 4
The gas phase decomposition of a total of about 21 g (about 7 g × 3) of the Si sample piece 4 is performed in the same manner as in Example 1 except that the pressure inside the closed container 1 during gas phase decomposition is 0.20 MPa in absolute pressure. The dissolution amount of the Si sample piece 4 was determined from the weight difference before and after gas phase decomposition. The results are shown in Table 4.

Figure 0006424742
Figure 0006424742

[実施例5]
気相分解中の閉塞容器1内部の圧力を絶対圧で0.40MPaとする以外は実施例1と同様にして、合計約21g(約7g×3)のSiサンプル片4の気相分解を行ったところ各約7gのSiサンプル片は全て溶解してしまったため、改めて、合計約48g(約16g×3)のSiサンプル片4の気相分解を行い、気相分解前後の重量差からSiサンプル片4の溶解量を求めた。結果を表5に示す。
[Example 5]
A total of about 21 g (about 7 g × 3) of the Si sample piece 4 was subjected to gas phase decomposition in the same manner as in Example 1 except that the pressure inside the closed vessel 1 during gas phase decomposition was 0.40 MPa in absolute pressure. Since about 7 g of each of the Si sample pieces were completely dissolved, a total of about 48 g (about 16 g × 3) of the Si sample pieces 4 was again subjected to gas phase decomposition, and the weight difference before and after the gas phase decomposition The amount of dissolution of piece 4 was determined. The results are shown in Table 5.

Figure 0006424742
Figure 0006424742

[比較例1]
気相分解中の閉塞容器1内部の圧力を絶対圧で0.15MPaとする以外は実施例1と同様にして、合計約21g(約7g×3)のSiサンプル片4の気相分解を行い、気相分解前後の重量差からSiサンプル片4の溶解量を求めた。結果を表6に示す。
Comparative Example 1
A total of about 21 g (about 7 g × 3) of the Si sample piece 4 was subjected to gas phase decomposition in the same manner as in Example 1 except that the pressure inside the closed vessel 1 during gas phase decomposition was 0.15 MPa in absolute pressure. The dissolution amount of the Si sample piece 4 was determined from the weight difference before and after gas phase decomposition. The results are shown in Table 6.

Figure 0006424742
Figure 0006424742

[比較例2]
図1に示される閉塞容器1の容器本体1a(容積:約1,500mL)のみを用い、閉塞容器の内蓋1b、外蓋1c、及び圧力調整バルブ1dを用いずに、大気圧(絶対圧0.1MPa)に開放した状態で使用する以外は実施例1と同様にして、合計約21g(約7g×3)のSiサンプル片4の気相分解を行い、気相分解前後の重量差からSiサンプル片104の溶解量を求めた。結果を表7に示す。
Comparative Example 2
Atmospheric pressure (absolute pressure) using only the container body 1a (volume: about 1,500 mL) of the closed container 1 shown in FIG. 1 and without using the inner lid 1b, outer lid 1c, and pressure control valve 1d of the closed container The gas phase decomposition of a total of about 21 g (about 7 g × 3) of the Si sample piece 4 is carried out in the same manner as in Example 1 except that it is used in the open state at 0.1 MPa). The amount of dissolution of the Si sample piece 104 was determined. The results are shown in Table 7.

Figure 0006424742
Figure 0006424742

表1〜5に示されるように、圧力調整バルブが設けられた閉塞容器を用い、閉塞容器内部の圧力が絶対圧で0.20MPa以上0.40MPa以下となるように、閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を圧力調整バルブから漏洩させながら気相分解を行った実施例1〜5では、合計約8gのSiサンプル片を溶解させることができた。また、表1〜3に示されるように、いずれの混酸の比率においてもSiサンプル片の溶解量は合計約18gであり、混酸の組成によらず安定した気相分解が行えることが分かった。   As shown in Tables 1 to 5, using a closed vessel provided with a pressure control valve, the pressure inside the closed vessel was generated within the closed vessel so that the absolute pressure would be 0.20 MPa or more and 0.40 MPa or less In Examples 1 to 5 in which gas phase decomposition was performed while leaking volatile decomposition products and mixed acid vapor from the pressure control valve, a total of about 8 g of Si sample pieces could be dissolved. In addition, as shown in Tables 1 to 3, it was found that the dissolution amount of the Si sample piece was about 18 g in total at any ratio of mixed acid, and stable gas phase decomposition could be performed regardless of the composition of mixed acid.

一方、表6に示されるように、圧力調整バルブが設けられた閉塞容器を用いた場合でも、閉塞容器内部の圧力を絶対圧で0.15MPa(0.20MPa未満)となるように、閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を圧力調整バルブから漏洩させながら気相分解を行った比較例1では、合計約6gのSiサンプル片しか溶解させることができなかった。また、表7に示されるように、閉塞容器を使用せず、大気圧開放状態(絶対圧0.1MPa)で気相分解を行った比較例2では、合計約5gのSiサンプル片しか溶解させることができなかった。なお、図4に示すように完全に容器を閉塞させた場合、実施例1〜5と同じような小さな容積では容器内の圧力が上昇して、上述のようにフッ素樹脂製の閉塞容器が破損する恐れがあり危険であるため、圧力調整バルブが設けられていない閉塞容器を使用した比較実験は行わなかった。   On the other hand, as shown in Table 6, even when using a closed container provided with a pressure control valve, the closed container is set to have an internal pressure of 0.15 MPa (less than 0.20 MPa) in absolute pressure. In Comparative Example 1 in which gas phase decomposition was performed while leaking internally generated volatile decomposition products and mixed acid vapor from the pressure control valve, only a total of about 6 g of Si sample pieces could be dissolved. In addition, as shown in Table 7, in Comparative Example 2 in which the gas phase decomposition was performed in the atmospheric pressure release state (0.1 MPa absolute pressure) without using the closed container, only a total of about 5 g of Si sample pieces is dissolved I could not. When the container is completely closed as shown in FIG. 4, the pressure in the container rises with a small volume as in the first to fifth embodiments, and the fluorine resin-made closed container is broken as described above. Because of the danger and danger of doing so, we did not conduct a comparative experiment using a closed vessel without a pressure control valve.

以上のように、本発明の前処理方法であれば、従来法の約10倍のSiサンプル片を溶解させることができた。このことから、従来と同様に分解残渣を蒸発乾固後に1mLの硝酸で再抽出すると、測定用試料溶液中の被測定金属不純物濃度を10倍に高めることができ、これによって金属不純物の検出下限を従来の1/10に改善することができることが示唆された。また、Siサンプル片の溶解量を従来と同程度にした場合には、前処理に要する時間を短縮することができるため、不純物分析の作業効率を改善することができることが示唆された。   As described above, according to the pretreatment method of the present invention, it was possible to dissolve about 10 times as many Si sample pieces as the conventional method. From this, when the decomposition residue is evaporated to dryness and then reextracted with 1 mL of nitric acid as in the prior art, the concentration of the metal impurity to be measured in the sample solution for measurement can be increased tenfold. It is suggested that it can be improved to 1/10 of the conventional one. In addition, when the dissolution amount of the Si sample piece is made comparable to that in the past, the time required for the pretreatment can be shortened, which suggests that the work efficiency of the impurity analysis can be improved.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has the substantially same constitution as the technical idea described in the claims of the present invention, and the same effects can be exhibited by any invention. It is included in the technical scope of

1…閉塞容器、 1a…容器本体、 1b…内蓋、 1c…外蓋、
1d…圧力調整バルブ、 2…高温チャンバー、 3…サンプルカップ、
4…Siサンプル片、 5…混酸。
1 ... closed container, 1a ... container body, 1b ... inner lid, 1c ... outer lid,
1d ... pressure adjustment valve, 2 ... high temperature chamber, 3 ... sample cup,
4 ... Si sample piece, 5 ... mixed acid.

Claims (2)

半導体シリコン結晶中の不純物を分析する際の前処理において、閉塞容器内に、前記半導体シリコン結晶から採取した試料と、フッ化水素酸及び硝酸からなる混酸を入れた後、前記混酸を加熱することで混酸蒸気を発生させて前記試料全体を気相分解する方法であって、
前記閉塞容器として圧力調整バルブが設けられたものを用い、前記閉塞容器内部の圧力が絶対圧で0.20MPa以上0.40MPa以下となるように、前記閉塞容器内部で発生した揮発性分解生成物及び混酸蒸気を前記圧力調整バルブから漏洩させながら気相分解を行うことを特徴とする半導体シリコン結晶の不純物分析のための前処理方法。
In the pretreatment for analyzing the impurities in the semiconductor silicon crystal, the mixed acid containing hydrofluoric acid and nitric acid is placed in the closed vessel, and then the mixed acid is heated. A method of generating mixed acid vapor with the
A volatile decomposition product generated inside the closed container such that the pressure inside the closed container is 0.20 MPa or more and 0.40 MPa or less in absolute pressure, using a pressure control valve as the closed container. And vapor phase decomposition is performed while leaking mixed acid vapor from the pressure control valve, and a pretreatment method for impurity analysis of semiconductor silicon crystal.
請求項1に記載の前処理方法で前処理した試料を、誘導結合プラズマ質量分析又は原子吸光分析によって分析することを特徴とする半導体シリコン結晶の不純物分析方法。   A method for analyzing impurities of semiconductor silicon crystals, comprising analyzing a sample pretreated by the pretreatment method according to claim 1 by inductively coupled plasma mass spectrometry or atomic absorption spectrometry.
JP2015113935A 2015-06-04 2015-06-04 Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal Active JP6424742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015113935A JP6424742B2 (en) 2015-06-04 2015-06-04 Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015113935A JP6424742B2 (en) 2015-06-04 2015-06-04 Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal

Publications (2)

Publication Number Publication Date
JP2017003271A JP2017003271A (en) 2017-01-05
JP6424742B2 true JP6424742B2 (en) 2018-11-21

Family

ID=57751870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015113935A Active JP6424742B2 (en) 2015-06-04 2015-06-04 Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal

Country Status (1)

Country Link
JP (1) JP6424742B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051023B2 (en) * 1994-06-10 2000-06-12 東芝セラミックス株式会社 Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
JP3755586B2 (en) * 2001-06-05 2006-03-15 信越半導体株式会社 Silicon desorption method and silicon wafer impurity analysis method
JP2005326219A (en) * 2004-05-13 2005-11-24 Shin Etsu Handotai Co Ltd Analysis sample preparing apparatus, analysis sample preparing method and semiconductor sample analysis method
JP4833878B2 (en) * 2007-01-31 2011-12-07 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
JP6112476B2 (en) * 2013-10-09 2017-04-12 信越半導体株式会社 Method for removing metal impurities from fluororesin

Also Published As

Publication number Publication date
JP2017003271A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
EP3339851A1 (en) Silicon substrate analyzing device
JP5459053B2 (en) Impurity evaluation method of silicon single crystal
US10345211B2 (en) Method of determining a concentration of a material not dissolved by silicon etchants contaminating a product
JP2002040009A (en) Micro impurity analytical method in silicon substrate
JP6424742B2 (en) Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal
Shaverina et al. A procedure of ICP-AES analysis of silicon using microwave digestion and preconcentration
JP5413342B2 (en) Silicon wafer surface layer etching method and silicon wafer metal contamination analysis method
JP4837687B2 (en) Chemical treatment method of chlorosilanes
Gromov System researches “fluorides of alkaline metals–hydrogen fluoride”
JP6112914B2 (en) Method for preparing sample for measuring mercury in coal ash and measuring method for mercury in coal ash
KR101064657B1 (en) Apparatus and method for processing poly silicon
JP3804864B2 (en) Impurity analysis method
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
Nete et al. Alternative dissolution methods for analysis of niobium containing samples
Naletov et al. An experimental study of desublimation of carbon dioxide from a gas mixture
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
KR102299861B1 (en) Method for analyzing metal contamination of silicon wafer and method for manufacturing silicon wafer
Woolley PTFE apparatus for vapour-phase decomposition of high-purity materials
JP3286215B2 (en) Surface analysis method for silicon wafer
US11421342B2 (en) Method of decomposing quartz sample, method of analyzing metal contamination of quartz sample, and method of manufacturing quartz member
JPH11183342A (en) Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it
JP4337607B2 (en) Method for analyzing Ni concentration in alkaline solution
JP2005326219A (en) Analysis sample preparing apparatus, analysis sample preparing method and semiconductor sample analysis method
JP2006156766A (en) Impurity analyzing method for silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R150 Certificate of patent or registration of utility model

Ref document number: 6424742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250