JP2006156766A - Impurity analyzing method for silicon wafer - Google Patents

Impurity analyzing method for silicon wafer Download PDF

Info

Publication number
JP2006156766A
JP2006156766A JP2004346213A JP2004346213A JP2006156766A JP 2006156766 A JP2006156766 A JP 2006156766A JP 2004346213 A JP2004346213 A JP 2004346213A JP 2004346213 A JP2004346213 A JP 2004346213A JP 2006156766 A JP2006156766 A JP 2006156766A
Authority
JP
Japan
Prior art keywords
silicon wafer
acid
mixed acid
heating
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004346213A
Other languages
Japanese (ja)
Inventor
Seiji Taniike
誠司 谷池
Akiko Shibayama
明子 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004346213A priority Critical patent/JP2006156766A/en
Publication of JP2006156766A publication Critical patent/JP2006156766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the impurity analyzing method of a silicon wafer for decomposing the whole part of even one silicon wafer, for condensing it in a short time, and for surely collecting impurity. <P>SOLUTION: The whole part or one part of one silicon wafer is immersed in the mixed acid of oxygenated water and sulfuric acid, and immediately dissolved by steam to be generated due to the heating of the mixed acid of hydrofluoric acid and nitric acid, and the acquired solution is heated, condensed, and analyzed by a high frequency inductive coupled plasma mass spectrometry or an atomic absorption spectrometry. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シリコンウェーハ中の不純物を分析するシリコンウェーハの不純物分析方法に関する。   The present invention relates to a silicon wafer impurity analysis method for analyzing impurities in a silicon wafer.

シリコンウェーハ中に含まれる金属不純物は、半導体の特性に深刻な影響を及ぼすため、シリコンウェーハを酸により分解してその純度を分析する必要がある。   Since the metal impurities contained in the silicon wafer have a serious effect on the characteristics of the semiconductor, it is necessary to decompose the silicon wafer with acid and analyze its purity.

このシリコンウェーハの分解方法には、フッ化水素酸(HF)と硝酸(HNO3)の混酸にシリコンウェーハを浸漬してシリコンウェーハを分解する酸分解法と、HFとHNO3の混酸を加熱してその蒸気を純水に溶解させ、この溶液中にシリコンウェーハを浸漬させてシリコンウェーハを分解する酸蒸気分解法と、HFとHNO3の混酸を加熱してその蒸気とシリコンウェーハとを気相反応させ、シリコンウェーハを分解する気相分解法とがある。 In this silicon wafer decomposition method, an acid decomposition method in which the silicon wafer is decomposed by immersing the silicon wafer in a mixed acid of hydrofluoric acid (HF) and nitric acid (HNO 3 ), and a mixed acid of HF and HNO 3 is heated. Then, the vapor is dissolved in pure water, the silicon wafer is immersed in this solution to decompose the silicon wafer, and the mixed acid of HF and HNO 3 is heated to vaporize the vapor and the silicon wafer. There is a vapor phase decomposition method in which a silicon wafer is decomposed by reacting.

気相分解法を用いたシリコンウェーハの不純物分析方法としては、密閉空間系を構成する密閉収容器内に、シリコンウェーハを載置した分析試料容器及びHFとHNO3の混酸からなる試料分解用溶液を、それぞれ接触させることなく隔離状態で収納した後、該密閉容器を加温し、シリコンウェーハを分解昇華させ、該分析試料容器内の残存物を回収するシリコンウェーハ中の不純物高精度分析のための処理方法が知られている(特許文献1参照)。
このシリコンウェーハ中の不純物高精度分析のための処理方法によれば、加熱により気化した試料分解用溶液の蒸気のみがシリコンウェーハと接触してシリコンウェーハを気相分解させることにより、シリコンウェーハ中の不純物を数十倍以上も高精度に測定でき、pptオーダー以下の定量で分析できる、というものである。
As an impurity analysis method for a silicon wafer using a vapor phase decomposition method, an analysis sample container in which a silicon wafer is placed in a sealed container constituting a sealed space system, and a sample decomposition solution comprising a mixed acid of HF and HNO 3 Are stored in an isolated state without contact with each other, the sealed container is heated, the silicon wafer is decomposed and sublimated, and the residue in the analysis sample container is recovered for high-precision analysis of impurities in the silicon wafer. Is known (see Patent Document 1).
According to the processing method for the high-precision analysis of impurities in the silicon wafer, only the vapor of the sample decomposition solution vaporized by heating comes into contact with the silicon wafer to decompose the silicon wafer in a vapor phase. Impurities can be measured with a precision as high as several tens of times, and can be analyzed with a quantitative value of the order of ppt or less.

しかし、酸蒸気分解法を用いるシリコンウェーハの不純物分析方法では、酸分解法を用いるそれより不純物の混入が少ないため、高精度の分析を行えるが、混酸の蒸気を純水に溶解した溶液中にシリコンウェーハを浸漬して分解する必要がある。
そのため、シリコンウェーハを小片に分割して分析する場合は、不具合を生じることなく可能であるものの、例えば、1枚のシリコンウェーハ全部をそのまま分解する場合は、多量の溶液が必要となり、分解後の溶液の加熱濃縮に非常に長い時間が必要となる不具合がある。
一方、気相分解法を用いるシリコンウェーハの不純物分析方法では、シリコンウェーハ中の不純物を確実に回収するため、トラップ用の薬液として少量の硫酸(H2SO4)等を添加するが、シリコンウェーハを小片に分割して分析する場合は、酸蒸気分解を用いるシリコンウェーハの不純物分析方法の場合と同様に、不具合を生じることなく可能であるものの、例えば、1枚のシリコンウェーハ全部をそのまま分解する場合は、トラップ用の薬液がシリコンウェーハを十分に覆うことができず、不純物の回収率が悪くなるという不具合がある。
特開平07−333121号公報
However, the silicon wafer impurity analysis method using the acid vapor decomposition method can perform high-accuracy analysis because it contains less impurities than the acid decomposition method, but the mixed acid vapor is dissolved in pure water. It is necessary to immerse and decompose the silicon wafer.
Therefore, when analyzing a silicon wafer by dividing it into small pieces, it is possible without causing problems, but for example, when disassembling an entire silicon wafer as it is, a large amount of solution is required, There is a problem that a very long time is required for heating and concentrating the solution.
On the other hand, in a silicon wafer impurity analysis method using a vapor phase decomposition method, a small amount of sulfuric acid (H 2 SO 4 ) or the like is added as a chemical solution for trapping in order to reliably collect impurities in the silicon wafer. In the case of analyzing by dividing the wafer into small pieces, it is possible without causing problems as in the case of the impurity analysis method for silicon wafers using acid vapor decomposition, but for example, the whole silicon wafer is decomposed as it is. In this case, there is a problem that the chemical solution for trapping cannot sufficiently cover the silicon wafer and the recovery rate of impurities is deteriorated.
JP 07-333121 A

本発明は、1枚のシリコンウェーハであっても全部を分解した後、短時間で濃縮し、かつ、確実に不純物を回収し得るシリコンウェーハの不純物分析方法の提供を課題とする。   It is an object of the present invention to provide an impurity analysis method for a silicon wafer that can be concentrated in a short time after an entire silicon wafer is decomposed and can reliably collect impurities.

本発明の第1のシリコンウェーハの不純物分析方法は、1枚のシリコンウェーハの全部又は一部分を、過酸化水素水と硫酸との混酸に浸漬した後、直ちにフッ化水素酸と硝酸との混酸の加熱によって発生する蒸気により溶解し、得られた溶液を加熱濃縮して高周波誘導結合プラズマ質量分析法又は原子吸光分析法により分析することを特徴とする。   In the first method for analyzing impurities of a silicon wafer according to the present invention, after all or a part of one silicon wafer is immersed in a mixed acid of hydrogen peroxide and sulfuric acid, a mixed acid of hydrofluoric acid and nitric acid is immediately added. It is characterized in that it is dissolved by steam generated by heating, and the resulting solution is heated and concentrated and analyzed by high frequency inductively coupled plasma mass spectrometry or atomic absorption spectrometry.

又、第2のシリコンウェーハの不純物分析方法は、1枚のシリコンウェーハの全部又は一部分を、塩酸若しくは硝酸又はそれらの混酸と硫酸との混酸に浸漬した後、直ちにフッ化水素酸と硝酸との混酸の加熱によって発生する蒸気により溶解し、得られた溶液を加熱濃縮して高周波誘導結合プラズマ質量分析法又は原子吸光分析法により分析することを特徴とする。   In addition, the second silicon wafer impurity analysis method comprises immersing all or part of one silicon wafer in hydrochloric acid or nitric acid or a mixed acid of sulfuric acid and sulfuric acid, and immediately adding hydrofluoric acid and nitric acid. It is characterized by being dissolved by vapor generated by heating of a mixed acid, and concentrating the obtained solution and analyzing by high frequency inductively coupled plasma mass spectrometry or atomic absorption spectrometry.

本発明の第1、第2のシリコンウェーハの不純物分析方法によれば、1枚のシリコンウェーハの全部又は一部分を、過酸化水素水(H22水)とH2SO4との混酸、HCl若しくはHNO3又はそれらの混酸とH2SO4との混酸に浸漬することにより、シリコンウェーハの表面はH22水、HCl若しくはHNO3又はそれらの混酸との反応で生じた親水性の酸化膜で覆われ、かつ、酸化膜の表面にはH22水、HCl若しくはHNO3又はそれらの混酸とH2SO4との混酸が薄く付着した状態であるため、純水を加えなくても酸蒸気がウェーハ表面に吸収されてシリコンウェーハが分解されるので、1枚のシリコンウェーハであっても全部が分解した後、短時間で濃縮することができる。
又、H2SO4がウェーハ全面に付着しているので、シリコンウェーハ中の不純物を確実に回収することができる。
According to the first and second silicon wafer impurity analysis methods of the present invention, all or a part of one silicon wafer is mixed with hydrogen peroxide (H 2 O 2 water) and H 2 SO 4 mixed acid, By immersing in a mixed acid of HCl or HNO 3 or their mixed acid and H 2 SO 4 , the surface of the silicon wafer becomes hydrophilic due to the reaction with H 2 O 2 water, HCl or HNO 3 or their mixed acid. Since it is covered with an oxide film, and H 2 O 2 water, HCl or HNO 3 or a mixed acid of these mixed acids and H 2 SO 4 is thinly attached to the surface of the oxide film, pure water is not added. However, since the acid vapor is absorbed by the wafer surface and the silicon wafer is decomposed, even if it is a single silicon wafer, it can be concentrated in a short time after all of the silicon wafer is decomposed.
In addition, since H 2 SO 4 adheres to the entire wafer surface, impurities in the silicon wafer can be reliably recovered.

22水とH2SO4との混酸は、H22水の濃度0.1〜30%(より好ましくは3〜10%)に調製し、H2SO4の濃度0.001〜1%(より好ましくは0.01〜0.1%)に調製する。
一方、H22水とH2SO4との混酸へのシリコンウェーハの浸漬時間は、ウェーハ表面が短時間で酸化されるため、10秒〜1分で十分である。
The mixed acid of H 2 O 2 water and H 2 SO 4 is prepared to a concentration of 0.1 to 30% (more preferably 3 to 10%) of H 2 O 2 water, and the concentration of H 2 SO 4 is 0.001. To 1% (more preferably 0.01 to 0.1%).
On the other hand, the immersion time of the silicon wafer in the mixed acid of H 2 O 2 water and H 2 SO 4 is sufficient from 10 seconds to 1 minute because the wafer surface is oxidized in a short time.

HNO3との混酸となるHFは、濃度5〜50%(より好ましくは30〜50%)のものが用いられる。
HFとの混酸となるHNO3は、濃度10〜70%(より好ましくは60〜70%)のものが用いられる。
HFとHNO3との混酸は、上記濃度のHFとHNO3とを1:1〜1:10の容量割合で混合したものが用いられる。
HFとHNO3との混酸の加熱温度は、100〜180℃(より好ましくは120〜160℃)とされる。
As the HF that becomes a mixed acid with HNO 3 , HF having a concentration of 5 to 50% (more preferably 30 to 50%) is used.
HNO 3 that is a mixed acid with HF has a concentration of 10 to 70% (more preferably 60 to 70%).
Mixed acid of HF and HNO 3 is HF and HNO 3 in the concentration of 1: 1:00 to 1:10 in a mixing volume ratio is used.
The heating temperature of the mixed acid of HF and HNO 3 is 100 to 180 ° C. (more preferably 120 to 160 ° C.).

溶液を濃縮する加熱は、水分を除去するためのものであり、その温度は、100〜180℃(より好ましくは130〜160℃)とされる。
溶液の加熱濃縮に掛かる時間は、溶液の加熱濃度にもよるが、1〜4時間である。
濃縮によって生じるH2SO4を300〜400℃の温度での加熱によって蒸発させた後、残滓は、濃度0.1〜1%のHNO3によって溶解することが好ましい。
又、H2SO4を蒸発させる工程と、HNO31mlを入れて残滓を溶解させる工程を省き、水分を除去した後の不純物を含むH2SO4からなる溶液に純水を加え、H2SO4溶液が測定可能な高周波誘導結合プラズマ質量分析装置(ICP−MS)、例えばコリージョンセルを搭載したICP−MSを用いて定量的に分析してもよい。
The heating for concentrating the solution is for removing moisture, and the temperature is 100 to 180 ° C. (more preferably 130 to 160 ° C.).
The time required for heating and concentrating the solution is 1 to 4 hours depending on the heating concentration of the solution.
After H 2 SO 4 produced by concentration is evaporated by heating at a temperature of 300 to 400 ° C., the residue is preferably dissolved by HNO 3 with a concentration of 0.1 to 1%.
Also, the steps of evaporating H 2 SO 4 and 1 ml of HNO 3 were added to dissolve the residue, and pure water was added to the solution composed of H 2 SO 4 containing impurities after removing water, and H 2 sO 4 solution measurable inductively coupled plasma mass spectrometer (ICP-MS), it may be quantitatively analyzed using ICP-MS equipped with example-collision cell.

22水とH2SO4との混酸の代わりに用いるHClとH2SO4との混酸は、HClの濃度1〜30%(より好ましくは5〜20%)、H2SO4の濃度0.001〜1%(より好ましくは0.01〜0.1%)に調製する。
又、HNO3とH2SO4との混酸は、HNO3の濃度1〜70%(より好ましくは10〜35%)、 H2SO4の濃度0.001〜1%(より好ましくは0.01〜0.1%)に調製する。
更に、HNO3とH2SO4の混酸とH2SO4との混酸は、HClの濃度1〜30%(より好ましくは5〜20%)、HNO3の濃度1〜70%(より好ましくは10〜35%)、H2SO4の濃度0.001〜1%(より好ましくは0.01〜0.1%)に調製する。
一方、HCl若しくはHNO3 又はそれらの混酸とH2SO4との混酸へのシリコンウェーハの浸漬時間は、ウェーハ表面が短時間で酸化されるため、H22水とH2SO4の混酸の場合と同様に、10秒〜1分で十分である。
The mixed acid of HCl and H 2 SO 4 used in place of the mixed acid of H 2 O 2 water and H 2 SO 4 has an HCl concentration of 1 to 30% (more preferably 5 to 20%), H 2 SO 4 The concentration is adjusted to 0.001 to 1% (more preferably 0.01 to 0.1%).
The mixed acid of HNO 3 and H 2 SO 4 has a concentration of HNO 3 of 1 to 70% (more preferably 10 to 35%) and a concentration of H 2 SO 4 of 0.001 to 1% (more preferably, 0.1%). 01-0.1%).
Further, the mixed acid of HNO 3 and H 2 SO 4 and H 2 SO 4 has an HCl concentration of 1 to 30% (more preferably 5 to 20%) and an HNO 3 concentration of 1 to 70% (more preferably). 10% to 35%), 0.001 to 1% concentration of H 2 SO 4 (more preferably adjusted to 0.01% to 0.1%).
On the other hand, the silicon wafer is immersed in HCl or HNO3 or a mixed acid thereof and H 2 SO 4 in a short time because the surface of the wafer is oxidized in a short time, so that the mixed acid of H 2 O 2 water and H 2 SO 4 is mixed. As in the case, 10 seconds to 1 minute is sufficient.

シリコンウェーハ中の不純物を分析するため、先ず、直径150mm、厚さ620μmの1枚のシリコンウェーハWをポリテトラフルオロエチレン(PTFE)等のフッ素樹脂からなるキャリア(図示せず)に入れ、濃H22水の濃度3%、H2SO4の濃度0.01%に調製したH22水とH2SO4との混酸に30秒間浸漬した後、シリコンウェーハWを混酸から取り出し、直ちに、図1に示すように、分解液収容容器1に納置されたウェーハ載置容器2にセットした。
分解液収容容器1は、HFとHNO3 との混酸からなるシリコン分解液Lを収容するフッ素樹脂製の円形のもので、内径220mm、深さ120mmの容器本体1aと、その上部の開口部を閉鎖する内径230mm、深さ40mmの蓋体1bとからなる。
又、ウェーハ載置容器2は、1枚のシリコンウェーハWをシリコン分解液Lと接触しないように水平に載置するフッ素樹脂製のもので、分解液収容容器1の容器本体1aの底部に立設される直径50mm、高さ70mmの脚部2aと、その上端に連設した内径154mm、深さ5mmの皿状のウェーハ載置部2bとからなる。
In order to analyze impurities in the silicon wafer, first, a silicon wafer W having a diameter of 150 mm and a thickness of 620 μm is placed in a carrier (not shown) made of a fluororesin such as polytetrafluoroethylene (PTFE), and concentrated H 2 O 2 concentration of 3% of water, was mixed acid immersion for 30 seconds with H 2 H 2 was prepared in a concentration of 0.01% of the SO 4 O 2 water and H 2 SO 4, removed the silicon wafers W from the mixed acid, Immediately, as shown in FIG. 1, the wafer was placed in the wafer placement container 2 placed in the decomposition solution storage container 1.
The decomposition liquid storage container 1 is a circular fluororesin container that stores a silicon decomposition liquid L made of a mixed acid of HF and HNO3, and closes the container main body 1a having an inner diameter of 220 mm and a depth of 120 mm and the upper opening thereof. The lid body 1b has an inner diameter of 230 mm and a depth of 40 mm.
The wafer mounting container 2 is made of a fluororesin that horizontally mounts a single silicon wafer W so as not to come into contact with the silicon decomposition liquid L, and stands on the bottom of the container body 1a of the decomposition liquid storage container 1. A leg portion 2a having a diameter of 50 mm and a height of 70 mm is provided, and a dish-shaped wafer mounting portion 2b having an inner diameter of 154 mm and a depth of 5 mm connected to the upper end thereof.

次に、分解液収容容器1の容器本体1aに、濃度50%のHF500mlと濃度70%のHNO3500mlとの混酸からなるシリコン分解液Lを収容し、蓋体1bにより容器本体1aを閉蓋した後、分解液収容容器1をホットプレート(図示せず)により150℃の温度で48時間加熱し、この加熱によって発生する蒸気により1枚のシリコンウェーハW全部を溶解した。 Next, silicon decomposition liquid L made of a mixed acid of 500 ml of HF having a concentration of 50% and 500 ml of HNO 3 having a concentration of 70% is stored in the container main body 1a of the decomposition liquid storage container 1, and the container main body 1a is closed by the lid 1b. After that, the decomposition solution storage container 1 was heated by a hot plate (not shown) at a temperature of 150 ° C. for 48 hours, and the entire silicon wafer W was dissolved by the steam generated by this heating.

次いで、ウェーハ載置容器2を分解液収容容器1から取り出し、ホットプレートにより140℃の温度で3時間加熱して溶液中の水分を除去した。
そして、水分が除去されて不純物を含むH2SO4からなる溶液をシリコン製の容器(図示せず)に入れ、400℃の温度で2時間加熱してH2SO4を蒸発させた後、濃度0.1%のHNO31mlをシリコン製の容器に入れて残滓を溶解させ、この溶液を高周波誘導結合プラズマ質量分析装置(ICP−MS)又は原子吸光分析装置(AAS)を用い定量的に分析し、1枚のシリコンウェーハWの全部に含まれる不純物を分析した。
Subsequently, the wafer mounting container 2 was taken out from the decomposition liquid container 1 and heated for 3 hours at a temperature of 140 ° C. with a hot plate to remove moisture in the solution.
Then, a solution made of H 2 SO 4 containing impurities after removal of moisture is put in a silicon container (not shown) and heated at a temperature of 400 ° C. for 2 hours to evaporate H 2 SO 4 . 1 ml of 0.1% HNO 3 is put into a silicon container to dissolve the residue, and this solution is quantitatively analyzed using a high frequency inductively coupled plasma mass spectrometer (ICP-MS) or an atomic absorption spectrometer (AAS). The impurities contained in the entire silicon wafer W were analyzed.

なお、上述した実施例においては、1枚のシリコンウェーハWの全部を浸漬する混酸としてH22水とH2SO4とからなるものを用いる場合について説明したが、これに限定されるものではなく、1枚のシリコンウェーハWの全部を浸漬する混酸としては、HCl若しくはHNO3又はそれらの混酸とH2SO4からなるものを用いてもよい。
又、H2SO4を蒸発させる工程と、HNO31mlを入れて残滓を溶解させる工程を省き、水分が除去されて不純物を含むH2SO4からなる溶液に純水1mlを加え、H2SO4溶液が測定可能なICP−MS、例えばコリージョンセルを搭載したICP−MSを用いて定量的に分析してもよい。
更に、シリコンウェーハW中の不純物の分析は、1枚全部をそのまま行う場合に限らず、分割した一部分の分析を行ってよいのは勿論である。
In the above-described embodiment, the case where the mixed acid for immersing the entire silicon wafer W is made of H 2 O 2 water and H 2 SO 4 is used. However, the present invention is not limited to this. Instead, as the mixed acid for immersing all of the silicon wafer W, one made of HCl or HNO 3 or a mixed acid thereof and H 2 SO 4 may be used.
Also, the step of evaporating H 2 SO 4 and the step of dissolving 1 ml of HNO 3 to dissolve the residue are omitted, 1 ml of pure water is added to the solution made of H 2 SO 4 containing impurities after removal of water, and H 2 sO 4 solution measurable ICP-MS, may be quantitatively analyzed using ICP-MS equipped with example-collision cell.
Furthermore, the analysis of the impurities in the silicon wafer W is not limited to the case of performing all of the wafers as they are, but it is needless to say that the analysis of the divided part may be performed.

本発明に係るシリコンウェーハの不純物分析方法の実施に際して使用する分解液収容容器の断面図である。It is sectional drawing of the decomposition liquid storage container used when implementing the impurity analysis method of the silicon wafer which concerns on this invention.

符号の説明Explanation of symbols

1 分解液収容容器
1a 容器本体
1b 蓋体
2 ウェーハ載置容器
2a 脚部
2b ウェーハ載置部
W シリコンウェーハ
L シリコン分解液
DESCRIPTION OF SYMBOLS 1 Decomposition liquid container 1a Container main body 1b Cover body 2 Wafer mounting container 2a Leg part 2b Wafer mounting part W Silicon wafer L Silicon decomposition liquid

Claims (2)

1枚のシリコンウェーハの全部又は一部分を、過酸化水素水と硫酸との混酸に浸漬した後、直ちにフッ化水素酸と硝酸との混酸の加熱によって発生する蒸気により溶解し、得られた溶液を加熱濃縮して高周波誘導結合プラズマ質量分析法又は原子吸光分析法により分析することを特徴とするシリコンウェーハの不純物分析方法。   All or part of one silicon wafer is immersed in a mixed acid of hydrogen peroxide and sulfuric acid, and immediately dissolved by steam generated by heating a mixed acid of hydrofluoric acid and nitric acid. A method for analyzing impurities of a silicon wafer, characterized in that the analysis is performed by high-frequency inductively coupled plasma mass spectrometry or atomic absorption spectrometry after heating and concentration. 1枚のシリコンウェーハの全部又は一部分を、塩酸若しくは硝酸又はそれらの混酸と硫酸との混酸に浸漬した後、直ちにフッ化水素酸と硝酸との混酸の加熱によって発生する蒸気により溶解し、得られた溶液を加熱濃縮して高周波誘導結合プラズマ質量分析法又は原子吸光分析法により分析することを特徴とするシリコンウェーハの不純物分析方法。   All or a part of one silicon wafer is immersed in hydrochloric acid or nitric acid or a mixed acid of sulfuric acid and sulfuric acid, and immediately dissolved by steam generated by heating the mixed acid of hydrofluoric acid and nitric acid. An impurity analysis method for a silicon wafer, wherein the solution is concentrated by heating and analyzed by high frequency inductively coupled plasma mass spectrometry or atomic absorption spectrometry.
JP2004346213A 2004-11-30 2004-11-30 Impurity analyzing method for silicon wafer Pending JP2006156766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346213A JP2006156766A (en) 2004-11-30 2004-11-30 Impurity analyzing method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346213A JP2006156766A (en) 2004-11-30 2004-11-30 Impurity analyzing method for silicon wafer

Publications (1)

Publication Number Publication Date
JP2006156766A true JP2006156766A (en) 2006-06-15

Family

ID=36634655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346213A Pending JP2006156766A (en) 2004-11-30 2004-11-30 Impurity analyzing method for silicon wafer

Country Status (1)

Country Link
JP (1) JP2006156766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571502B (en) * 2009-06-15 2012-06-13 重庆大全新能源有限公司 Method for measuring content of boron and content of phosphorus in polysilicon
JP2016125911A (en) * 2015-01-05 2016-07-11 信越化学工業株式会社 Element analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571502B (en) * 2009-06-15 2012-06-13 重庆大全新能源有限公司 Method for measuring content of boron and content of phosphorus in polysilicon
JP2016125911A (en) * 2015-01-05 2016-07-11 信越化学工業株式会社 Element analysis method

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
JP5720297B2 (en) Method for analyzing metal contamination of silicon wafers
JP6108367B1 (en) Silicon substrate analyzer
JP3832204B2 (en) Method for analyzing trace impurities in silicon substrates
JP3487334B2 (en) Method for analyzing impurities in silicon substrate
JP4857973B2 (en) Method for analyzing polishing slurry of silicon wafer
JP3755586B2 (en) Silicon desorption method and silicon wafer impurity analysis method
JP2005265718A (en) Analytical method for impurity
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
JP2006156766A (en) Impurity analyzing method for silicon wafer
JP5131245B2 (en) Method for analyzing metal impurities in silicon powder
JP2010008048A (en) Method of etching silicon wafer surface oxide film, metal contamination analysis method of silicon wafer with oxide film, and method of manufacturing silicon wafer with oxide film
JP3753805B2 (en) Semiconductor sample decomposition apparatus and sample decomposition method
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
KR100772280B1 (en) Method for measuring elements in a substrate for optics, electronics or optoelectronics
JP3532786B2 (en) Method for preparing sample for analysis of metal impurities contained in synthetic resin and method for measuring metal impurities using the same
KR101064657B1 (en) Apparatus and method for processing poly silicon
JP5407609B2 (en) Silicon wafer evaluation method
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
JPH06213805A (en) Etching method in ultramicroanalysis of metal on surface of silicon wafer
JP2005326219A (en) Analysis sample preparing apparatus, analysis sample preparing method and semiconductor sample analysis method
JPH1137992A (en) Method for analyzing surface layer of silicon wafer
JPH11183342A (en) Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711