JPH11135111A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH11135111A
JPH11135111A JP9295760A JP29576097A JPH11135111A JP H11135111 A JPH11135111 A JP H11135111A JP 9295760 A JP9295760 A JP 9295760A JP 29576097 A JP29576097 A JP 29576097A JP H11135111 A JPH11135111 A JP H11135111A
Authority
JP
Japan
Prior art keywords
lead
particle size
powder
positive electrode
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9295760A
Other languages
Japanese (ja)
Inventor
Toshio Shibahara
敏夫 柴原
Ichiro Mukoya
一郎 向谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9295760A priority Critical patent/JPH11135111A/en
Publication of JPH11135111A publication Critical patent/JPH11135111A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To increase the formation charge efficiency of a positive electrode plate and prolong service life performance at low cost by providing a raw material of a positive electrode active substance with an average particle size of powder, consisting essentially of a monoxide salt and an average particle size of trilead tetraoxide (red lead) powder being a specific range. SOLUTION: Powder of monoxide salt of 1 to 10 microns in means particle size obtained by classification and powder of trilead tetraoxide of 4 microns or more in the mean particle size are employed, and these are mixed with diluted sulfuric acid to make a paste-shaped active substance. By defining an mean particle size within this range, bonding force between active substance particles can be reinforced. The mean particle size is 50% particle size in particle volume reference. This paste shaped active substance is charged in a lead alloy based lattice body, and a positive electrode is obtained. By adding trilead tetraoxide powder, formation charge efficiency can be improved, and formation can be made with less power consumption and in short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池に関し、詳
細には正極用活物質に関するものであり、電池を長寿命
化することを目的としている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead storage battery, and more particularly to a positive electrode active material, which aims to extend the life of the battery.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池は安価で信頼性が高いと
いう特徴を有するため、無停電電源装置用の電源として
広く使用されている。そして、これらの装置に用いられ
る鉛蓄電池は低コスト化が強く要求されており、製造方
法の簡素化によるコスト低減が進められている。製造方
法を簡素化する一つの手段として、一般には電槽化成と
呼ばれている方式、すなわち電池を組み立てた後に充電
して化成を行う方式がある。なお、電槽化成方式では化
成時に使用する電解液が完成した電池の電解液となるた
め、従来のタンク槽を用いた化成方式に比べて高い濃度
の硫酸を用いる必要がある。
2. Description of the Related Art A sealed lead-acid battery is widely used as a power source for an uninterruptible power supply because of its features of low cost and high reliability. The lead storage batteries used in these devices are strongly required to be reduced in cost, and cost reduction is being promoted by simplifying the manufacturing method. As one means for simplifying the manufacturing method, there is a method generally called battery case formation, that is, a method in which a battery is assembled and then charged to perform formation. In addition, in the case formation method, since the electrolyte used during formation becomes the electrolyte of the completed battery, it is necessary to use sulfuric acid having a higher concentration than the formation method using a conventional tank tank.

【0003】しかしながら、高い濃度の電解液を用いる
と正極板の化成充電効率が低くなるという問題点があ
る。そこで、化成充電効率を高くする手段として、正極
活物質の原材料に四三酸化鉛(Pb34)を添加する手
法が特開昭62−93857号公報や、特開昭64−8
9263号公報において開示されている。しかしなが
ら、市販されている四三酸化鉛を一酸化鉛に添加する方
法を用いた場合には、粒子間の結合が弱いため活物質の
脱落が起こりやすく、その結果、電池の寿命が短くなる
という問題点がある。
However, there is a problem that the use of a high-concentration electrolytic solution lowers the formation charge efficiency of the positive electrode plate. Therefore, as a means for increasing the formation charge efficiency, a method of adding lead tetroxide (Pb 3 O 4 ) to the raw material of the positive electrode active material is disclosed in JP-A-62-93857 and JP-A-64-8938.
No. 9263 discloses this. However, when a commercially available method of adding lead trioxide to lead monoxide is used, the bonding between particles is weak, so that the active material is likely to fall off, and as a result, the life of the battery is shortened. There is a problem.

【0004】正極活物質に四三酸化鉛を添加し、かつ電
池を長寿命化する手段として、同一粒子中に四三酸化鉛
と一酸化鉛とを共存させる試みが特開平06−7682
2号公報おいて開示されている。しかしながら、この方
法では各粒子の四三酸化鉛率(鉛丹化率)を制御するこ
とが難しいため、それを用いた電池の性能にバラツキが
生じやすいことや、製造コストが高くなるという問題点
がある。
As a means for adding lead trioxide to the positive electrode active material and prolonging the life of the battery, an attempt to coexist lead trioxide and lead monoxide in the same particle has been made in Japanese Patent Application Laid-Open No. 06-7682.
No. 2 discloses this. However, in this method, it is difficult to control the lead tetroxide ratio (lead tandem ratio) of each particle, so that the performance of a battery using the lead tends to vary and the production cost increases. There is.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであって、正極板の化成充電効率
を高くするとともに、低コストで寿命性能の優れた鉛蓄
電池を製造することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is intended to manufacture a lead-acid battery having a high positive electrode plate formation charge efficiency, low cost, and excellent life performance. That is.

【0006】[0006]

【課題を解決するための手段】四三酸化鉛を一酸化鉛に
添加すると、ペーストの熟成・乾燥時に形成される粒子
間の結合力が弱くなるという問題点がある。本発明者ら
は活物質粒子間の結合力は、一酸化鉛と四三酸化鉛の平
均粒子径に強く依存することを見いだした。本発明は、
平均粒子径が、1〜10μmの一酸化鉛を主成分とする
粉末と、平均粒子径が4μm以上の四三酸化鉛を主成分
とする粉末の混合物を、正極活物質の原材料として用い
ることを特徴とするものである。
When lead trioxide is added to lead monoxide, there is a problem that the bonding force between particles formed when the paste is aged and dried is weakened. The present inventors have found that the bonding force between active material particles strongly depends on the average particle diameter of lead monoxide and lead tetroxide. The present invention
A mixture of a powder mainly composed of lead monoxide having an average particle diameter of 1 to 10 μm and a powder mainly composed of lead tetroxide having an average particle diameter of 4 μm or more is used as a raw material of a positive electrode active material. It is a feature.

【0007】[0007]

【発明の実施の形態】本発明では、分級によって得られ
た所定の平均粒子径の一酸化鉛の粉末と四三酸化鉛の粉
末を用い、これらを希硫酸で混練してペースト状活物質
を作製した。このペースト状活物質を鉛合金製の格子体
に充填して正極とした。四三酸化鉛粉末の添加は、後述
するように化成充電効率を高くするため必要である。分
級した一酸化鉛の粉末及び四三酸化鉛の粉末の平均粒子
径は、HORIBA製のLA−500型、レーザー回折式粒度
分布測定装置を用いて測定した。本発明では、粒子体積
基準で50%粒子径を平均粒子径と規定している。な
お、負極は後述するように、従来の原材料を用い従来の
方法で作製した。本発明の一実施例を以下に示す。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a powder of lead monoxide and powder of lead tetroxide, each having a predetermined average particle size obtained by classification, are kneaded with dilute sulfuric acid to obtain a paste-like active material. Produced. This paste-like active material was filled in a lead alloy lattice to form a positive electrode. The addition of the lead tetroxide powder is necessary to increase the formation charge efficiency as described later. The average particle size of the classified lead monoxide powder and lead tetroxide powder was measured using a LA-500 type laser diffraction particle size distribution analyzer manufactured by HORIBA. In the present invention, a 50% particle diameter based on the particle volume is defined as an average particle diameter. In addition, the negative electrode was produced by a conventional method using a conventional raw material, as described later. One embodiment of the present invention will be described below.

【0008】[0008]

【実施例】【Example】

(実施例1〜5)一酸化鉛を70〜80wt.%含む鉛
粉を分級することによって、平均粒子径が0.5、1、
5、10、15μmの5種類の粉末を得た。一方、9
9.9%の四三酸化鉛率の酸化度の粉末を分級すること
によって、平均粒子径が5、10、15μmの3種類の
粉末を得た。これらの粉末は表1、2に示される組合せ
で以下の実験をした。一酸化鉛を70〜80wt.%含
む鉛粉100重量部、四三酸化鉛30重量部、濃度35
wt.%の硫酸20重量部を混練し、正極用のペースト
状活物質を作製した。
(Examples 1 to 5) 70 to 80 wt. %, The average particle diameter is 0.5, 1,
Five kinds of powders of 5, 10, and 15 μm were obtained. On the other hand, 9
By classifying the powder having an oxidation degree of 9.9% lead trioxide, three kinds of powders having average particle diameters of 5, 10 and 15 μm were obtained. These powders were subjected to the following experiments in combinations shown in Tables 1 and 2. 70 to 80 wt. % Lead powder containing 100% by weight, lead tetroxide 30 parts by weight, concentration 35
wt. % Of sulfuric acid was kneaded to prepare a paste-like active material for a positive electrode.

【0009】一方、負極用に使用した一酸化鉛は分級を
していない通常品を用い従来の方法で作製した。すなわ
ち一酸化鉛を70〜80wt.%含む鉛粉100重量
部、リグニン0.2重量部、硫酸バリウム1重量部と、
濃度35wt.%の硫酸10重量部を混練して負極用の
ペースト状活物質を作製した。
On the other hand, the lead monoxide used for the negative electrode was produced by a conventional method using an unclassified ordinary product. That is, 70 to 80 wt. % Lead powder containing 100 parts by weight, lignin 0.2 parts by weight, barium sulfate 1 part by weight,
35 wt. % Of sulfuric acid was kneaded to prepare a paste-like active material for a negative electrode.

【0010】作製したこれらのペースト約35gをw 4
0mm × l 70mm × t 3mmの鉛合金製の格子
体に充填し、窒素雰囲気のもとで、80℃、24時間放
置して未化成の極板を作製した。この正極板2枚と負極
板3枚とをガラス繊維セパレータを介して組み合わせて
ABS製電槽に組み込んだ後、濃度30wt.%の希硫
酸電解液を注入した。その後、正極活物質の理論容量の
2.5倍の電気量で充電して電槽化成し、公称容量7A
h(ただし20時間率容量)の密閉型鉛蓄電池を作製し
た。なお、電槽化成時における充電時間は40時間であ
る。化成充電効率は正極活物質中のPbO2量を測定す
ることで算出した。
Approximately 35 g of these prepared pastes are w4
A grid of 0 mm x l 70 mm x t 3 mm made of a lead alloy was filled and left at 80 ° C for 24 hours under a nitrogen atmosphere to produce an unformed electrode plate. The two positive plates and the three negative plates were combined via a glass fiber separator and assembled into an ABS battery case. % Dilute sulfuric acid electrolyte was injected. Thereafter, the battery is charged with an amount of electricity 2.5 times the theoretical capacity of the positive electrode active material to form a battery case, and has a nominal capacity of 7A.
h (however, a capacity of 20 hours) was prepared. In addition, the charging time at the time of battery case formation is 40 hours. The formation charge efficiency was calculated by measuring the amount of PbO 2 in the positive electrode active material.

【0011】作製した電池は、JIS C 8702に
準拠する以下の条件で寿命試験をした。すなわち、周囲
温度として25±2℃、2.275V/セルで充電し、
2ヶ月毎に0.25CAの電流で終止電圧1.7V/セ
ルまで放電して容量を確認する。そして、前記した0.
25CA放電容量が初期容量の50%以下までに低下し
た時を電池の寿命とした。なお、寿命に達していない電
池は前記した条件で試験を続けた。
The manufactured battery was subjected to a life test under the following conditions in accordance with JIS C8702. That is, charging at 25 ± 2 ° C. and 2.275 V / cell as the ambient temperature,
Discharge to a final voltage of 1.7 V / cell at a current of 0.25 CA every two months to confirm the capacity. Then, the above-mentioned 0.
The time when the 25 CA discharge capacity was reduced to 50% or less of the initial capacity was defined as the life of the battery. In addition, the battery which did not reach the end of the life was continuously tested under the conditions described above.

【0012】(比較例1)比較例として四三酸化鉛を使
用しない正極を用いた電池を作製した。すなわち、一酸
化鉛を70〜80wt.%含む鉛粉100重量部(平均
粒子径5μm)、濃度が35wt.%の硫酸20重量部
とを混練し、正極用のペースト状活物質とした。それ
を、鉛合金製の格子体に充填し、窒素雰囲気のもとで、
80℃、24時間放置して未化成の鉛蓄電池用極板を作
製した。この後、(実施例1〜5)に示した条件で負極
及び電池を作製し試験した。
Comparative Example 1 As a comparative example, a battery using a positive electrode not using lead trioxide was prepared. That is, 70 to 80 wt. % Of lead powder containing 100% by weight (average particle diameter 5 μm), and a concentration of 35 wt. % Sulfuric acid (20 parts by weight) to obtain a paste active material for a positive electrode. Fill it into a grid made of lead alloy, and under a nitrogen atmosphere,
It was left at 80 ° C. for 24 hours to produce an unformed lead storage battery electrode plate. Thereafter, a negative electrode and a battery were prepared and tested under the conditions shown in (Examples 1 to 5).

【0013】(比較例2)比較例として市販されている
三井金属(株)製の平均粒子径が3μmの四三酸化鉛を
用いた。一酸化鉛を70〜80wt.%含む鉛粉100
重量部(平均粒子径5μm)と前記した四三酸化鉛30
重量部、濃度35wt.%の硫酸20重量部とを混練
し、正極用のペースト状活物質を作製した。この後、
(実施例1〜5)に示した条件で負極及び電池を作製し
試験した。
Comparative Example 2 As a comparative example, a commercially available lead tetroxide having an average particle size of 3 μm manufactured by Mitsui Kinzoku Co., Ltd. was used. 70 to 80 wt. Powder containing 100%
Parts by weight (average particle diameter 5 μm) and the above-mentioned lead tetroxide 30
Parts by weight, concentration 35 wt. % Sulfuric acid (20 parts by weight) was kneaded to prepare a paste active material for a positive electrode. After this,
A negative electrode and a battery were prepared and tested under the conditions shown in Examples 1 to 5.

【0014】(比較例3)一酸化鉛を70〜80wt.
%含む鉛粉100重量部(平均粒子径0.5μm)と
(実施例1〜5)で示した平均粒子径5μmの四三酸化
鉛を用いた。そして、一酸化鉛を70〜80wt.%含
む鉛粉100重量部とこの平均粒子径5μmの四三酸化
鉛30重量部、濃度35wt.%の硫酸20重量部とを
混練し、正極用のペースト状活物質を作製した。この
後、(実施例1〜5)に示した条件で負極及び電池を作
製し試験した。
(Comparative Example 3) Lead monoxide was used in an amount of 70 to 80 wt.
% Lead powder containing 100% by weight (average particle diameter 0.5 μm) and lead tetroxide having an average particle diameter of 5 μm shown in Examples 1 to 5 were used. Then, 70 to 80 wt. % Of lead powder containing 30% by weight of lead trioxide having an average particle diameter of 5 μm, and a concentration of 35 wt. % Sulfuric acid (20 parts by weight) was kneaded to prepare a paste active material for a positive electrode. Thereafter, a negative electrode and a battery were prepared and tested under the conditions shown in (Examples 1 to 5).

【0015】(比較例4)一酸化鉛を70〜80wt.
%含む鉛粉100重量部(平均粒子径15μm)と(実
施例1〜5)で示した平均粒子径5μmの四三酸化鉛を
用いた。そして、一酸化鉛を70〜80wt.%含む鉛
粉100重量部とこの平均粒子径5μmの四三酸化鉛3
0重量部、濃度35wt.%の硫酸20重量部とを混練
し、正極用のペースト状活物質を作製した。この後、
(実施例1〜5)に示した条件で負極及び電池を作製し
試験した。
Comparative Example 4 Lead monoxide was used in an amount of 70 to 80 wt.
% Of lead powder (average particle diameter 15 μm) and lead tetroxide having an average particle diameter of 5 μm shown in Examples 1 to 5 were used. Then, 70 to 80 wt. % Lead powder containing 100% by weight of lead trioxide 3 having an average particle size of 5 μm.
0 parts by weight, concentration 35 wt. % Sulfuric acid (20 parts by weight) was kneaded to prepare a paste active material for a positive electrode. After this,
A negative electrode and a battery were prepared and tested under the conditions shown in Examples 1 to 5.

【0016】以上、作製した電池を電槽化成した場合の
化成充電効率を表1に、電池の寿命を測定した結果を表
2に示す。表1より、平均粒子径の大小にかかわらず四
三酸化鉛を正極活物質に添加することによって化成充電
効率が向上しており、少ない電力消費量で短時間に化成
できることがわかる。
Table 1 shows the formation charge efficiency when the battery thus prepared was formed into a battery case, and Table 2 shows the result of measuring the life of the battery. From Table 1, it can be seen that the formation charge efficiency is improved by adding lead trioxide to the positive electrode active material irrespective of the average particle size, and the formation can be performed in a short time with small power consumption.

【0017】 [0017]

【0018】表2より、一酸化鉛を主成分とする粉末の
平均粒子径が1〜10μmの範囲にあり、四三酸化鉛の
粉末の平均粒子径が4μm以上の範囲にある(実施例1
〜5)は電池の寿命期間が長く、四三酸化鉛を添加して
いない比較例1と同等の3年以上の寿命を得ることがで
き効果が認められる。なお、四三酸化鉛の上限値は特に
限定する必要はないが、現在入手可能なものの上限は1
5μm程度である。
From Table 2, it can be seen that the average particle size of the powder containing lead monoxide as a main component is in the range of 1 to 10 μm, and the average particle size of the powder of lead tetroxide is in the range of 4 μm or more (Example 1).
In Nos. To 5), the life of the battery is long, and a life of 3 years or more equivalent to that of Comparative Example 1 to which lead trioxide is not added can be obtained, and the effect is recognized. Note that the upper limit of lead tetroxide is not particularly limited, but the upper limit of currently available ones is one.
It is about 5 μm.

【0019】 [0019]

【0020】[0020]

【発明の効果】上述したように、本発明に係る鉛蓄電池
用原料鉛粉は、平均粒子径が1〜10μmの一酸化鉛
と、平均粒子径が4μm以上の四三酸化鉛を正極活物質
の主成分とする原材料として用いることにより、化成充
電効率を高くできるとともに電池の寿命を長くできる点
で優れている。
As described above, the raw material lead powder for a lead storage battery according to the present invention comprises a lead active material having an average particle diameter of 1 to 10 μm and a lead trioxide having an average particle diameter of 4 μm or more. By using as a raw material which is a main component of the present invention, it is excellent in that the formation charge efficiency can be increased and the life of the battery can be prolonged.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一酸化鉛を主成分とする粉末と四三酸化鉛
(鉛丹)の粉末を正極用活物質の原材料とする鉛蓄電池
において、前記した一酸化鉛を主成分とする粉末の平均
粒子径が1〜10μmの範囲にあり、四三酸化鉛の粉末
の平均粒子径が4μm以上の範囲にあることを特徴とす
る鉛蓄電池。
1. A lead-acid battery comprising a powder mainly composed of lead monoxide and a powder of lead trioxide (lead red) as a raw material of an active material for a positive electrode. A lead-acid battery having an average particle diameter in a range of 1 to 10 μm and an average particle diameter of a lead tetroxide powder in a range of 4 μm or more.
JP9295760A 1997-10-28 1997-10-28 Lead-acid battery Pending JPH11135111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9295760A JPH11135111A (en) 1997-10-28 1997-10-28 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9295760A JPH11135111A (en) 1997-10-28 1997-10-28 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11135111A true JPH11135111A (en) 1999-05-21

Family

ID=17824821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9295760A Pending JPH11135111A (en) 1997-10-28 1997-10-28 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11135111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722245B2 (en) 2005-06-01 2014-05-13 Sony Corporation Anode for secondary battery, secondary battery, and method of manufacturing anode for secondary battery
CN106663792A (en) * 2014-08-08 2017-05-10 日立化成株式会社 Positive electrode plate for lead storage battery, and lead storage battery using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722245B2 (en) 2005-06-01 2014-05-13 Sony Corporation Anode for secondary battery, secondary battery, and method of manufacturing anode for secondary battery
US9203079B2 (en) 2005-06-01 2015-12-01 Sony Corporation Anode for secondary battery, secondary battery, and method of manufacturing anode for secondary battery
CN106663792A (en) * 2014-08-08 2017-05-10 日立化成株式会社 Positive electrode plate for lead storage battery, and lead storage battery using same
EP3188288A4 (en) * 2014-08-08 2018-03-07 Hitachi Chemical Company, Ltd. Positive electrode plate for lead storage battery, and lead storage battery using same

Similar Documents

Publication Publication Date Title
JP2000251896A (en) Lead-acid battery and its manufacture
JPH11135111A (en) Lead-acid battery
JPH11162456A (en) Lead-acid battery
GB2077029A (en) Lead-acid storage batteries and lead oxide compositions for use therein
JP2002100347A (en) Lead-acid battery
JP2000133253A (en) Lead-acid battery and manufacture of same
JP2000048814A (en) Positive electrode plate for lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPH11176438A (en) Lead-acid battery, and manufacture of material lead powder for lead-acid battery
JPH11162455A (en) Lead-acid battery
JP2001185151A (en) Sealed lead acid battery
JPH11135117A (en) Lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JP2007213896A (en) Lead-acid storage battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP2000200598A (en) Sealed lead-acid battery
JPS5916279A (en) Lead storage battery
JPH11185739A (en) Paste type positive electrode plate for lead-acid battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
KR100217786B1 (en) Manufacturing method of lead storage battery
JP2949767B2 (en) Lead battery manufacturing method
JPS60198066A (en) Alkaline storage battery
JP2005322503A (en) Control-valve type lead-acid storage battery and its manufacturing method
JP2003132937A (en) Manufacturing method of lead storage battery