KR100266133B1 - A method for preparing anode plate of lead storage battery using activated material cured at high temperature - Google Patents

A method for preparing anode plate of lead storage battery using activated material cured at high temperature Download PDF

Info

Publication number
KR100266133B1
KR100266133B1 KR1019970060971A KR19970060971A KR100266133B1 KR 100266133 B1 KR100266133 B1 KR 100266133B1 KR 1019970060971 A KR1019970060971 A KR 1019970060971A KR 19970060971 A KR19970060971 A KR 19970060971A KR 100266133 B1 KR100266133 B1 KR 100266133B1
Authority
KR
South Korea
Prior art keywords
lead
minutes
charge
hours
active materials
Prior art date
Application number
KR1019970060971A
Other languages
Korean (ko)
Other versions
KR19990040539A (en
Inventor
임동민
박연수
Original Assignee
조충환
한국타이어주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조충환, 한국타이어주식회사 filed Critical 조충환
Priority to KR1019970060971A priority Critical patent/KR100266133B1/en
Publication of KR19990040539A publication Critical patent/KR19990040539A/en
Application granted granted Critical
Publication of KR100266133B1 publication Critical patent/KR100266133B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: An anode plate of the lead storage battery using active materials is provided to achieve high transformability of active materials in a positive electrode and to improve initial capacity of a cell. CONSTITUTION: The method for manufacturing an anode plate is comprised of the first step for molding the mixture of crushed lead and lead oxide, glass fiber, water and sulfuric acid; the second step for coating an electricity collecting body to make the mixture, maturing, and drying to prepare matured active materials containing quadribasic lead sulfate; the third step for transforming the active materials to lead dioxide by applying electricity to the dried active materials. Also, the transforming step is composed of a low-voltage transformation step that can be performed in a short time and optionally, a lengthy transformation step, and charge-discharge repeating step for discharging within the limit of lead dioxide discharge amount and repeating charging procedure twice for making more than 100% of the discharged amount.

Description

고온숙성 활물질을 이용한 납축전지 양극판의 제조방법Manufacturing method of lead acid battery positive electrode plate using high temperature aging active material

본 발명은 고온숙성 활물질을 이용한 납축전지 양극판의 제조방법에 관한 것이다. 더욱 상세하게는 납축전지 제조시 화성공정 중에 방전법을 도입하여 양극 활물질의 화성률과 전지의 초기용량을 크게 향상시킨 납축전지 양극판의 제조방법에 관한 것이다.The present invention relates to a method for producing a lead acid battery positive electrode plate using a high temperature aging active material. More particularly, the present invention relates to a method of manufacturing a lead acid battery positive electrode plate, which greatly improves the conversion rate of a positive electrode active material and the initial capacity of a battery by introducing a discharge method during a chemical conversion process during lead acid battery manufacturing.

지금까지 가장 널리 이용되고 있는 납축전지용 양극판은 페이스트 형태(paste type) 극판이다. 페이스트 형태 극판은 산화납 (PbO)이 주성분인 연분과 소량의 유리섬유를 혼합한 후 물과 황산을 투입해 반죽하여 연분 페이스트를 만들고, 이를 납합금으로 만든 격자모양의 집전체인 기판(grid)에 도포한 후, 일정 조건에서 숙성(curing) 및 건조해 숙성극판을 만들고, 활물질이 전기화학적 활성을 갖도록 극판을 전해액에 담근 후 전기를 흘려주어 활물질을 이산화납(PbO2)으로 변환시키는 화성공정을 거쳐 제조한다.The most widely used positive electrode plate for lead acid batteries is a paste type electrode plate. Paste-type electrode plates are made of lead oxide (PbO), which is mixed with lead powder and a small amount of glass fiber, and then kneaded by adding water and sulfuric acid to make a paste, and a grid-shaped current collector made of lead alloys. After coating on, curing and drying under certain conditions to make the aged plate, and dipping the electrode plate into the electrolyte solution so that the active material is electrochemically active and flowing electricity to convert the active material into lead dioxide (PbO 2 ) It is prepared through.

페이스트 형태 극판의 제조시 숙성공정을 거치는데 이 공정의 조건에 따라 서로 다른 특성을 갖는 숙성 활물질이 생성된다. 이중 온도 60℃ 이하에서 행하는 저온숙성의 경우는 삼염기황산납(Tribasic lead sulfate; 3BS; 3PbO·PbSO4·H2O)이 형성되고, 80℃ 이상의 온도에서 행하는 고온숙성의 경우는 사염기황산납(tetrabasic lead sulfate; 4BS; 4PbO·PbSO4)이 주로 형성된다.In the preparation of the paste-type electrode plate, a aging process is performed, and a aging active material having different characteristics is produced according to the conditions of the process. Tribasic lead sulfate (3BS; 3PbO · PbSO 4 · H 2 O) is formed in the low temperature aging performed at a temperature below 60 ° C., and in the case of high temperature aging at a temperature of 80 ° C. or higher. Tetrabasic lead sulfate (4BS; 4PbO.PbSO 4 ) is mainly formed.

지금까지 대부분 저온숙성법이 이용되고 있으나, 삼염기황산납의 입자크기가 수 ㎛미만으로 아주 작기 때문에 화성 활물질의 표면적이 넓어 초기용량은 높지만, 입자간 결합력이 약해 수명이 짧다는 문제점이 있다.Until now, most of the low temperature aging method has been used, but since the particle size of lead tribasic sulfate is very small, several micrometers, the surface area of the chemical active material is large and the initial capacity is high, but there is a problem in that the life span is short due to weak bonding strength between particles.

반면, 고온숙성 활물질인 사염기황산납은 입자크기가 40㎛ 이상이므로 활물질간 결합력이 우수해 전지의 수명을 증가시키므로 저온숙성 활물질 사용할 때의 단점을 보완할 수 있다. 그러나, 입자가 큰 만큼 반응면적이 감소하므로 일반적인 화성방법을 적용하면 이산화납 생성률(화성률)이 50% 이하로 매우 낮아서 전지의 초기용량이 작게된다.On the other hand, lead tetrabasic sulfate, a high temperature aging active material, has a particle size of 40 μm or more and thus has excellent binding strength between active materials, thereby increasing the life of a battery, thereby making it possible to compensate for the disadvantages of using a low temperature aging active material. However, the larger the particles, the smaller the reaction area, and according to the general chemical conversion method, the rate of formation of lead dioxide (chemical conversion rate) is very low at 50% or less, resulting in a small initial capacity of the battery.

현재 고온숙성 활물질을 사용할 때 나타나는 이러한 문제점을 해결하기 위한 방법으로는 제작된 전지를 몇 회 충방전한 후 출고하는 방법이 있다. 그러나, 이 경우 초기용량 개선효과는 높지만 부가적인 시간, 장비 및 인력의 투입으로 인해 생산원가가 상승하고 생산성이 저하되는 문제점이 있다.Currently, a method for solving such a problem when using a high temperature aging active material is a method of charging and discharging a manufactured battery several times and then shipping. However, in this case, the initial capacity improvement effect is high, but there is a problem in that the production cost increases and productivity decreases due to additional time, equipment, and manpower input.

따라서, 이러한 부가적인 충방전 과정의 필요성을 제거하기 위해 활물질 혼합시 첨가제를 사용해 숙성후 작은 크기의 사염기황산납 입자가 형성되도록 하여 화성률을 높이고, 초기용량을 향상시키려는 시도가 활발하게 이루어지고 있다. 그러나, 이것 또한 첨가제 자체 및 작은 크기의 사염기황산납으로 인한 수명감소 현상이 나타난다는 한계가 있다.Therefore, in order to eliminate the need for such an additional charging and discharging process, attempts are made to increase lead ratio and improve initial capacity by forming lead tetrachloride sulfate particles having a small size after aging using an additive when mixing the active material. have. However, this also has a limitation in that the lifespan reduction phenomenon due to the additive itself and the small size of the tetrachloride lead sulfate appears.

이러한 한계를 극복하기 위한 방안으로 저전류 장시간 화성법, 중도 휴지 화성법, 및 펄스 전류 화성법 등이 나와 있으나 생산성 저하, 고가장비 추가 구입의 부담이 있을뿐 아니라 현재까지 만족할 만한 성과를 거두지 못하고 있다.In order to overcome these limitations, the low current long-term chemical conversion method, the intermediate idle chemical conversion method, and the pulse current chemical conversion method have been suggested, but there are not only the decrease in productivity, the burden of additional expensive equipment purchase, and no satisfactory performance to date.

이에 따라서, 본 발명자들을 위와 같은 입자 크기가 큰 고온숙성 활물질을 사용할 때의 문제점을 해결하기 위하여 납축전지 제조시 화성공정에 방전법을 도입하는 방법을 밝혀내었다.Accordingly, the inventors have found a method of introducing a discharge method into a chemical conversion process in manufacturing a lead acid battery in order to solve the problem of using a high temperature aging active material having a large particle size as described above.

따라서, 본 발명은 전지의 수명성능 저하 없이 활물질 화성률 향상과 초기용량 증대를 동시에 달성하는 납축전지 양극판의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for producing a lead acid battery positive electrode plate which simultaneously achieves an improvement in the active material chemical conversion rate and an initial capacity increase without a decrease in battery life performance.

본 발명은 납과 산화납의 미세한 분말로 구성된 연분을 유리섬유, 물 및 황산과 함께 혼합 및 반죽하는 단계, 이를 집전체에 도포한 후 일정시간 숙성 및 건조해 사염기황산납이 함유된 숙성 활물질을 만드는 단계, 및 이를 황산 전해액에 담근후 전기를 흘려주어 활물질을 이산화납으로 변화시키는 화성단계로 이루어진 납축전지 양극판의 제조 공정에 있어서, 상기 화성단계는 짧은 시간 동안 행하고 생략도 가능한 저전류 화성단계, 장시간 동안 행하는 본격적인 화성단계 및 장시간 동안 행하는 방충전 반복단계로 이루어지고, 여기서 방충전 반복단계는 전단계에서 생성된 이산화납이 낼 수 있는 방전량 이내로 방전한 후, 방전량의 100% 이상의 충전량이 되도록 충전하는 일련의 과정을 2회 이상 반복하는 것을 특징으로 하는 납축전지 양극판의 제조방법이다.The present invention is a step of mixing and kneading the lead powder composed of fine powder of lead and lead oxide together with glass fiber, water and sulfuric acid, and after applying it to the current collector for a certain period of time for aging and drying to produce a aging active material containing lead tetrabasic sulfate In the manufacturing process of the lead-acid battery positive electrode plate made of a step of making, and immersing it in a sulfuric acid electrolyte and flowing electricity to change the active material to lead dioxide, the step of forming the low-current conversion step can be omitted for a short time, It consists of a full-scale ignition step that is performed for a long time and a repetitive charge-and-discharge step performed for a long time, wherein the repetitive charge-and-charge step is discharged within a discharge amount that the lead dioxide generated in the previous step can produce, so that the charge amount is 100% or more of the discharge amount. The lead-acid battery positive plate of the lead-acid battery, characterized in that to repeat the series of charging two or more times It is a way.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 있어서, 양극판의 제조시 화성단계를 크게 세단계로 나누어 진행한다.In the present invention, the chemical conversion step of manufacturing the positive electrode is divided into three steps.

첫 번째는 짧은 시간 동안 행하고 생략도 가능한 전전류 화성단계, 두 번째는 장시간 동안 행하는 본격적인 화성단계, 세 번째는 장시간 동안 행하는 방충전 반복단계이다.The first is a full current ignition step that can be performed for a short time and can be omitted, the second is a full-scale ignition step for a long time, and the third is a recharging and recharging step for a long time.

상기 첫 번째 및 두 번째 단계는 기존의 극판 화성공정의 일종이고, 세 번째 단계가 본 발명의 특징이 되는 것이다. 즉, 극판 화성시 세 번째 단계인 방충전 반복과정을 도입함으로써 납축전지용 양극 활물질 화성률을 크게 향상시켜 전지의 초기용량 증대를 이룩할 수 있다.The first and second stages are a type of existing plate forming process, and the third stage is a feature of the present invention. That is, by introducing the charge-and-charge repeating process, which is the third step during the formation of the plate, the initial capacity of the battery may be increased by greatly improving the conversion rate of the positive electrode active material for lead acid batteries.

첫 번째 단계인 화성의 초기에는 극판내 전류의 통로가 형성되어 있지 않아 내부저항이 크므로 저전류로 화성한다. 저전류 화성은 몇 단계에 걸쳐 전류를 점진적으로 크게하면서 수행하는데 전류의 크기는 평균 화성전류보다 작으며, 그 시간도 1시간 이하이다. 저전류 화성은 필요에 따라서 생략 가능하다.At the beginning of Mars, the first stage, since there is no path for current in the pole plate, the internal resistance is large. Low current ignition is carried out over several steps, gradually increasing the current, and the magnitude of the current is less than the average ignition current, which is less than 1 hour. Low current ignition can be omitted if necessary.

저전류 화성공정을 거친 후 본격적인 화성공정인 두 번째 단계가 시작한다. 산화납이 주성분인 숙성 활물질을 이산화납으로 변화시키는데 필요한 이론전하량의 80 내지 150% 범위의 전기가 투입되도록 화성시간과 화성전류를 조절해 화성을 한다. 이 과정의 종료시점은 기체발생정도나 화성 전압-전하량 곡선으로 판단한다.After the low current chemical conversion process, the second phase, which is a full-fledged chemical conversion process, begins. The chemical composition is controlled by adjusting the ignition time and the ignition current so that electricity in the range of 80 to 150% of the theoretical charge required to change the aged active material mainly composed of lead oxide into lead dioxide is input. The end point of this process is judged by the degree of gas evolution or the Martian voltage-charge curve.

일반적으로 이론 화성 전하량의 100 내지 150%의 전기가 투입되면 극판에서 기체발생이 심해져 화성 전압-전하량 곡선상에서 전압 증가속도가 둔화되어 거의 플래토우(plateau)에 도달하게 되는데, 이후 투입되는 전기의 대부분이 물분해에 의한 기체발생에 쓰이게 되어 활물질 화성은 미미하게 이루어지므로 이 과정을 종료시키고 다음 세 번째 단계인 방충전 공정을 수행한다.In general, when 100 to 150% of the theoretical amount of electricity is charged, gas is generated at the pole plate, and the voltage increase rate is slowed down on the Martian voltage-charge curve, and almost reaches the plateau. This is used to generate gas by water decomposition, so that the active material is chemically insignificant, the process is terminated, and the next third step, the charging and discharging process is performed.

상기 방충전 공정은 방전 후 충전을 시키는 일련의 과정을 2회 이상으로 한다. 방전을 거치면 앞선 화성과정에서 사염기황산납 입자의 표면으로부터 안쪽으로 생성된 이산화납이 황산납으로 변환된다.The charging and discharging process is a series of processes for charging after discharging two or more times. When discharged, lead dioxide, which is formed inward from the surface of the lead tetrabasic sulfate particles during conversion, is converted into lead sulfate.

방전 후 충전을 시켜주면 황산납이 이산화납으로 변환되는데, 황산납의 몰당 부피가 이산화납의 몰당 부피보다 훨씬 크므로 이 과정에서 사염기황산납 입자의 표면으로부터 균열이 발생하게 된다. 이러한 균열은 반응면적을 높여주므로 화성률을 증가시키고, 이에 따라 전지의 초기용량도 증가된다.When charged after discharge, lead sulfate is converted to lead dioxide, and since the volume per mole of lead sulfate is much larger than the volume per mole of lead dioxide, cracks are generated from the surface of lead tetrachloride sulfate particles during this process. These cracks increase the reaction area and thus increase the chemical conversion rate, thereby increasing the initial capacity of the battery.

이러한 방충전 공정을 되풀이하면 화성률 증가가 더욱 현저해지고, 전지의 초기용량도 크게 증가한다. 방전량은 바로 전단계의 화성공정 또는 충전과정에서 생성된 이산화납이 낼 수 있는 이론 전하량 이하로 제한하며, 충전량은 방전량의 100% 이상이어야 한다.By repeating this charging and discharging process, an increase in the chemical conversion rate becomes more remarkable, and the initial capacity of the battery also increases significantly. The amount of discharge is limited to less than the theoretical amount of charge that can be produced by the lead dioxide produced in the previous step of chemical conversion or charging, and the amount of charge should be at least 100% of the amount of discharge.

이하, 실시예를 들어 본 발명을 설명한다.Hereinafter, an Example is given and this invention is demonstrated.

실시예 1Example 1

일반적인 배합물질로 혼합한 활물질을 기판당 110g씩 도포하고, 90℃에서 3시간 숙성한 후 대기중에서 이틀 이상 건조시켜 극판당 건조 활물질 중량 97g인 고온숙성 극판을 제작하였다. 만든 숙성극판중 하나에서 활물질을 취해 주사전자현미경으로 관찰하고 X-선 회절기를 이용해 상조성을 분석하여 사염기황산납의 생성을 확인하였다.110 g of the active material mixed with a general blending material was applied per substrate, aged at 90 ° C. for 3 hours, and then dried in the air for two days or more to prepare a high temperature matured electrode plate having a dry active material weight of 97 g per pole plate. The active material was taken from one of the aged plates, and observed with a scanning electron microscope, and analyzed for compatibility using an X-ray diffractometer to confirm the production of lead tetrachloride.

남은 숙성극판 5매를 비중 1.060의 황산 전해액에서 화성하였는데, 전해액이 활물질에 충분히 스며들도록 화성전 30분간 휴지를 두었다. 화성은 2.59A로 15분, 6.48A로 15분, 12.95A로 10시간씩 연이어 충전전류를 흘러준 후, 일련의 6.25A로 2시간 30분간 방전한 후 9.38A로 2시간 30분간 충전하는 과정을 2회 반복 수행하여 완료하였고, 이 후 수세 및 건조하였다. 건조된 화성극판중 하나에서 활물질을 취한 후 습식조성분석을 통해 이산화납 함량을 결정하였다. 나머지 화성극판과 다공성 폴리에틸렌 재질의 봉투형태 격리판을 사용해 양극판 2매와 음극판 3매로 이루어진 20Ah-2V의 전지를 조립한 후 5시간 용량을 연속해 3회 측정하였다. 그 결과를 표 1에 나타내었다.The remaining five aged plates were chemically converted into sulfuric acid electrolyte having a specific gravity of 1.060, and left to rest for 30 minutes before chemical conversion to allow the electrolyte to sufficiently penetrate into the active material. Mars is charged with 2.59A for 15 minutes, 6.48A for 15 minutes, and 12.95A for 10 hours in succession, and then discharged with a series of 6.25A for 2 hours and 30 minutes and then charged with 9.38A for 2 hours and 30 minutes Was repeated twice to complete, followed by washing with water and drying. After taking the active material from one of the dried chemical electrode plates, the content of lead dioxide was determined by wet composition analysis. The 20Ah-2V battery consisting of two positive plates and three negative plates was assembled using the remaining chemical electrode plates and envelope-type separators made of porous polyethylene, and the capacity was measured three times in a row for 5 hours. The results are shown in Table 1.

실시예 2Example 2

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 10시간씩 연이어 충전전류를 흘려준 후, 일련의 6.25A로 2시간 30분간 방전한 후 12.5A로 2시간 30분간 충전하는 과정을 2회 반복하여 수행하였고, 기타 사항은 실시예 1과 동일하였다.The process of charging the current for 15 minutes at 2.59A, 15 minutes at 6.48A, 10 hours at 12.95A, and then discharging a series of 6.25A for 2 hours and 30 minutes, and then charging for 2 hours and 30 minutes at 12.5A. Was repeated two times, and other details were the same as in Example 1.

실시예 3Example 3

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 10시간씩 연이어 충전전류를 흘려준 후, 일련의 6.25A로 2시간 30분간 방전한 후 15.63A로 2시간 30분간 충전하는 과정을 2회 반복하여 수행하였고, 기타 사항은 실시예 1과 동일하였다.The process of charging the current for 15 minutes at 2.59A, 15 minutes at 6.48A, and 10 hours at 12.95A for 2 hours and 30 minutes with a series of 6.25A and charging for 2 hours and 30 minutes at 15.63A. Was repeated two times, and other details were the same as in Example 1.

실시예 4Example 4

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 10시간씩 연이어 충전전류를 흘려준 후, 일련의 6.25A로 2시간 30분간 방전한 후 18.75A로 2시간 30분간 충전하는 과정을 2회 반복하여 수행하였고, 기타 사항은 실시예 1과 동일하였다.The process of charging for 2 hours and 30 minutes with a series of 6.25A, and then charging it for 2 hours and 30 minutes at 2.59A for 15 minutes, 6.48A for 15 minutes, and 12.95A for 10 hours. Was repeated two times, and other details were the same as in Example 1.

실시예 5Example 5

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 10시간씩 연이어 충전전류를 흘려준 후, 일련의 9.38A로 2시간 30분간 방전한 후 18.75A로 2시간 30분간 충전하는 과정을 2회 반복하여 수행하였고, 기타 사항은 실시예 1과 동일하였다.After charging 15 minutes at 2.59A, 15 minutes at 6.48A, 10 hours at 12.95A, discharge the battery for 2 hours and 30 minutes with a series of 9.38A, and charging for 2 hours and 30 minutes at 18.75A. Was repeated two times, and other details were the same as in Example 1.

실시예 6Example 6

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 10시간씩 연이어 충전전류를 흘려준 후, 일련의 9.38A로 2시간 30분간 방전한 후 23.44A로 2시간 30분간 충전하는 과정을 2회 반복하여 수행하였고, 기타 사항은 실시예 1과 동일하였다.In the case of Hwaseong Hwaseong, 15 minutes at 2.59A, 15 minutes at 6.48A, and 10 hours at 12.95A, followed by a continuous charging current of 2 hours and 30 minutes at 9.38A, followed by 2 hours and 30 minutes at 23.44A. Was repeated two times, and other details were the same as in Example 1.

비교예 1Comparative Example 1

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 18시간씩 연이어 충전하였고, 기타 사항은 실시예 1과 동일하였다.The electrode plate was continuously charged for 15 minutes at 2.59A, 15 minutes at 6.48A, and 18 hours at 12.95A, and other details were the same as in Example 1.

비교예 2Comparative Example 2

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 15시간씩 연이어 충전전류를 흘러준 후, 6.25A로 2시간 30분간 방전후 9.38A로 2시간 30분간 충전하는 과정을 수행하였고, 기타 사항은 실시예 1과 동일하였다.After charging for 15 minutes at 2.59A, 15 minutes at 6.48A, and 15 hours at 12.95A, the plate was discharged at 2.25A for 2 hours and 30 minutes, and then charged at 9.38A for 2 hours and 30 minutes. And other matters were the same as in Example 1.

비교예 3Comparative Example 3

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 18시간씩 연이어 충전전류를 흘러준 후, 6.25A로 2시간 30분간 방전후 12.5A로 2시간 30분간 충전하는 과정을 수행하였고, 기타 사항은 실시예 1과 동일하였다.After charging for 15 minutes at 2.59A, 15 minutes at 6.48A, and 18 hours at 12.95A, the plate was discharged at 2.25A for 2 hours and 30 minutes, and then charged at 12.5A for 2 hours and 30 minutes. And other matters were the same as in Example 1.

비교예 4Comparative Example 4

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 15시간씩 연이어 충전전류를 흘러준 후, 6.25A로 2시간 30분간 방전후 15.63A로 2시간 30분간 충전하는 과정을 수행하였고, 기타 사항은 실시예 1과 동일하였다.After charging for 15 minutes at 2.59A, 15 minutes at 6.48A, and 15 hours at 12.95A, the plate was discharged at 2.25A for 2 hours and 30 minutes, and then charged at 15.63A for 2 hours and 30 minutes. And other matters were the same as in Example 1.

비교예 5Comparative Example 5

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 18시간씩 연이어 충전전류를 흘러준 후, 6.25A로 2시간 30분간 방전후 12.5A로 2시간 30분간 충전하는 과정을 수행하였고, 기타 사항은 실시예 1과 동일하였다.After charging for 15 minutes at 2.59A, 15 minutes at 6.48A, and 18 hours at 12.95A, the plate was discharged at 2.25A for 2 hours and 30 minutes, and then charged at 12.5A for 2 hours and 30 minutes. And other matters were the same as in Example 1.

비교예 6Comparative Example 6

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 15시간씩 연이어 충전전류를 흘러준 후, 9.38A로 2시간 30분간 방전후 18.75A로 2시간 30분간 충전하는 과정을 수행하였고, 기타 사항은 실시예 1과 동일하였다.After charging for 15 minutes at 2.59A, 15 minutes at 6.48A, and 15 hours at 12.95A, the battery was discharged for 2 hours and 30 minutes at 9.38A, and then charged at 18.75A for 2 hours and 30 minutes. And other matters were the same as in Example 1.

비교예 7Comparative Example 7

극판 화성시 2.59A로 15분, 6.48A로 15분, 12.95A로 18시간씩 연이어 충전전류를 흘러준 후, 9.38A로 2시간 30분간 방전후 23.44A로 2시간 30분간 충전하는 과정을 수행하였고, 기타 사항은 실시예 1과 동일하였다.After charging for 15 minutes at 2.59A, 15 minutes at 6.48A, and 18 hours at 12.95A, the discharge was performed for 2 hours and 30 minutes at 9.38A, and then charged at 23.44A for 2 hours and 30 minutes. And other matters were the same as in Example 1.

PbO2함량(%)PbO 2 content (%) 용량/(Ah)Capacity / (Ah) 실시예 1Example 1 5050 16.816.8 실시예 2Example 2 6868 19.719.7 실시예 3Example 3 8181 22.422.4 실시예 4Example 4 8383 24.424.4 실시예 5Example 5 7575 20.520.5 실시예 6Example 6 8282 21.421.4 비교예 1Comparative Example 1 4040 15.815.8 비교예 2Comparative Example 2 4848 16.216.2 비교예 3Comparative Example 3 5252 17.317.3 비교예 4Comparative Example 4 5555 17.817.8 비교예 5Comparative Example 5 6767 19.019.0 비교예 6Comparative Example 6 6060 18.618.6 비교예 7Comparative Example 7 6464 18.818.8

상기 표 1에 나타난 바와 같이, 비교예 1의 경우는 일반 화성단계만을 수행한 경우로, 화성률이 40%로 매우 낮고, 용량은 15.8Ah로 기준 용량인 20Ah에도 훨씬 못미친다. 그러나, 비교예 2 내지 7과 실시예 1 내지 6과 같이 화성중 방전후 충전하는 과정을 도입하면 화성률이 48 내지 83%로 크게 향상되고, 용량도 16.2 내지 24.4Ah로 크게 증가하였다.As shown in Table 1, in the case of Comparative Example 1 was performed only the general conversion step, the rate of conversion is very low, 40%, the capacity is 15.8Ah, far less than the standard capacity 20Ah. However, the introduction of the charging process after discharging during chemical conversion as in Comparative Examples 2 to 7 and Examples 1 to 6 greatly improved the chemical conversion rate to 48 to 83%, and the capacity was also greatly increased to 16.2 to 24.4 Ah.

화성중 방전후 충전하는 일련의 공정을 2회 반복하는 과정을 거친 경우(실시예 1 내지 6)은 1회 방전후 충전하는 과정을 거친 경우(비교예 2 내지 7)보다 화성률과 용량이 훨씬 컸다. 특히, 화성중 방전후 충전하는 일련의 공정을 2회 반복하는 과정을 거친 실시예 3 내지 6의 경우 활물질 화성률이 70% 이상을 보이고, 저온숙성 활물질과 비슷하거나 더 높은 20Ah 이상의 초기용량을 나타냈다.In the case of repeating a series of processes of charging after discharging during chemical conversion (Examples 1 to 6), the chemical conversion rate and capacity are much higher than that of charging after a single discharge (Comparative Examples 2 to 7). It was great. Particularly, in Examples 3 to 6, which were subjected to a series of two processes of charging after discharging during chemical conversion, the active material formation rate was 70% or more, and the initial capacity of 20Ah or more similar to or higher than that of the low temperature matured active material. .

이와 같은 결과를 통해 알 수 있듯이 본 발명에 따라 제조되는 납축전지 양극판은 화성 후 활물질내 이산화납 함량과 초기용량이 크게 증가함을 할 수 있다.As can be seen from the above results, the lead acid battery positive electrode plate manufactured according to the present invention may significantly increase the lead dioxide content and initial capacity in the active material after chemical conversion.

본 발명에 따라 납축전지 극판 화성시 2회 이상 행하는 방전법으로 도입함으로서 양극 활물질의 화성률과 전지의 초기용량이 크게 향상된다.According to the present invention, the lead-acid battery electrode plate is introduced by a discharge method performed two or more times, thereby greatly improving the conversion rate of the positive electrode active material and the initial capacity of the battery.

Claims (1)

납과 산화납의 미세한 분말로 구성된 연분을 유리섬유, 물 및 황산과 함께 혼합 및 반죽하는 단계, 이를 집전체에 도포한 후 일정시간 숙성 및 건조해 사염기황산납이 함유된 숙성 활물질을 만드는 단계, 및 이를 황산 전해액에 담근후 전기를 흘려주어 활물질을 이산화납으로 변화시키는 화성단계로 이루어진 납축전지 양극판의 제조공정에 있어서, 상기 화성단계는 짧은 시간 동안 행하고 생략도 가능한 저전류 화성단계, 장시간 동안 행하는 본격적인 화성단계 및 장시간 동안 행하는 방충전 반복단계로 이루어지고, 여기서 방충전 반복단계는 전단계에서 생성된 이산화납이 낼 수 있는 방전량 이내로 방전한 후, 방전량의 100% 이상의 충전량이 되도록 충전하는 일련의 과정을 2회 반복하는 것을 특징으로 하는 납축전지 양극판의 제조방법.Mixing and kneading lead powder composed of fine powder of lead and lead oxide together with glass fiber, water and sulfuric acid, applying it to a current collector, and then aging and drying for a certain period of time to make a aging active material containing lead tetrachloride; And in the manufacturing process of the lead acid battery positive electrode plate consisting of a chemical conversion step of changing the active material to lead dioxide by immersing it in a sulfuric acid electrolyte, the chemical conversion step is performed for a short time, low current chemical conversion step, which can be omitted for a long time It consists of a full-scale ignition phase and a repeating charge-and-charge repeating step for a long time, wherein the repeating charge-and-charge repeating step discharges within the discharge amount that lead dioxide generated in the previous step can produce, and then charges the battery so that the amount of charge is 100% or more Method of manufacturing a lead acid battery positive electrode plate, characterized in that to repeat the process twice.
KR1019970060971A 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery using activated material cured at high temperature KR100266133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970060971A KR100266133B1 (en) 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery using activated material cured at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970060971A KR100266133B1 (en) 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery using activated material cured at high temperature

Publications (2)

Publication Number Publication Date
KR19990040539A KR19990040539A (en) 1999-06-05
KR100266133B1 true KR100266133B1 (en) 2000-09-15

Family

ID=19525024

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970060971A KR100266133B1 (en) 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery using activated material cured at high temperature

Country Status (1)

Country Link
KR (1) KR100266133B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756274B1 (en) 2006-11-14 2007-09-07 한국타이어 주식회사 Method for preparing cathode pole plate of lead storage battery
KR20200040961A (en) 2018-10-10 2020-04-21 주식회사 한국아트라스비엑스 Manufacturing method of ceramic coated separator using spin coating

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468957B1 (en) * 2000-11-17 2005-01-29 한국타이어 주식회사 Method for the formation of positive plate of a lead storage battery
KR100782986B1 (en) * 2006-12-19 2007-12-07 한국타이어 주식회사 Pulse formation of a cell
KR102175684B1 (en) * 2018-08-03 2020-11-06 세방전지(주) Electrode plate manufacturing method for battery capable of improving dynamic charge acceptance
KR102106550B1 (en) * 2018-09-18 2020-05-04 세방전지(주) Carbon coating method for negative plate using the carbon paper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475990A (en) * 1982-04-06 1984-10-09 Matsushita Electrical Industrial Co., Ltd. Method of forming lead storage batteries
US5328586A (en) * 1991-10-22 1994-07-12 Gorodskoi Studenchesko-Molodezhny Tsentr "Praktika" Process for the manufacture of lead-acid battery electrode and lead-acid storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475990A (en) * 1982-04-06 1984-10-09 Matsushita Electrical Industrial Co., Ltd. Method of forming lead storage batteries
US5328586A (en) * 1991-10-22 1994-07-12 Gorodskoi Studenchesko-Molodezhny Tsentr "Praktika" Process for the manufacture of lead-acid battery electrode and lead-acid storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756274B1 (en) 2006-11-14 2007-09-07 한국타이어 주식회사 Method for preparing cathode pole plate of lead storage battery
KR20200040961A (en) 2018-10-10 2020-04-21 주식회사 한국아트라스비엑스 Manufacturing method of ceramic coated separator using spin coating

Also Published As

Publication number Publication date
KR19990040539A (en) 1999-06-05

Similar Documents

Publication Publication Date Title
US5302476A (en) High performance positive electrode for a lead-acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
KR100266133B1 (en) A method for preparing anode plate of lead storage battery using activated material cured at high temperature
KR102196991B1 (en) Method for manufacturing anode active material for lead-acid battery employing high conductivity black phosphorus
KR100468957B1 (en) Method for the formation of positive plate of a lead storage battery
JPH10270028A (en) Positive electrode plate for lead-acid battery
JPH11162456A (en) Lead-acid battery
JPH11329420A (en) Manufacture of lead-acid battery
KR100250866B1 (en) A method for preparing anode plate of lead storage battery
CN1404171A (en) Production process of lead-acid battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
CN116114084A (en) Method of manufacturing lead acid battery assembly
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JPS6030054A (en) Manufacture of plate for paste type lead-acid battery
JP3040718B2 (en) Lead storage battery
JPS59173956A (en) Manufacture of pasted lead plate
JP2000036305A (en) Plate for lead-acid battery
JP2548227B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP2000182615A (en) Lead-acid battery
WO2021055974A1 (en) Naples and pb-sb-sn yellows - composition and methods of use
JPH01176661A (en) Lead-acid battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060612

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee