JPH11144711A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH11144711A
JPH11144711A JP9302793A JP30279397A JPH11144711A JP H11144711 A JPH11144711 A JP H11144711A JP 9302793 A JP9302793 A JP 9302793A JP 30279397 A JP30279397 A JP 30279397A JP H11144711 A JPH11144711 A JP H11144711A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
negative electrode
electrolyte secondary
ethylene carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9302793A
Other languages
Japanese (ja)
Other versions
JP3937256B2 (en
Inventor
Miho Ito
みほ 伊藤
Kyohei Usami
恭平 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP30279397A priority Critical patent/JP3937256B2/en
Publication of JPH11144711A publication Critical patent/JPH11144711A/en
Application granted granted Critical
Publication of JP3937256B2 publication Critical patent/JP3937256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having a high battery capacity and excellent charging and discharging cycle characteristics. SOLUTION: A nonaqueous secondary battery is provided with a positive electrode that can emit lithium ions, a negative electrode made of a carbon material that can store and emit the lithium ions emitted from the positive electrode, and a non aqueous electrolyte, including a carbonate as a solvent. The negative electrode has a stable coating film on its surface that is formed by having it contacted previously with an ethylenecarbonate prior to contacting the non aqueous electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムを吸蔵及
び放出できる正極及び負極、並びに非水電解液を備える
非水電解液二次電池に関し、携帯用電子機器や電気自動
車などのバッテリーとして利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte, and is used as a battery for portable electronic devices and electric vehicles. be able to.

【0002】[0002]

【従来の技術】エネルギー問題及び環境問題を背景に、
電力をより有効に活用する技術が求められている。その
ためには優れた電気の貯蔵手段が必要である。こうした
電気の貯蔵手段としては、大きな放電容量をもち、かつ
繰り返し充放電を行うことのできる高性能な二次電池を
用いることが最適である。特に、携帯用電子機器や電気
自動車などのバッテリーなどに利用するためには小型で
あることも必要となってくる。
2. Description of the Related Art In the background of energy problems and environmental problems,
There is a need for technology that makes more efficient use of electric power. This requires good means of storing electricity. As such a means for storing electricity, it is optimal to use a high-performance secondary battery having a large discharge capacity and capable of repeatedly performing charging and discharging. In particular, in order to be used for a battery of a portable electronic device, an electric vehicle, or the like, it is necessary to have a small size.

【0003】従来より各種の二次電池が提案されている
が、とりわけ、リチウムイオンを放出できる正極、この
正極から放出されたリチウムイオンを吸蔵及び放出でき
る炭素材料よりなる負極、及び非水電解液を備える非水
電解液二次電池は、小型であっても高容量及び高電圧を
もつため、二次電池の中で最も有望視されており、特に
携帯用電子機器や電気自動車などのバッテリーなどへの
利用が期待されている。
Conventionally, various secondary batteries have been proposed. Among them, a positive electrode capable of releasing lithium ions, a negative electrode made of a carbon material capable of occluding and releasing lithium ions released from the positive electrode, and a non-aqueous electrolyte Non-aqueous electrolyte secondary batteries with high capacity and high voltage, even though they are small, are the most promising secondary batteries, especially batteries for portable electronic devices and electric vehicles. The use for is expected.

【0004】この非水電解液二次電池において、非水電
解液に用いる有機溶媒としてエーテル系やリン酸エステ
ル系の有機溶媒が知られているが、これらの有機溶媒を
用いた電池では、電池容量の不可逆容量(リテンション
容量)が大きいため、高い電池容量を得ることが難しい
ことがわかってきた。一方、エチレンカーボネートなど
カーボネート系の有機溶媒を用いると、エーテル系やリ
ン酸エステル系の有機溶媒に比べてリテンション容量が
小さくなり、その結果、電池容量を大きくできることが
知られるようになった。こうして現在では、カーボネー
トを溶媒として含む非水電解液を備える非水電解液二次
電池が、携帯用電子機器などのバッテリーに広く用いら
れるようになった。
In such non-aqueous electrolyte secondary batteries, ether-based or phosphate-based organic solvents are known as organic solvents used in the non-aqueous electrolyte. It has been found that it is difficult to obtain a high battery capacity due to a large irreversible capacity (retention capacity) of the capacity. On the other hand, it has been known that when a carbonate-based organic solvent such as ethylene carbonate is used, the retention capacity becomes smaller than that of an ether-based or phosphate-based organic solvent, and as a result, the battery capacity can be increased. Thus, at present, a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte containing carbonate as a solvent has been widely used for batteries of portable electronic devices and the like.

【0005】しかしながら、携帯用電子機器の高機能化
に伴い、また電気自動車の実用化に向け、さらに高い電
池容量をもち、かつ充放電サイクル特性に優れる非水電
解液二次電池が求められている。
However, with the advancement of functions of portable electronic devices and the practical use of electric vehicles, non-aqueous electrolyte secondary batteries having higher battery capacity and excellent charge / discharge cycle characteristics have been demanded. I have.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたものであり、従来の非水電解液二次電池に
比べ、さらに高い電池容量をもち、かつ充放電サイクル
特性に優れる非水電解液二次電池を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a higher battery capacity than conventional non-aqueous electrolyte secondary batteries and has excellent charge / discharge cycle characteristics. An object of the present invention is to provide a water electrolyte secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者らは、リチウム
イオンを放出できる正極と、該正極から放出されたリチ
ウムイオンを吸蔵及び放出できる炭素材料よりなる負極
と、カーボネートを溶媒として含む非水電解液と、を備
える非水電解液二次電池において、その製造工程で負極
を組み付けて非水電解液に接触させる前に、負極をあら
かじめエチレンカーボネートと接触させて負極表面に安
定被膜を形成したところ、電池のリテンション容量が小
さくなることを見いだし、本発明に至ったものである。
Means for Solving the Problems The present inventors have developed a positive electrode capable of releasing lithium ions, a negative electrode made of a carbon material capable of occluding and releasing lithium ions released from the positive electrode, and a non-aqueous solution containing carbonate as a solvent. In a non-aqueous electrolyte secondary battery comprising an electrolytic solution, before assembling the negative electrode in the manufacturing process and contacting the non-aqueous electrolytic solution, the negative electrode was previously contacted with ethylene carbonate to form a stable film on the negative electrode surface However, the inventors have found that the retention capacity of the battery is reduced, and have reached the present invention.

【0008】即ち、本発明の非水電解液二次電池は、リ
チウムイオンを放出できる正極と、該正極から放出され
たリチウムイオンを吸蔵及び放出できる炭素材料よりな
る負極と、カーボネートを溶媒として含む非水電解液
と、を備える非水電解液二次電池において、該負極は、
該非水電解液と接触させる前にあらかじめエチレンカー
ボネートと接触させることで形成された安定被膜を電極
表面にもつ負極であることを特徴とする。
That is, the non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode capable of releasing lithium ions, a negative electrode composed of a carbon material capable of occluding and releasing lithium ions released from the positive electrode, and carbonate as a solvent. A non-aqueous electrolyte, and a non-aqueous electrolyte secondary battery comprising:
The negative electrode has a stable film formed on the electrode surface by being brought into contact with ethylene carbonate before being brought into contact with the nonaqueous electrolyte.

【0009】本発明の非水電解液二次電池では、負極表
面に形成された安定被膜により、リテンション容量が小
さくなる。それゆえ、従来の非水電解液二次電池に比
べ、さらに高い電池容量が得られるとともに、優れた充
放電サイクル特性が得られる。ところで、従来の非水電
解液においても、エチレンカーボネートを含有する非水
電解液に負極が浸されて構成されている電池がある。す
なわち、電池を使用する前に負極をエチレンカーボネー
トに接触させている点では同じである。しかし、この従
来の電池では、負極をエチレンカーボネートを含有する
非水電解液に浸されたときに、安定被膜の形成に伴って
エチレンカーボネートの分解物などが不純物として非水
電解液中に生じる可能性がある。この不純物は電池性能
を低下させる原因となり好ましくない。本発明の非水電
解液では、負極はすでに電極表面に安定被膜をもつた
め、安定被膜の形成に伴って生じる不純物が非水電解液
中に発生することがない。それゆえ、高い電池性能を得
ることができる。
In the non-aqueous electrolyte secondary battery of the present invention, the retention capacity is reduced due to the stable film formed on the negative electrode surface. Therefore, as compared with the conventional non-aqueous electrolyte secondary battery, a higher battery capacity can be obtained and excellent charge / discharge cycle characteristics can be obtained. By the way, among conventional non-aqueous electrolytes, there is a battery in which a negative electrode is immersed in a non-aqueous electrolyte containing ethylene carbonate. That is, it is the same in that the negative electrode is brought into contact with ethylene carbonate before using the battery. However, in this conventional battery, when the negative electrode is immersed in a non-aqueous electrolyte containing ethylene carbonate, decomposition products of ethylene carbonate and the like may be generated as impurities in the non-aqueous electrolyte with the formation of a stable film. There is. These impurities are undesirable because they cause a decrease in battery performance. In the non-aqueous electrolyte of the present invention, since the negative electrode already has a stable film on the electrode surface, impurities generated with the formation of the stable film do not occur in the non-aqueous electrolyte. Therefore, high battery performance can be obtained.

【0010】[0010]

【発明の実施の形態】本発明の非水電解液二次電池は、
リチウムイオンを放出できる正極と、該正極から放出さ
れたリチウムイオンを吸蔵及び放出できる炭素材料より
なる負極と、カーボネートを溶媒として含む非水電解液
と、を備える点では従来の電池と同じであり、電池全体
の構造及び形状については、従来のコイン型電池、ボタ
ン型電池、円筒型電池及び角型電池等の電池と同じにす
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention
It is the same as a conventional battery in that it includes a positive electrode capable of releasing lithium ions, a negative electrode made of a carbon material capable of occluding and releasing lithium ions released from the positive electrode, and a nonaqueous electrolyte containing carbonate as a solvent. The structure and shape of the entire battery can be the same as those of conventional coin-type batteries, button-type batteries, cylindrical batteries, square batteries, and the like.

【0011】従って、正極については、リチウムイオン
を放出できれば特に限定されることがなく、公知の電極
を用いることができる。例えば、LiMn24を正極活
物質として含む電極を用いることができる。また、非水
電解液についても、カーボネートを溶媒として含む他は
特に限定されることがなく、公知の電解液を用いること
ができる。例えば、エチレンカーボネートなどの高誘電
率溶媒とジエチルカーボネートなどの低粘度溶媒を適当
な体積の割合で混合させた混合溶媒に、LiBF4など
のリチウム塩を適量溶解させた電解液を用いることがで
きる。また、カーボネート系の有機溶媒にエーテル系や
リン酸エステル系の有機溶媒を混合した混合溶媒を用い
てもよい。
Therefore, the positive electrode is not particularly limited as long as it can release lithium ions, and a known electrode can be used. For example, an electrode containing LiMn 2 O 4 as a positive electrode active material can be used. Also, the non-aqueous electrolyte is not particularly limited except that carbonate is used as a solvent, and a known electrolyte can be used. For example, an electrolytic solution obtained by dissolving an appropriate amount of a lithium salt such as LiBF 4 in a mixed solvent obtained by mixing a high dielectric constant solvent such as ethylene carbonate and a low viscosity solvent such as diethyl carbonate in an appropriate volume ratio can be used. . Further, a mixed solvent in which an ether-based or phosphate-based organic solvent is mixed with a carbonate-based organic solvent may be used.

【0012】負極は、正極から放出されたリチウムイオ
ンを吸蔵及び放出できる炭素材料よりなり、非水電解液
と接触させる前にあらかじめエチレンカーボネートと接
触させることで形成された安定被膜を電極表面にもつも
のである。この安定被膜は、負極表面に接触させたエチ
レンカーボネートが分解することにより形成されると考
えられる。
The negative electrode is made of a carbon material capable of occluding and releasing lithium ions released from the positive electrode, and has a stable film formed on the electrode surface by previously contacting with ethylene carbonate before contacting with the nonaqueous electrolyte. Things. It is considered that this stable film is formed by the decomposition of ethylene carbonate that has been brought into contact with the negative electrode surface.

【0013】炭素材料については特に限定されるもので
はなく、公知のものを用いることができ、結晶性の高い
天然黒鉛や人造黒鉛を用いることができる。その形状に
ついても特に限定されるものではなく、球状、鱗片状及
び繊維状などの形状をもつものを用いることができる。
安定被膜を電極表面に形成する方法については特に限定
されるものではないが、以下の方法を挙げることができ
る。その方法を二つに大別して説明する。
[0013] The carbon material is not particularly limited, and known materials can be used, and natural graphite and artificial graphite having high crystallinity can be used. The shape is not particularly limited, and those having a shape such as a sphere, a scale, and a fiber can be used.
The method for forming the stable coating on the electrode surface is not particularly limited, but the following methods can be mentioned. The method is roughly divided into two.

【0014】一つは、前記非水電解液とは別に用意され
たエチレンカーボネートを含有する処理液に非水電解液
と接触させる前の負極を浸漬することにより、負極を該
非水電解液と接触させる前にあらかじめエチレンカーボ
ネートと接触させて安定被膜を電極表面に形成する方法
である。即ち、安定被膜は、非水電解液とは別に用意さ
れたエチレンカーボネートを含有する処理液に浸漬する
ことにより形成されたものである。この方法によって、
均一の厚さの安定被膜を負極表面に一様に形成すること
ができる。
One is that the negative electrode is brought into contact with the non-aqueous electrolyte by immersing the negative electrode before contact with the non-aqueous electrolyte in a treatment solution containing ethylene carbonate prepared separately from the non-aqueous electrolyte. This is a method in which a stable film is formed on the electrode surface by contacting with ethylene carbonate beforehand. That is, the stable film is formed by dipping in a treatment solution containing ethylene carbonate prepared separately from the non-aqueous electrolyte. By this method,
A stable coating having a uniform thickness can be uniformly formed on the negative electrode surface.

【0015】エチレンカーボネートを含有する処理液に
ついては、エチレンカーボネートからなる処理液や、エ
チレンカーボネートとエチレンカーボネート以外のカー
ボネート系の有機溶媒との混合溶媒を用いることができ
る。また、電池に用いる非水電解液と同じであるが別に
用意した電解液を処理液に用いてもよい。処理液の浸漬
時間についても適宜選択することができる。
As the treatment liquid containing ethylene carbonate, a treatment liquid composed of ethylene carbonate or a mixed solvent of ethylene carbonate and a carbonate-based organic solvent other than ethylene carbonate can be used. Further, an electrolytic solution which is the same as the non-aqueous electrolytic solution used for the battery but is separately prepared may be used as the treatment liquid. The immersion time of the treatment liquid can also be appropriately selected.

【0016】このとき、安定被膜は、前記処理液に浸漬
した状態で充放電処理されたものであることが望まし
い。この充放電処理により、負極表面においてエチレン
カーボネートの分解が促進され、より化学的に安定な安
定被膜をより厚く形成できる。この場合、処理液には、
LiBF4、LiPF6、LiClO4及びLiAsF6
どのリチウム塩を溶解させた電解液を用いる。このと
き、電池に用いる非水電解液と同じであるが別に用意し
た電解液を用いてもよい。
At this time, it is preferable that the stable film is subjected to a charge / discharge treatment while immersed in the treatment solution. By this charge / discharge treatment, the decomposition of ethylene carbonate on the negative electrode surface is promoted, and a more chemically stable film can be formed more thickly. In this case, the processing solution includes
An electrolytic solution in which lithium salts such as LiBF 4 , LiPF 6 , LiClO 4 and LiAsF 6 are dissolved is used. At this time, the same electrolyte as the non-aqueous electrolyte used for the battery, but an electrolyte prepared separately may be used.

【0017】以上の方法では、前記処理液は、エチレン
カーボネートと、エチレンカーボネートよりも低いドナ
ー数をもつ有機溶媒と、の混合溶媒を含むことが望まし
い。これにより、安定被膜のエチレンカーボネートまた
はエチレンカーボネートの分解物の純度を上げることが
できる。ここでドナー数とは、ある分子のドナーとして
の性質を溶媒に無関係な量として表したもので、供与性
とも呼ばれる。ドナー数は、基準のアクセプターとして
ジクロロエタン中10-3MのSbCl3を選び、ドナー
との反応のモルエンタルピー値として定義される。この
ドナー数は、リチウムイオンの溶媒和のし易さを表す指
標にもなる。
In the above method, it is preferable that the treatment liquid contains a mixed solvent of ethylene carbonate and an organic solvent having a lower number of donors than ethylene carbonate. Thereby, the purity of ethylene carbonate or a decomposition product of ethylene carbonate of the stable film can be increased. Here, the number of donors represents the donor properties of a certain molecule as an amount independent of the solvent, and is also called donation. The number of donors is defined as the molar enthalpy value of the reaction with the donor, choosing 10 −3 M SbCl 3 in dichloroethane as the reference acceptor. The number of donors is also an index indicating the ease of solvation of lithium ions.

【0018】エチレンカーボネートのドナー数は16.
4である。従って、エチレンカーボネートよりも低いド
ナー数をもつ有機溶媒は、16.4未満のドナー数をも
つことになる。なお、ドナー数は、その溶媒中における
NaClO422Na−NMRの化学シフトから間接
的に推定されたものでもよい(Erlich & Po
pou,J.Am.Chem.Soc.93,5620
(1971))。
The number of donors of ethylene carbonate is 16.
4. Thus, an organic solvent having a lower number of donors than ethylene carbonate will have a number of donors less than 16.4. The number of donors may be indirectly estimated from the 22 Na-NMR chemical shift of NaClO 4 in the solvent (Errich & Po).
pou, J .; Am. Chem. Soc. 93,5620
(1971)).

【0019】この場合、安定被膜のエチレンカーボネー
トまたはエチレンカーボネートの分解物の純度は次の理
由で上がると考えられる。先ず、エチレンカーボネート
が、エチレンカーボネートよりも低いドナー数をもつ有
機溶媒に対し、優先的にリチウムイオンに溶媒和する。
そして、リチウムイオンが負極に吸蔵される際、エチレ
ンカーボネートが溶媒和したリチウムイオンが多量に吸
蔵され、この溶媒和していたエチレンカーボネートが負
極表面に残されて安定被膜を形成する。
In this case, it is considered that the purity of the ethylene carbonate or the decomposition product of the ethylene carbonate in the stable film is increased for the following reasons. First, ethylene carbonate preferentially solvates lithium ions for organic solvents having a lower donor number than ethylene carbonate.
When lithium ions are occluded in the negative electrode, a large amount of lithium ions solvated with ethylene carbonate is occluded, and the solvated ethylene carbonate is left on the negative electrode surface to form a stable film.

【0020】ここで、前記エチレンカーボネートよりも
低いドナー数をもつ有機溶媒はジアルキルカーボネート
類であることが望ましい。ジアルキルカーボネート類の
ドナー数は15付近である。ジアルキルカーボネート類
は粘性が低く、酸化還元に対して安定であるために、エ
チレンカーボネートの副溶媒として望ましい。次に、安
定被膜を電極表面に形成する二つ目の方法について述べ
る。二つ目は、前記炭素材料とエチレンカーボネートと
を混合して形成されることにより前記安定被膜が形成さ
れた炭素材料を負極材料に用いる方法である。即ち、前
記負極は、前記炭素材料とエチレンカーボネートとを混
合して形成されることにより前記安定被膜が形成された
炭素材料からなる。この方法によっても負極を該非水電
解液と接触させる前にあらかじめエチレンカーボネート
と接触させて安定被膜を電極表面に形成することができ
る。
Here, the organic solvent having a donor number lower than that of ethylene carbonate is preferably a dialkyl carbonate. The number of donors of dialkyl carbonates is around 15. Dialkyl carbonates are desirable as a secondary solvent for ethylene carbonate because they have low viscosity and are stable against oxidation and reduction. Next, a second method for forming a stable film on the electrode surface will be described. The second is a method in which the carbon material formed by mixing the carbon material and ethylene carbonate and having the stable film formed thereon is used as a negative electrode material. That is, the negative electrode is made of a carbon material having the stable film formed by mixing the carbon material with ethylene carbonate. According to this method, a stable film can be formed on the electrode surface by bringing the negative electrode into contact with ethylene carbonate before contacting the nonaqueous electrolyte.

【0021】この方法では、例えば、次のようにして負
極を得ることができる。先ず、炭素粉末とポリフッ化ビ
ニリデンなどの結着剤を適当な割合で混合する。一方、
N−メチル−2−ピロリドンなどの溶媒を用意し、この
溶媒に適量のエチレンカーボネートを混合する。このエ
チレンカーボネートを混合した溶媒を炭素粉末と結着剤
の混合物に加えて混練し、スラリーを得る。このスラリ
ーを負極集電体に塗布して乾燥させた後、さらにプレス
成形を行うなどして負極を得ることができる。
In this method, for example, a negative electrode can be obtained as follows. First, a carbon powder and a binder such as polyvinylidene fluoride are mixed at an appropriate ratio. on the other hand,
A solvent such as N-methyl-2-pyrrolidone is prepared, and an appropriate amount of ethylene carbonate is mixed with the solvent. The solvent in which the ethylene carbonate is mixed is added to the mixture of the carbon powder and the binder and kneaded to obtain a slurry. After this slurry is applied to the negative electrode current collector and dried, the negative electrode can be obtained by further performing press molding or the like.

【0022】この場合、前記エチレンカーボネートの混
合量は、前記炭素材料の量を100重量%とすると0.
01重量%以上20重量%未満であることが望ましい。
0.01重量%未満であると、エチレンカーボネートの
混合量が少ないため、十分な厚さの安定被膜を負極表面
に一様に形成することが容易でない。一方、20重量%
以上であると、エチレンカーボネートの混合量が多すぎ
て、作製した電極表面にエチレンカーボネートが析出し
てしまい、電極として望ましいとは言い難くなってしま
う。
In this case, the mixing amount of the ethylene carbonate is 0.1% when the amount of the carbon material is 100% by weight.
It is desirable that the content be from 01% by weight to less than 20% by weight.
If the amount is less than 0.01% by weight, it is not easy to uniformly form a sufficiently stable film on the surface of the negative electrode because the amount of ethylene carbonate mixed is small. On the other hand, 20% by weight
If the amount is more than the above, the mixing amount of ethylene carbonate is too large, and ethylene carbonate precipitates on the surface of the manufactured electrode, and it is difficult to say that it is desirable as an electrode.

【0023】[0023]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)本実施例の非水電解質二次電池は、図1に
模式的に示すように、リチウムイオンを放出できる正極
1と、正極1から放出されたリチウムイオンを吸蔵及び
放出できる炭素材料よりなる負極2と、エチレンカーボ
ネート(EC)を溶媒として含む非水電解液3と、が正
極ケース4および負極ケース5内にガスケット6を介し
て密封されているコイン型の非水電解液二次電池であ
る。
The present invention will be described below in detail with reference to examples. (Example 1) A non-aqueous electrolyte secondary battery of this example has a positive electrode 1 capable of releasing lithium ions and a carbon capable of occluding and releasing lithium ions released from the positive electrode 1, as schematically shown in FIG. A coin-type non-aqueous electrolyte 2 in which a negative electrode 2 made of a material and a non-aqueous electrolyte 3 containing ethylene carbonate (EC) as a solvent are sealed in a positive electrode case 4 and a negative electrode case 5 via a gasket 6. Next battery.

【0024】正極1は、LiMn24を正極活物質とし
て含む電極であり、アルミニウムよりなる正極集電体1
a上に形成されている。負極2は、銅よりなる負極集電
体2a上に形成されている。負極2については後で詳し
く述べる。正極1と負極2との間にはポリエチレン製の
フィルムよりなるセパレータ7が介在している。非水電
解液3としては、ECとジメトキシエタンとを等体積で
混合した混合溶媒に1mol/dm3のLiBF4を溶解
させた電解液を用いた。
The positive electrode 1 is an electrode containing LiMn 2 O 4 as a positive electrode active material, and includes a positive electrode current collector 1 made of aluminum.
a. The negative electrode 2 is formed on a negative electrode current collector 2a made of copper. The negative electrode 2 will be described later in detail. A separator 7 made of a polyethylene film is interposed between the positive electrode 1 and the negative electrode 2. As the non-aqueous electrolyte 3, an electrolyte obtained by dissolving 1 mol / dm 3 LiBF 4 in a mixed solvent obtained by mixing EC and dimethoxyethane in equal volumes was used.

【0025】負極2は次のように形成した。90重量部
の炭素粉末及び10重量部のポリフッ化ビニリデンの混
合物にN−メチル−2−ピロリドンを加えて混練し、ス
ラリーを得た。このスラリーを負極集電体に塗布して乾
燥させ、さらにプレス成形を行い、安定被膜の形成処理
前の負極を得た。次に、図2に模式的に示すようなビー
カセルを用いて負極表面の安定被膜の形成処理を行っ
た。本実施例では、電池に使用する非水電解液とは別
に、ECとDECとを等体積で混合した混合溶媒に1m
ol/dm3のLiBF4を溶解させた処理液を用意し、
この処理液をビーカセルの電解液として用いた。また、
正極には、電池に使用する正極と同じLiMn24を正
極活物質として含むものを別に用意した。
The negative electrode 2 was formed as follows. N-methyl-2-pyrrolidone was added to a mixture of 90 parts by weight of carbon powder and 10 parts by weight of polyvinylidene fluoride and kneaded to obtain a slurry. This slurry was applied to a negative electrode current collector, dried, and further subjected to press molding to obtain a negative electrode before forming a stable film. Next, using a beaker cell as schematically shown in FIG. 2, a treatment for forming a stable film on the negative electrode surface was performed. In this embodiment, separately from the non-aqueous electrolyte used for the battery, 1 m was mixed in a mixed solvent obtained by mixing EC and DEC in equal volumes.
ol / dm 3 of LiBF 4 was prepared,
This treatment liquid was used as an electrolyte for the beaker cell. Also,
As the positive electrode, a positive electrode containing the same LiMn 2 O 4 as the positive electrode active material used for the battery was separately prepared.

【0026】図2に示されるように、この正極と、先に
得られた安定被膜の形成処理前の負極との間にセパレー
タを挟み込み、正極及び負極を充放電装置につながった
クリップで留めてビーカセルの電解液中に吊り下げた。
なお、セパレータにはポリエチレン製のフィルムよりな
るセパレータを用いた。続いて、電流密度が1.0mA
/cm2でかつ充電電位が4.2Vの充電条件で4時間
定電流電圧による充電を行った後、電流密度が0.5m
A/cm2の定電流で終止電圧を3.0Vとする放電を
行い、安定被膜の形成処理前の負極の表面に安定被膜を
形成して負極2を得た。
As shown in FIG. 2, a separator is sandwiched between the positive electrode and the negative electrode obtained before the formation of the stable film, and the positive electrode and the negative electrode are fastened with a clip connected to a charging / discharging device. It was suspended in the electrolyte of the beaker cell.
The separator used was a separator made of a polyethylene film. Subsequently, the current density was 1.0 mA
/ Cm 2 and a charging potential of 4.2 V, charging was performed with a constant current voltage for 4 hours.
Discharge was performed at a constant current of A / cm 2 at a final voltage of 3.0 V, and a stable film was formed on the surface of the negative electrode before the stable film forming process, to obtain a negative electrode 2.

【0027】負極表面の安定被膜の形成処理を行った
後、ビーカセルを解体して負極2を取り出し、本実施例
の非水電解質二次電池に組み付けた。 (実施例2)本実施例の非水電解質二次電池は、電極表
面に安定被膜を以下のようにして形成した負極を用いた
他は、実施例1の非水電解質二次電池と同じ電池であ
る。
After the formation of a stable film on the surface of the negative electrode, the beaker cell was disassembled and the negative electrode 2 was taken out and assembled into the nonaqueous electrolyte secondary battery of this example. (Example 2) The non-aqueous electrolyte secondary battery of this example was the same as the non-aqueous electrolyte secondary battery of Example 1, except that a negative electrode having a stable film formed on the electrode surface was used as follows. It is.

【0028】本実施例では、ECとDECとを等体積で
混合した混合溶媒に1mol/dm 3のLiBF4を溶解
させた処理液を用意し、実施例1と同様にして得られた
安定被膜の形成処理前の負極をこの処理液中に24時間
浸漬し、電極表面に安定被膜を形成した。 (実施例3)本実施例の非水電解質二次電池は、以下の
ようにして電極表面に安定被膜を形成した負極を用いた
他は、実施例1の非水電解質二次電池と同じ電池であ
る。
In this embodiment, EC and DEC are equal in volume.
1 mol / dm in mixed solvent ThreeLiBFFourDissolve
A treated solution was prepared and obtained in the same manner as in Example 1.
The negative electrode before the formation of the stable film is placed in this processing solution for 24 hours.
It was immersed to form a stable coating on the electrode surface. (Embodiment 3) The non-aqueous electrolyte secondary battery of this embodiment is as follows.
A negative electrode with a stable coating formed on the electrode surface was used
Others are the same batteries as the non-aqueous electrolyte secondary battery of Example 1.
You.

【0029】本実施例では、ECとジメチルカーボネー
ト(DMC)とを等体積で混合した混合溶媒にLiBF
4を1mol/dm3溶解させた処理液を電池に使用する
非水電解液とは別に用意した。この処理液を電解液とし
て用い、実施例1と同様にして負極表面に安定被膜を形
成した。 (実施例4)本実施例の非水電解質二次電池は、以下の
ようにして電極表面に安定被膜を形成した負極を用いた
他は、実施例1の非水電解質二次電池と同じ電池であ
る。
In this embodiment, LiBF is added to a mixed solvent obtained by mixing EC and dimethyl carbonate (DMC) in equal volumes.
A processing solution in which 4 was dissolved at 1 mol / dm 3 was prepared separately from the non-aqueous electrolyte used for the battery. Using this treatment liquid as an electrolytic solution, a stable film was formed on the negative electrode surface in the same manner as in Example 1. Example 4 The non-aqueous electrolyte secondary battery of the present example was the same as the non-aqueous electrolyte secondary battery of Example 1, except that a negative electrode having a stable film formed on the electrode surface was used as follows. It is.

【0030】本実施例では、ECとエチルメチルカーボ
ネート(EMC)とを等体積で混合した混合溶媒に1m
ol/dm3のLiBF4を溶解させた処理液を本実施例
の電池に使用する非水電解液とは別に用意した。この処
理液を電解液として用い、実施例1と同様にして負極表
面に安定被膜を形成した。 (実施例5)本実施例の非水電解質二次電池は、以下の
ようにして電極表面に安定被膜を形成した負極を用いた
他は、実施例1の非水電解質二次電池と同じ電池であ
る。
In this embodiment, 1 m is mixed in a mixed solvent obtained by mixing EC and ethyl methyl carbonate (EMC) in equal volumes.
A treatment solution in which ol / dm 3 of LiBF 4 was dissolved was prepared separately from the non-aqueous electrolyte used for the battery of this example. Using this treatment liquid as an electrolytic solution, a stable film was formed on the negative electrode surface in the same manner as in Example 1. Example 5 The non-aqueous electrolyte secondary battery of this example was the same as the non-aqueous electrolyte secondary battery of Example 1, except that a negative electrode having a stable film formed on the electrode surface was used as follows. It is.

【0031】本実施例では、ECとジエチルカーボネー
ト(DEC)とを等体積で混合した混合溶媒にLiPF
6を1mol/dm3溶解させた処理液を本実施例の電池
に使用する非水電解液とは別に用意した。この処理液を
電解液として用い、実施例1と同様にして負極表面に安
定被膜を形成した。 (実施例6)本実施例の非水電解質二次電池は、非水電
解液として、ECとトリブチルホスフェートとを等体積
で混合した混合溶媒にLiBF4を1mol/dm3溶解
させた電解液を用いた他は、実施例1の非水電解質二次
電池と同じ電池である。 (実施例7)本実施例の非水電解質二次電池は、非水電
解液として、PCとDECとを等体積で混合した混合溶
媒にLiBF4を1mol/dm3溶解させた電解液を用
いた他は、実施例1の非水電解質二次電池と同じ電池で
ある。 (実施例8)本実施例の非水電解質二次電池は、電解液
3として、ECとDECとを等体積で混合した混合溶媒
にLiBF4を1mol/dm3溶解させた電解液を用い
た他は、実施例1の非水電解質二次電池と同じ電池であ
る。 (実施例9)本実施例の非水電解質二次電池は、負極表
面に安定被膜を以下のようにして形成した他は、実施例
3の非水電解質二次電池と同じ電池である。
In the present embodiment, LiPF was added to a mixed solvent in which EC and diethyl carbonate (DEC) were mixed in equal volumes.
A treatment solution in which 6 was dissolved at 1 mol / dm 3 was prepared separately from the non-aqueous electrolyte used for the battery of this example. Using this treatment liquid as an electrolytic solution, a stable film was formed on the negative electrode surface in the same manner as in Example 1. (Embodiment 6) The non-aqueous electrolyte secondary battery of this embodiment uses, as a non-aqueous electrolyte, an electrolyte obtained by dissolving 1 mol / dm 3 of LiBF 4 in a mixed solvent of EC and tributyl phosphate in equal volumes. The other batteries were the same as the non-aqueous electrolyte secondary battery of Example 1 except that they were used. Embodiment 7 The non-aqueous electrolyte secondary battery of this embodiment uses, as a non-aqueous electrolyte, an electrolyte obtained by dissolving LiBF 4 at 1 mol / dm 3 in a mixed solvent of PC and DEC in equal volumes. The other batteries are the same as the non-aqueous electrolyte secondary battery of Example 1. (Embodiment 8) In the nonaqueous electrolyte secondary battery of this embodiment, as the electrolytic solution 3, an electrolytic solution obtained by dissolving 1 mol / dm 3 of LiBF 4 in a mixed solvent in which EC and DEC were mixed in equal volumes was used. Others are the same batteries as the non-aqueous electrolyte secondary battery of Example 1. (Example 9) The nonaqueous electrolyte secondary battery of this example is the same as the nonaqueous electrolyte secondary battery of Example 3, except that a stable film was formed on the negative electrode surface as follows.

【0032】ECとDMCとを等体積で混合した混合溶
媒(EC:DMC=1:1)にLiPF6を1mol/
dm3溶解させた処理液を本実施例の電池に使用する非
水電解液とは別に用意した。この処理液を電解液として
用い、実施例1と同様にして負極表面に安定被膜を形成
した。 (実施例10)本実施例の非水電解質二次電池は、電極
表面に安定被膜を以下のようにして形成した他は、実施
例3の非水電解質二次電池と同じ電池である。
LiPF 6 was added at 1 mol / L to a mixed solvent (EC: DMC = 1: 1) in which EC and DMC were mixed in equal volumes.
The treatment solution in which dm 3 was dissolved was prepared separately from the non-aqueous electrolyte used for the battery of this example. Using this treatment liquid as an electrolytic solution, a stable film was formed on the negative electrode surface in the same manner as in Example 1. Embodiment 10 The non-aqueous electrolyte secondary battery of this embodiment is the same as the non-aqueous electrolyte secondary battery of Embodiment 3, except that a stable film is formed on the electrode surface as follows.

【0033】ECとEMCとを等体積で混合した混合溶
媒(EC:EMC=1:1)にLiPF6を1mol/
dm3溶解させた処理液を本実施例の電池に使用する電
解液とは別に用意した。この処理液を電解液として用
い、実施例1と同様にして負極表面に安定被膜を形成し
た。 (比較例1)本比較例の非水電解質二次電池は、実施例
1と同様にして得られた安定被膜の形成処理前の負極を
そのまま負極として用いた他は、実施例1の非水電解質
二次電池と同じ電池である。すなわち、本比較例の電池
の負極は、電極表面に安定被膜をもたない。 (比較例2)本比較例の非水電解質二次電池は、非水電
解液として、ECとトリブチルホスフェートとを等体積
で混合した混合溶媒に1mol/dm3のLiBF4を溶
解させた電解液を用いた他は、比較例1の非水電解質二
次電池と同じ電池である。 (比較例3)本比較例の非水電解質二次電池は、非水電
解液として、PCとDECとを等体積で混合した混合溶
媒にLiBF4を1mol/dm3溶解させた電解液を用
いた他は、比較例1の非水電解質二次電池と同じ電池で
ある。 (比較例4)本比較例の非水電解質二次電池は、非水電
解液として、ECとDECとを等体積で混合した混合溶
媒にLiBF4を1mol/dm3溶解させた電解液を用
いた他は、比較例1の非水電解質二次電池と同じ電池で
ある。 (比較例5)本比較例の非水電解質二次電池は、非水電
解液として、ECとDMCとを等体積で混合した混合溶
媒にLiBF4を1mol/dm3溶解させた電解液を用
いた他は、比較例1の非水電解質二次電池と同じ電池で
ある。 (比較例6)本比較例の非水電解質二次電池は、非水電
解液として、ECとEMCとを等体積で混合した混合溶
媒にLiBF4を1mol/dm3溶解させた電解液を用
いた他は、比較例1の非水電解質二次電池と同じ電池で
ある。 (実施例11)本実施例の非水電解質二次電池は、以下
のようにして形成した負極と、ECとDMCとを等体積
で混合した混合溶媒にLiBF4を1mol/dm3溶解
させた非水電解液と、を用いた他は、実施例1の非水電
解質二次電池と同じ電池である。
LiPF 6 was added to a mixed solvent (EC: EMC = 1: 1) in which EC and EMC were mixed in an equal volume and 1 mol / mol
A treatment solution in which dm 3 was dissolved was prepared separately from the electrolytic solution used for the battery of this example. Using this treatment liquid as an electrolytic solution, a stable film was formed on the negative electrode surface in the same manner as in Example 1. (Comparative Example 1) The nonaqueous electrolyte secondary battery of this comparative example was the same as the nonaqueous electrolyte secondary battery of Example 1 except that the negative electrode before the formation of the stable film obtained in the same manner as in Example 1 was used as the negative electrode. This is the same battery as the electrolyte secondary battery. That is, the negative electrode of the battery of this comparative example does not have a stable coating on the electrode surface. (Comparative Example 2) The non-aqueous electrolyte secondary battery of this comparative example is a non-aqueous electrolyte in which 1 mol / dm 3 LiBF 4 is dissolved in a mixed solvent of EC and tributyl phosphate mixed in equal volumes. The battery was the same as the non-aqueous electrolyte secondary battery of Comparative Example 1 except for using. (Comparative Example 3) The non-aqueous electrolyte secondary battery of this comparative example uses, as a non-aqueous electrolytic solution, an electrolytic solution obtained by dissolving 1 mol / dm 3 of LiBF 4 in a mixed solvent obtained by mixing PC and DEC in equal volumes. The other batteries are the same as the non-aqueous electrolyte secondary battery of Comparative Example 1. (Comparative Example 4) The nonaqueous electrolyte secondary battery of this comparative example uses, as a nonaqueous electrolytic solution, an electrolytic solution in which 1 mol / dm 3 of LiBF 4 is dissolved in a mixed solvent obtained by mixing EC and DEC in equal volumes. The other batteries are the same as the non-aqueous electrolyte secondary battery of Comparative Example 1. (Comparative Example 5) The non-aqueous electrolyte secondary battery of this comparative example uses, as a non-aqueous electrolytic solution, an electrolytic solution in which 1 mol / dm 3 of LiBF 4 is dissolved in a mixed solvent obtained by mixing EC and DMC in equal volumes. The other batteries are the same as the non-aqueous electrolyte secondary battery of Comparative Example 1. (Comparative Example 6) The non-aqueous electrolyte secondary battery of this comparative example uses, as a non-aqueous electrolytic solution, an electrolytic solution in which 1 mol / dm 3 of LiBF 4 is dissolved in a mixed solvent in which EC and EMC are mixed in equal volumes. The other batteries are the same as the non-aqueous electrolyte secondary battery of Comparative Example 1. (Example 11) In the nonaqueous electrolyte secondary battery of this example, 1 mol / dm 3 of LiBF 4 was dissolved in a mixed solvent in which the negative electrode formed as described below, and EC and DMC were mixed in equal volumes. This is the same battery as the non-aqueous electrolyte secondary battery of Example 1 except that a non-aqueous electrolyte is used.

【0034】90重量部の炭素粉末及び10重量部のポ
リフッ化ビニリデンの混合物に、炭素粉末に対して0.
01重量%のECを含むN−メチル−2−ピロリドンを
加えて混練し、スラリーを得た。このスラリーを負極集
電体に塗布して乾燥させた後、プレス成形を行って負極
を得た。 (実施例12)本実施例の非水電解質二次電池は、炭素
粉末に対して0.1重量%のECを含むN−メチル−2
−ピロリドンを用いて形成した負極を用いた他は、実施
例11の非水電解質二次電池と同じ電池である。 (実施例13)本実施例の非水電解質二次電池は、炭素
粉末に対して1重量%のECを含むN−メチル−2−ピ
ロリドンを用いて形成した負極を用いた他は、実施例1
1の非水電解質二次電池と同じ電池である。 (実施例14)本実施例の非水電解質二次電池は、炭素
粉末に対して10重量%のECを含むN−メチル−2−
ピロリドンを用いて形成した負極を用いた他は、実施例
11の非水電解質二次電池と同じ電池である。 (実施例15)本実施例の非水電解質二次電池は、炭素
粉末に対して0.005重量%のECを含むN−メチル
−2−ピロリドンを用いて形成した負極を用いた他は、
実施例11の非水電解質二次電池と同じ電池である。 (実施例16)本実施例の非水電解質二次電池は、炭素
粉末に対して20重量%のECを含むN−メチル−2−
ピロリドンを用いて形成した負極を用いた他は、実施例
11の非水電解質二次電池と同じ電池である。 (実施例17)本実施例の非水電解質二次電池は、非水
電解液として、ECとDECとを等体積で混合した混合
溶媒にLiBF4を1mol/dm3溶解させたものを用
いた他は、実施例13の非水電解質二次電池と同じ電池
である。 (実施例18)本実施例の非水電解質二次電池は、非水
電解液として、ECとDMCとを等体積で混合した混合
溶媒にLiBF4を1mol/dm3溶解させたものを用
いた他は、実施例13の非水電解質二次電池と同じ電池
である。 (実施例19)本実施例の非水電解質二次電池は、非水
電解液として、ECとEMCとを等体積で混合した混合
溶媒にLiBF4を1mol/dm3溶解させたものを用
いた他は、実施例13の非水電解質二次電池と同じ電池
である。 (実施例20)本実施例の非水電解質二次電池は、非水
電解液として、ECとトリブチルホスフェートとを等体
積で混合した混合溶媒にLiBF4を1mol/dm3
解させたものを用いた他は、実施例13の非水電解質二
次電池と同じ電池である。 (実施例21)本実施例の非水電解質二次電池は、非水
電解液として、PCとジエチルカーボネートとを等体積
で混合した混合溶媒にLiBF4を1mol/dm3溶解
させたものを用いた他は、実施例13の非水電解質二次
電池と同じ電池である。 (電池の充放電効率の評価)実施例1〜21、比較例1
〜6の各電池で、次のようにして充放電試験を行った。
1mA/cm2 の定電流、4.2Vの定電圧で合計4時
間充電した後、0.25〜4mA/cm2 の定電流で終
止電圧を3.0Vとする放電を行った。このときの放電
容量を測定し、充放電効率(放電容量/充電容量)を求
めた。表1〜3に充放電効率の測定結果を示す。
In a mixture of 90 parts by weight of carbon powder and 10 parts by weight of polyvinylidene fluoride, 0.1 parts by weight of carbon powder was added.
N-methyl-2-pyrrolidone containing 01% by weight of EC was added and kneaded to obtain a slurry. After this slurry was applied to a negative electrode current collector and dried, press molding was performed to obtain a negative electrode. (Example 12) A non-aqueous electrolyte secondary battery of this example is a non-aqueous electrolyte secondary battery containing N-methyl-2 containing 0.1% by weight of EC based on carbon powder.
-The same battery as the non-aqueous electrolyte secondary battery of Example 11, except that a negative electrode formed using pyrrolidone was used. (Example 13) The non-aqueous electrolyte secondary battery of this example uses the negative electrode formed using N-methyl-2-pyrrolidone containing 1% by weight of EC with respect to carbon powder. 1
This is the same battery as the first non-aqueous electrolyte secondary battery. (Example 14) A non-aqueous electrolyte secondary battery of this example is a non-aqueous electrolyte secondary battery containing 10% by weight of EC with respect to carbon powder.
This is the same battery as the non-aqueous electrolyte secondary battery of Example 11, except that a negative electrode formed using pyrrolidone is used. (Example 15) A non-aqueous electrolyte secondary battery of this example uses a negative electrode formed by using N-methyl-2-pyrrolidone containing 0.005% by weight of EC with respect to carbon powder.
This is the same battery as the non-aqueous electrolyte secondary battery of Example 11. (Example 16) A non-aqueous electrolyte secondary battery of this example uses N-methyl-2- containing 20% by weight of EC based on carbon powder.
This is the same battery as the non-aqueous electrolyte secondary battery of Example 11, except that a negative electrode formed using pyrrolidone is used. (Example 17) The non-aqueous electrolyte secondary battery of this example used, as a non-aqueous electrolyte, one in which 1 mol / dm 3 of LiBF 4 was dissolved in a mixed solvent in which EC and DEC were mixed in equal volumes. Others are the same batteries as the non-aqueous electrolyte secondary battery of Example 13. (Example 18) The nonaqueous electrolyte secondary battery of this example used as the nonaqueous electrolyte was one in which 1 mol / dm 3 of LiBF 4 was dissolved in a mixed solvent obtained by mixing EC and DMC in equal volumes. Others are the same batteries as the non-aqueous electrolyte secondary battery of Example 13. (Example 19) The non-aqueous electrolyte secondary battery of this example used, as a non-aqueous electrolyte, a solution in which 1 mol / dm 3 of LiBF 4 was dissolved in a mixed solvent in which EC and EMC were mixed in equal volumes. Others are the same batteries as the non-aqueous electrolyte secondary battery of Example 13. Embodiment 20 The non-aqueous electrolyte secondary battery of this embodiment uses a non-aqueous electrolyte prepared by dissolving 1 mol / dm 3 of LiBF 4 in a mixed solvent obtained by mixing EC and tributyl phosphate in equal volumes. The other batteries are the same as the nonaqueous electrolyte secondary battery of Example 13. (Example 21) The nonaqueous electrolyte secondary battery of this example uses, as a nonaqueous electrolyte, a solution obtained by dissolving 1 mol / dm 3 of LiBF 4 in a mixed solvent obtained by mixing PC and diethyl carbonate in equal volumes. The other batteries are the same as the nonaqueous electrolyte secondary battery of Example 13. (Evaluation of Battery Charge / Discharge Efficiency) Examples 1 to 21, Comparative Example 1
A charge / discharge test was performed on each of the batteries Nos. To 6 as follows.
Constant current of 1 mA / cm 2, were charged a total of 4 hours at a constant voltage of 4.2 V, it was discharged to a final voltage and 3.0V at a constant current of 0.25~4mA / cm 2. The discharge capacity at this time was measured, and the charge / discharge efficiency (discharge capacity / charge capacity) was determined. Tables 1 to 3 show the measurement results of the charging and discharging efficiency.

【0035】なお、表1では、実施例1〜5の各電池を
比較例1の電池に対応させて充放電効率を示した。表2
では、実施例6〜10の各電池の充放電効率を示し、そ
れらの比較となる電池と並べて示した。また、表3で
は、実施例11〜21の各電池の充放電効率を示し、実
施例13及び実施例17〜21の電池についてはそれら
の比較となる電池と並べて示した。
Table 1 shows the charge / discharge efficiency of each of the batteries of Examples 1 to 5 corresponding to the battery of Comparative Example 1. Table 2
In Table 6, the charging / discharging efficiencies of the batteries of Examples 6 to 10 are shown, and the batteries for comparison are shown side by side. In Table 3, the charge / discharge efficiency of each of the batteries of Examples 11 to 21 is shown, and the batteries of Example 13 and Examples 17 to 21 are shown side by side with comparative batteries.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 表1より、実施例1〜5の各電池は、比較例1の電池に
比べてそれぞれ高い充放電効率をもつことがわかる。
[Table 3] Table 1 shows that each of the batteries of Examples 1 to 5 has higher charge / discharge efficiency than the battery of Comparative Example 1.

【0039】表2より、実施例6〜10の各電池は、そ
れらの比較となる電池に比べてそれぞれ高い充放電効率
をもつことがわかる。表3より、実施例13及び実施例
17〜21の各電池で、それらの比較となる電池と比べ
てもそれぞれ高い充放電効率をもつことがわかる。この
ことから、実施例13及び実施例17〜21以外の各電
池もいずれも高い充放電効率をもつことは明らかであ
る。
From Table 2, it can be seen that the batteries of Examples 6 to 10 have higher charge / discharge efficiencies than the batteries used for comparison. From Table 3, it can be seen that each of the batteries of Example 13 and Examples 17 to 21 has higher charge / discharge efficiencies as compared with the comparative batteries. From this, it is clear that all the batteries other than Example 13 and Examples 17 to 21 also have high charge / discharge efficiency.

【0040】以上の結果より、本実施例の非水電解液二
次電池はいずれも高い充放電効率をもつため、リテンシ
ョン容量が小さくなる。従って、本実施例の非水電解液
二次電池ではいずれも、高い電池容量と優れたサイクル
特性とが得られることが容易に予想される。
From the above results, since the nonaqueous electrolyte secondary batteries of this embodiment all have high charge / discharge efficiency, the retention capacity is small. Therefore, it is easily expected that high battery capacity and excellent cycle characteristics can be obtained in any of the nonaqueous electrolyte secondary batteries of this example.

【0041】[0041]

【効果】本発明の非水電解液二次電池では、従来の非水
電解液二次電池よりも高い電池容量が得られることか
ら、よりエネルギー密度の高い二次電池とすることがで
きる。それゆえ、小型であっても高容量及び高電圧をも
たせることができる。このことから、例えば携帯用電子
機器のバッテリーに利用すれば、バッテリーを備えた機
器全体の重量を軽くすることができるとともに、機器か
らさらに高い性能及び機能を引き出すことができる。ま
た、本発明の非水電解液二次電池を例えば電気自動車の
バッテリーに利用すれば、電気自動車の重量を軽くする
ことができるとともに、さらに高馬力で走行させること
ができる。
According to the non-aqueous electrolyte secondary battery of the present invention, a higher battery capacity can be obtained than that of a conventional non-aqueous electrolyte secondary battery, so that a secondary battery having a higher energy density can be obtained. Therefore, a high capacity and a high voltage can be provided even in a small size. For this reason, when used for a battery of a portable electronic device, for example, the weight of the entire device including the battery can be reduced, and higher performance and functions can be obtained from the device. Further, if the non-aqueous electrolyte secondary battery of the present invention is used for a battery of an electric vehicle, for example, the weight of the electric vehicle can be reduced and the vehicle can be driven with higher horsepower.

【0042】また、本発明の非水電解液二次電池では、
従来の非水電解液二次電池よりも優れた充放電サイクル
特性が得られることから、充放電を繰り返してもエネル
ギー密度が直ぐに低下してしまうことがない。このこと
から、例えば、携帯電話や携帯用ノート型パソコンなど
使用頻度が高く頻繁に充放電がなされる電子機器のバッ
テリーに利用すれば、一つの電池で多くの回数、電子機
器から高い性能及び機能を引き出すことができる。この
ことは、電池の交換回数を減らすことにつながり、利用
する者にとっては交換の手間が省けるだけでなく、交換
コストも省けるため経済的にも大変便利となる。
Further, in the non-aqueous electrolyte secondary battery of the present invention,
Since superior charge / discharge cycle characteristics can be obtained as compared with the conventional non-aqueous electrolyte secondary battery, even if charge / discharge is repeated, the energy density does not immediately decrease. For this reason, for example, if the battery is used for a battery of an electronic device that is frequently used and is frequently charged and discharged, such as a mobile phone or a portable notebook personal computer, the performance and functions of the electronic device can be increased many times with one battery. Can be pulled out. This leads to a reduction in the number of times of replacement of the battery, which not only saves the user the trouble of replacement but also reduces the cost of replacement, which is very convenient economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この図は、実施例1の非水電解質二次電池の断
面を模式的に示した図である。
FIG. 1 is a diagram schematically showing a cross section of a non-aqueous electrolyte secondary battery of Example 1.

【図2】この図は、実施例1の非水電解質二次電池で用
いる負極の負極表面の安定被膜について、その形成処理
を行ったビーカセルを模式的に示す図である。
FIG. 2 is a diagram schematically showing a beaker cell in which a stable film on the negative electrode surface of the negative electrode used in the non-aqueous electrolyte secondary battery of Example 1 has been subjected to formation processing.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:非水電解液 4:正極ケース
5:負極ケース 6:ガスケット 7:セパレータ
1: positive electrode 2: negative electrode 3: non-aqueous electrolyte 4: positive electrode case 5: negative electrode case 6: gasket 7: separator

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを放出できる正極と、該正
極から放出されたリチウムイオンを吸蔵及び放出できる
炭素材料よりなる負極と、カーボネートを溶媒として含
む非水電解液と、を備える非水電解液二次電池におい
て、 該負極は、該非水電解液と接触させる前にあらかじめエ
チレンカーボネートと接触させることで形成された安定
被膜を電極表面にもつ負極であることを特徴とする非水
電解液二次電池。
1. A non-aqueous electrolyte comprising a positive electrode capable of releasing lithium ions, a negative electrode made of a carbon material capable of occluding and releasing lithium ions released from the positive electrode, and a non-aqueous electrolyte containing carbonate as a solvent. In the secondary battery, the negative electrode is a negative electrode having a stable film formed on the electrode surface by previously contacting with ethylene carbonate before contacting with the non-aqueous electrolyte. battery.
【請求項2】前記安定被膜は、前記非水電解液とは別に
用意されたエチレンカーボネートを含有する処理液に浸
漬することにより形成されたものである請求項1に記載
の非水電解液二次電池。
2. The non-aqueous electrolyte solution according to claim 1, wherein the stable film is formed by dipping in a treatment solution containing ethylene carbonate prepared separately from the non-aqueous electrolyte solution. Next battery.
【請求項3】前記安定被膜は、前記処理液に浸漬した状
態で充放電処理されたものである請求項2に記載の非水
電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the stable coating is subjected to a charge / discharge treatment while being immersed in the treatment liquid.
【請求項4】前記処理液は、エチレンカーボネートと、
エチレンカーボネートよりも低いドナー数をもつ有機溶
媒と、の混合溶媒を含む請求項2に記載の非水電解液二
次電池。
4. The treatment liquid according to claim 1, wherein the treatment liquid comprises ethylene carbonate;
The non-aqueous electrolyte secondary battery according to claim 2, comprising a mixed solvent of an organic solvent having a lower number of donors than ethylene carbonate.
【請求項5】前記エチレンカーボネートよりも低いドナ
ー数をもつ有機溶媒はジアルキルカーボネート類である
請求項4に記載の非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 4, wherein the organic solvent having a lower number of donors than ethylene carbonate is a dialkyl carbonate.
【請求項6】前記負極は、前記炭素材料とエチレンカー
ボネートとを混合して形成されることにより前記安定被
膜が形成された炭素材料からなる請求項1に記載の非水
電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is made of a carbon material on which the stable film is formed by mixing the carbon material with ethylene carbonate.
【請求項7】前記エチレンカーボネートの混合量は、前
記炭素材料の量を100重量%とすると0.01重量%
以上20重量%未満である請求項6に記載の非水電解液
二次電池。
7. The mixing amount of the ethylene carbonate is 0.01% by weight when the amount of the carbon material is 100% by weight.
The non-aqueous electrolyte secondary battery according to claim 6, which is at least 20% by weight.
JP30279397A 1997-11-05 1997-11-05 Nonaqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP3937256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30279397A JP3937256B2 (en) 1997-11-05 1997-11-05 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30279397A JP3937256B2 (en) 1997-11-05 1997-11-05 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11144711A true JPH11144711A (en) 1999-05-28
JP3937256B2 JP3937256B2 (en) 2007-06-27

Family

ID=17913194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30279397A Expired - Fee Related JP3937256B2 (en) 1997-11-05 1997-11-05 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3937256B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357838A (en) * 2000-04-11 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2009508309A (en) * 2005-09-16 2009-02-26 サンヨー・コンポーネント・ヨーロッパ・ゲーエムベーハー Method for manufacturing lithium secondary battery
JP2016127020A (en) * 2014-12-25 2016-07-11 株式会社半導体エネルギー研究所 Method for manufacturing electrode, electrolytic solution, secondary battery, and electronic device
JP2023515156A (en) * 2020-05-08 2023-04-12 エルジー エナジー ソリューション リミテッド Negative electrode, method for manufacturing said negative electrode, secondary battery, and method for manufacturing said secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357838A (en) * 2000-04-11 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2009508309A (en) * 2005-09-16 2009-02-26 サンヨー・コンポーネント・ヨーロッパ・ゲーエムベーハー Method for manufacturing lithium secondary battery
JP2016127020A (en) * 2014-12-25 2016-07-11 株式会社半導体エネルギー研究所 Method for manufacturing electrode, electrolytic solution, secondary battery, and electronic device
JP2020170735A (en) * 2014-12-25 2020-10-15 株式会社半導体エネルギー研究所 Positive electrode manufacturing method
JP2023515156A (en) * 2020-05-08 2023-04-12 エルジー エナジー ソリューション リミテッド Negative electrode, method for manufacturing said negative electrode, secondary battery, and method for manufacturing said secondary battery

Also Published As

Publication number Publication date
JP3937256B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3417054B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP5541502B2 (en) Lithium secondary battery and manufacturing method thereof
US20190020014A1 (en) Method for making lithium ionic energy storage element
JPH07335261A (en) Lithium secondary battery
JP3705774B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery for nonaqueous electrolyte battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JPH11283667A (en) Lithium ion battery
JPH08138745A (en) Nonaqueous electrolyte secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3937256B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3475488B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
JP2001283920A (en) Lithium secondary battery
JPH1027627A (en) Lithium secondary battery
JPH10308235A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3831599B2 (en) Lithium secondary battery
JP4617702B2 (en) Lithium secondary battery and manufacturing method thereof
JPH08138741A (en) Organic electrolyte secondary battery
JP2003100343A (en) Lithium cell
JP3322182B2 (en) Non-aqueous electrolyte for batteries
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
JP3650016B2 (en) Lithium battery
JPH11191430A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees