JP3417054B2 - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery

Info

Publication number
JP3417054B2
JP3417054B2 JP11468294A JP11468294A JP3417054B2 JP 3417054 B2 JP3417054 B2 JP 3417054B2 JP 11468294 A JP11468294 A JP 11468294A JP 11468294 A JP11468294 A JP 11468294A JP 3417054 B2 JP3417054 B2 JP 3417054B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
negative electrode
water
lithium
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11468294A
Other languages
Japanese (ja)
Other versions
JPH07302617A (en
Inventor
潤 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11468294A priority Critical patent/JP3417054B2/en
Publication of JPH07302617A publication Critical patent/JPH07302617A/en
Application granted granted Critical
Publication of JP3417054B2 publication Critical patent/JP3417054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,充電により再利用可能
な,非水電解液電池(非水電解液二次電池,以下同じ)
の製造方法に関する。
The present invention relates to a non-aqueous electrolyte battery (non-aqueous electrolyte secondary battery, the same applies hereinafter) that can be reused by charging.
Manufacturing method.

【0002】[0002]

【従来技術】エネルギー及び環境問題等を背景に,電力
をより有効に活用する技術が必要とされている。上述の
目的のためには,優れた電気の貯蔵手段が必要であり,
この場合の貯蔵手段としては,高性能の蓄電池を用いる
ことが最適である。なお,高性能の蓄電池とは,より軽
い電池,より小さい体積の電池が,より大きな容量をも
つことである。
2. Description of the Related Art With the background of energy and environmental problems, there is a need for a technique for more effectively utilizing electric power. For the above purposes, a good means of storing electricity is needed,
In this case, it is optimal to use a high performance storage battery as the storage means. A high-performance storage battery means that a lighter battery and a battery with a smaller volume have a larger capacity.

【0003】一方,従来,リチウム等の吸蔵が可能であ
る正極及び負極を使用した非水電解液電池が,小型電子
機器等の電源として活用されている。上記非水電解液電
池は小型化が容易で,高エネルギー密度を有するという
長所がある。このため,上記非水電解液電池を二次電池
化したものは,上述の高性能蓄電池として最適である。
On the other hand, conventionally, a non-aqueous electrolyte battery using a positive electrode and a negative electrode capable of occluding lithium etc. has been utilized as a power source for small electronic devices and the like. The non-aqueous electrolyte battery has advantages that it can be easily miniaturized and has high energy density. Therefore, the non-aqueous electrolyte battery that is made into a secondary battery is optimal as the above-mentioned high-performance storage battery.

【0004】[0004]

【解決しようとする課題】しかしながら,上記非水電解
液電池には以下の問題点がある。即ち,上記非水電解液
電池は充電と放電とを繰り返すことにより,負極表面に
リチウム金属及び化合物のデンドライトが析出する。上
記リチウム金属及び化合物の析出に伴って,負極表面の
電気的性質が変化し,非水電解液電池のサイクル特性が
悪化する。また,上記リチウム金属及び化合物は時間の
経過とともに負極表面で大きく成長し,最終的にはセパ
レーターを貫通し,正極と負極との間をショートさせ
る。上記ショートの発生により非水電解液電池は使用不
能となってしまう。また,安全性の面からも問題にな
る。このため,上記非水電解液電池は比較的短寿命であ
る。
However, the above non-aqueous electrolyte battery has the following problems. That is, in the above non-aqueous electrolyte battery, by repeating charging and discharging, lithium metal and compound dendrites are deposited on the surface of the negative electrode. With the deposition of the lithium metal and compound, the electrical properties of the negative electrode surface change, and the cycle characteristics of the non-aqueous electrolyte battery deteriorate. Also, the lithium metal and the compound grow largely on the surface of the negative electrode with the lapse of time, and finally penetrate the separator to short-circuit between the positive electrode and the negative electrode. The non-aqueous electrolyte battery becomes unusable due to the occurrence of the short circuit. It also poses a problem in terms of safety. Therefore, the non-aqueous electrolyte battery has a relatively short life.

【0005】また,上記非水電解液電池はリチウムを使
用している。リチウムは水と反応し易いため,従来,非
水電解液電池を組付けるに先立って,各部品への水分の
付着を完全に防止する必要があるとされている。このた
め,各部品の製造にあたっては,乾燥工程を設け,ま
た,上記部品の組み立てに当たっては,ドライボックス
内等において行う必要があった。従って,上記非水電解
液電池は製造コストが高くなる。本発明は,かかる問題
点に鑑み,優れたサイクル特性を有し,低コストで,か
つ長寿命である非水電解液電池及びその製造方法を提供
しようとするものである。
The non-aqueous electrolyte battery uses lithium. Since lithium easily reacts with water, it is conventionally said that it is necessary to completely prevent moisture from adhering to each component before assembling a non-aqueous electrolyte battery. For this reason, it is necessary to provide a drying step in manufacturing each part and to assemble the above parts in a dry box or the like. Therefore, the manufacturing cost of the non-aqueous electrolyte battery is high. In view of such problems, the present invention aims to provide a non-aqueous electrolyte battery having excellent cycle characteristics, low cost, and long life, and a method for manufacturing the same.

【0006】[0006]

【課題の解決手段】まずは,本発明の製造方法によって
製造される非水電解液二次電池について説明する。即
ち,本発明の製造方法によれば,リチウムを吸蔵,放出
できる正極と,リチウム金属,リチウム合金,リチウム
を吸蔵,放出できる物質又は導電体の少なくとも一種か
らなる負極と,セパレーターと,非水電解液と,電池容
器とを有する非水電解液二次電池において,上記負極は
その表面にリチウム化合物を含有する被膜を有すること
を特徴とする非水電解液二次電池を製造することができ
る。
First, a non-aqueous electrolyte secondary battery manufactured by the manufacturing method of the present invention will be described. That is, according to the manufacturing method of the present invention, a positive electrode capable of occluding and releasing lithium, a negative electrode made of at least one of a lithium metal, a lithium alloy, and a substance or conductor capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery having a liquid and a battery container, wherein the negative electrode has a coating film containing a lithium compound on the surface thereof, and a non-aqueous electrolyte secondary battery can be manufactured.

【0007】次に,上記非水電解液電池の負極として
は,リチウム金属,Li−Al,Li−Zn,Li−P
d,Li−Sn等のリチウム合金,カーボン,ポリアセ
ン等のリチウムを吸蔵,放出できる物質,又はニッケ
ル,ステンレス,チタン等の導電体を使用することが好
ましい。また,上記正極としては,正極活物質と導電体
と接着剤とを混合し,該混合物をプレス成形したものを
使用することが好ましい。上記正極活物質としては,例
えばLiMn2 4 ,カルコゲン化物を使用する。
Next, as the negative electrode of the non-aqueous electrolyte battery, lithium metal, Li-Al, Li-Zn and Li-P are used.
It is preferable to use a lithium alloy such as d, Li-Sn, carbon, a substance capable of inserting and extracting lithium such as polyacene, or a conductor such as nickel, stainless steel, or titanium. Further, as the positive electrode, it is preferable to use one obtained by mixing a positive electrode active material, a conductor and an adhesive and press-molding the mixture. As the positive electrode active material, for example, LiMn 2 O 4 or chalcogenide is used.

【0008】次に,上記非水電解液の有機溶媒として
は,PC(プロピレンカーボネート)とDME(1,2
−ジメトキシエタン),エチレンカーボネート,ジメチ
ルカーボネート,テトラヒドロフラン等のグループより
選ばれる一種または二種以上の混合物を使用する。ま
た,上記セパレーターとしては,例えばポリプロピレン
製の多孔質フィルム,ポリエチレン製の多孔質フィル
ム,又はこれらの不織布及び固体電解質膜を使用する。
Next, as the organic solvent of the non-aqueous electrolyte, PC (propylene carbonate) and DME (1,2) are used.
-Dimethoxyethane), ethylene carbonate, dimethyl carbonate, tetrahydrofuran or the like, or a mixture of two or more selected from the group. Further, as the separator, for example, a polypropylene porous film, a polyethylene porous film, or a nonwoven fabric and a solid electrolyte membrane thereof are used.

【0009】次に,上記非水電解液電池の構造として
は,正極,負極,セパレーターを,例えば積層状,スパ
イラル状,折り畳み状とする。また,非水電解液電池の
形状は,例えば平型,角型,円筒型等とする。
Next, as the structure of the non-aqueous electrolyte battery, the positive electrode, the negative electrode, and the separator are, for example, laminated, spiral, or folded. The shape of the non-aqueous electrolyte battery is, for example, flat, rectangular, cylindrical, or the like.

【0010】次に,上記被膜はリチウム化合物を含有し
ていることが好ましい。上記リチウム化合物としては,
フッ化リチウム,塩化リチウム,ヨウ化リチウム,炭酸
リチウム,硝酸リチウム,硫酸リチウム等がある。上記
リチウム化合物はイオン性が強く,リチウムイオン及び
リチウム原子を透過し易い。このため,上記被膜を通し
てリチウム吸蔵,放出が行われ,負極表面上でのリチウ
ム金属及び化合物のデンドライトの析出を抑制すること
ができる。より好ましくは,上記被膜はフッ化リチウム
を含有していることである。上記フッ化リチウムを含有
する被膜によって,充電時における負極でのリチウム金
属の析出状態を均一にすることができる。これにより,
負極におけるデンドライトの析出を防止することができ
る。
Next, the coating preferably contains a lithium compound. As the lithium compound,
Examples include lithium fluoride, lithium chloride, lithium iodide, lithium carbonate, lithium nitrate, and lithium sulfate. The lithium compound has strong ionicity and easily permeates lithium ions and lithium atoms. Therefore, lithium is absorbed and desorbed through the coating film, and the deposition of lithium metal and compound dendrites on the surface of the negative electrode can be suppressed. More preferably, the coating contains lithium fluoride. With the coating film containing lithium fluoride, the deposition state of lithium metal on the negative electrode during charging can be made uniform. By this,
It is possible to prevent the deposition of dendrites on the negative electrode.

【0011】次に,上記非水電解液は,水との反応によ
りフッ化水素を生成する支持電解質と水とを含有してい
ることが好ましい。上記支持電解質としては,例えばL
iPF6 ,LiBF4 ,LiAsF6 ,LiCF3 SO
3 ,LiCF3 CO2 ,LiN(CF3 SO2 2 ,L
iC(CF3 SO2 3 のグループから選ばれる1種又
は2種以上を使用する。
Next, it is preferable that the non-aqueous electrolyte contains water and a supporting electrolyte which produces hydrogen fluoride by reaction with water. Examples of the supporting electrolyte include L
iPF 6, LiBF 4, LiAsF 6 , LiCF 3 SO
3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , L
At least one selected from the group of iC (CF 3 SO 2 ) 3 is used.

【0012】上記支持電解質は水と反応してフッ化水素
を生成する。このため,本発明の非水電解液電池は,従
来品ほど厳密に水分が除去されていなくともよい。むし
ろ一定量の水分を含有していることが好ましい。なお,
非水電解液の導電性が低下しないこと,また水との反応
性が優れているという点から,LiPF6 ,LiB
4 ,LiAsF6 ,LiCF3 SO3 を上記支持電解
質として使用することが特に好ましい。
The supporting electrolyte reacts with water to produce hydrogen fluoride. Therefore, the non-aqueous electrolyte battery of the present invention does not have to have water removed as strictly as the conventional product. Rather, it preferably contains a certain amount of water. In addition,
Since the conductivity of the non-aqueous electrolyte does not decrease and the reactivity with water is excellent, LiPF 6 , LiB
It is particularly preferable to use F 4 , LiAsF 6 , LiCF 3 SO 3 as the supporting electrolyte.

【0013】また,上記非水電解液として,フッ化水素
を所定量含有している非水電解液を使用することもでき
る。上記非水電解液は,上述の支持電解質以外の,他の
支持電解質を含有していてもよい。例えば,LiClO
4 ,Li2 10Cl10,Li2 12Cl12,LiBPh
4 ,LiAlCl4 等が使用できる。これらの支持電解
質は,水との反応によりフッ化水素を生成するものでは
ないが,導電性に優れ,非水電解液中のフッ化水素との
反応性が低く安定であるという点より好ましい。
As the non-aqueous electrolyte, a non-aqueous electrolyte containing a predetermined amount of hydrogen fluoride can be used. The non-aqueous electrolyte may contain another supporting electrolyte other than the above supporting electrolyte. For example, LiClO
4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiBPh
4 , LiAlCl 4, etc. can be used. Although these supporting electrolytes do not generate hydrogen fluoride by reaction with water, they are preferable because they have excellent conductivity, low reactivity with hydrogen fluoride in the non-aqueous electrolyte, and stability.

【0014】上記非水電解液は3100ppm以下のフ
ッ化水素を含有していることが好ましい。上記フッ化水
素の含有量が3100ppmよりも多い場合には,過剰
のフッ化水素が,正極及び非水電解液等を分解するおそ
れがある。そのため,非水電解液電池の寿命が短くなっ
てしまう。また,上記非水電解液は10ppm以上のフ
ッ化水素を含有していることが好ましい。上記フッ化水
素の含有量が10ppmより少ない場合には,負極に皮
膜が生成しないおそれがある。なお,上記フッ化水素の
含有量は,より好ましくは,下限が500ppm,上限
が2600ppmである。更に好ましくは,下限が12
00ppm,上限が2000ppmである。
It is preferable that the non-aqueous electrolyte contains 3100 ppm or less of hydrogen fluoride. If the hydrogen fluoride content is more than 3100 ppm, excess hydrogen fluoride may decompose the positive electrode, the non-aqueous electrolyte solution and the like. Therefore, the life of the non-aqueous electrolyte battery is shortened. Further, it is preferable that the non-aqueous electrolyte contains 10 ppm or more of hydrogen fluoride. If the hydrogen fluoride content is less than 10 ppm, no film may be formed on the negative electrode. The lower limit of the hydrogen fluoride content is more preferably 500 ppm and the upper limit thereof is 2600 ppm. More preferably, the lower limit is 12
00 ppm, the upper limit is 2000 ppm.

【0015】次に,上記被膜は厚さが10nm〜1μm
であることが好ましい。上記厚さが10nmよりも薄い
場合には,非水電解液電池の放電時に負極の表面から被
膜が剥離するおそれがある。一方,1μmよりも厚い場
合には,リチウムイオン又はリチウム原子の透過の効率
を低下させるおそれがある。なお,上記リチウム被膜の
厚さは,より好ましくは,上限が500nm,下限が5
0nmである。
Next, the coating has a thickness of 10 nm to 1 μm.
Is preferred. If the thickness is less than 10 nm, the coating film may peel off from the surface of the negative electrode during discharge of the non-aqueous electrolyte battery. On the other hand, if it is thicker than 1 μm, the efficiency of permeation of lithium ions or lithium atoms may be reduced. The thickness of the lithium coating is more preferably 500 nm at the upper limit and 5 at the lower limit.
It is 0 nm.

【0016】次に,本発明の非水電解液電池の製造方法
としては,リチウムを吸蔵,放出できる正極と,リチウ
ム金属又はリチウム合金からなる負極と,セパレーター
と,非水電解液と,電池容器とを有する非水電解液電池
を製造するに当り,上記負極において,その表面を水と
反応させ,次いでフッ化水素と反応させることにより,
フッ化リチウムを含有する被膜を負極表面に形成するこ
とを特徴とする非水電解液電池の製造方法がある。
Next, as the method for producing the non-aqueous electrolyte battery of the present invention, a positive electrode capable of inserting and extracting lithium, a negative electrode made of lithium metal or a lithium alloy, a separator, a non-aqueous electrolyte solution, and a battery container In producing a non-aqueous electrolyte battery having and, by reacting the surface of the negative electrode with water and then with hydrogen fluoride,
There is a method for producing a non-aqueous electrolyte battery, which comprises forming a coating film containing lithium fluoride on the surface of a negative electrode.

【0017】次に,上記水との反応は,水を含有する液
体または気体と上記負極とを接触させることにより行う
ことが好ましい。即ち,上記負極を構成する物質との反
応性が弱い液体または気体に,一定量の水分を加え所望
の水分濃度とし,これらの液体または気体に,上記負極
を接触させることにより水との反応を行う。
Next, the reaction with water is preferably carried out by bringing a liquid or gas containing water into contact with the negative electrode. That is, a certain amount of water is added to a liquid or gas having a low reactivity with a substance forming the negative electrode to obtain a desired water concentration, and the liquid or gas is brought into contact with the negative electrode to react with water. To do.

【0018】上記液体としては,PC(プロピレンカー
ボネート)とDME(1,2−ジメトキシエタン),エ
チレンカーボネート,ジメチルカーボネート,テトラヒ
ドロフラン,ジオキソラン,ジメチルスルホキサイド,
ジエチルエーテル等の有機溶媒を1種または2種以上混
合したものを用いる。上記気体としては,アルゴン,ヘ
リウム,ネオン,乾燥空気等のリチウム金属と反応しな
い気体を使用する。この場合には,負極に効率よく被膜
を形成させることができる。
Examples of the liquid include PC (propylene carbonate) and DME (1,2-dimethoxyethane), ethylene carbonate, dimethyl carbonate, tetrahydrofuran, dioxolane, dimethyl sulfoxide,
One or a mixture of two or more organic solvents such as diethyl ether is used. A gas that does not react with lithium metal, such as argon, helium, neon, or dry air, is used as the gas. In this case, the coating film can be formed efficiently on the negative electrode.

【0019】また,上記液体として非水電解液を使用す
ることもできる。即ち,非水電解液中に予め水を含有さ
せておく。この場合には,上記非水電解液を使用し,非
水電解液電池を組付けることによって,自然と負極が水
と反応する。また,非水電解液電池の組付けに当たっ
て,各部品の乾燥工程を簡略化する方法がある。これに
より,各部品に付着した水が,組付けによって自然と負
極と接触し,反応することができる。この場合には,製
造コストを低くすることができる。
Further, a non-aqueous electrolytic solution can be used as the above liquid. That is, water is previously contained in the non-aqueous electrolyte. In this case, by using the above non-aqueous electrolyte and assembling the non-aqueous electrolyte battery, the negative electrode naturally reacts with water. In addition, there is a method of simplifying the drying process of each component when assembling the non-aqueous electrolyte battery. As a result, the water adhering to each component can naturally contact and react with the negative electrode during assembly. In this case, the manufacturing cost can be reduced.

【0020】次に,上記液体及び気体における水の濃度
は10ppm〜3000ppmであることが好ましい。
濃度が10ppmよりも薄い場合には,負極との反応が
充分発生せず,薄い被膜しか生成しないおそれがある。
一方,3000ppmよりも濃度が濃い場合には,被膜
が厚すぎるおそれがある。なお,上記水分の濃度は,よ
り好ましくは,上限が1500ppm,下限が10pp
mである。
Next, the concentration of water in the liquid and gas is preferably 10 ppm to 3000 ppm.
If the concentration is less than 10 ppm, the reaction with the negative electrode does not sufficiently occur, and only a thin film may be produced.
On the other hand, if the concentration is higher than 3000 ppm, the coating may be too thick. The concentration of the water is more preferably 1500 ppm for the upper limit and 10 pp for the lower limit.
m.

【0021】次に,上記フッ化水素との反応は,水との
反応によりフッ化水素を生成する支持電解質と非水電解
液中との水とを反応させ,フッ化水素を非水電解液中に
生成させた後,上記負極と該非水電解液とを接触させ
て,フッ化水素と反応させることが好ましい。この場合
には,上記非水電解液を使用し,非水電解液電池を組付
けることによって,自然と負極が生成したフッ化水素と
反応する。このため,非水電解液電池の製造の製造工程
が簡略となる。また,電池内部に水分が残留しているこ
とによって,フッ化水素の生成が促進され,負極に被膜
が形成される。よって,電池の製造工程における各部品
の乾燥を従来より簡略化することができ,製造コストを
低くすることができる。
Next, in the reaction with hydrogen fluoride, the supporting electrolyte, which produces hydrogen fluoride by the reaction with water, is reacted with water in the non-aqueous electrolyte solution, and the hydrogen fluoride is reacted with the non-aqueous electrolyte solution. It is preferable that the negative electrode and the non-aqueous electrolyte are brought into contact with each other and reacted with hydrogen fluoride after being generated therein. In this case, by using the above non-aqueous electrolyte and assembling the non-aqueous electrolyte battery, the negative electrode naturally reacts with the hydrogen fluoride generated. Therefore, the manufacturing process for manufacturing the non-aqueous electrolyte battery is simplified. In addition, the remaining water inside the battery promotes the generation of hydrogen fluoride and forms a film on the negative electrode. Therefore, the drying of each component in the manufacturing process of the battery can be simplified more than before, and the manufacturing cost can be reduced.

【0022】なお,上記分解によりフッ化水素を生成す
る支持電解質としては,前述したLiPF6 ,LiBF
4 ,LiAsF6 ,LiCF3 SO3 ,LiCF3 CO
2 ,LiN(CF3 SO2 2 ,LiC(CF3
2 3 のグループから選ばれる1種又は2種以上を使
用する。これにより,前述と同様の効果を得ることがで
きる。
As the supporting electrolyte for producing hydrogen fluoride by the above decomposition, LiPF 6 and LiBF described above are used.
4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO
2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 S
One or more selected from the group of O 2 ) 3 are used. As a result, the same effect as described above can be obtained.

【0023】次に,上記フッ化水素との反応は,フッ化
水素を含有する液体または気体と上記負極とを接触させ
ることにより行うことが好ましい。上記液体または気体
としては,前述した水との反応の際に使用したものと同
様の物質を使用する。また,フッ化水素を直接,非水電
解液の中に含有させてもよい。この場合には,上記同様
組付けによって,負極とフッ化水素が自然に接触し,被
膜が形成される。
Next, the reaction with hydrogen fluoride is preferably carried out by bringing a liquid or gas containing hydrogen fluoride into contact with the negative electrode. As the liquid or gas, the same substances as those used in the reaction with water described above are used. Further, hydrogen fluoride may be directly contained in the non-aqueous electrolyte. In this case, the negative electrode and hydrogen fluoride are naturally brought into contact with each other by the same assembly as above to form a film.

【0024】[0024]

【作用及び効果】本発明の非水電解液電池においては,
負極にフッ化リチウム等の被膜が形成されている。これ
により,上記被膜によって,負極でのデンドライトの析
出を防止することができる。従って,デンドライトの析
出に伴う,非水電解液電池のサイクル特性の悪化を防止
し,長寿命の非水電解液電池を得ることができる。従っ
て,サイクル特性に優れた,長寿命の電池を得ることが
できる。
[Operation and effect] In the non-aqueous electrolyte battery of the present invention,
A coating film of lithium fluoride or the like is formed on the negative electrode. As a result, the above coating can prevent the dendrite from being deposited on the negative electrode. Therefore, the deterioration of the cycle characteristics of the non-aqueous electrolyte battery due to the deposition of dendrites can be prevented, and a long-life non-aqueous electrolyte battery can be obtained. Therefore, a battery having excellent cycle characteristics and a long life can be obtained.

【0025】また,本発明の非水電解液電池において,
上記負極の被膜は,水及びフッ化水素との反応によって
形成されている。そのため,本発明は電池内に微量の水
分が残存していてもよく,従来のごとく,水分完全除去
のための設備等を必要としない。これにより,上記非水
電解液電池は組付けが容易であると共に製造コストも低
い。また,上述の製造方法によれば,上記のごとき優れ
た非水電解液電池を得ることができる。
In the non-aqueous electrolyte battery of the present invention,
The film of the negative electrode is formed by the reaction with water and hydrogen fluoride. Therefore, in the present invention, a small amount of water may remain in the battery, and unlike the conventional case, equipment for completely removing water is not required. As a result, the above non-aqueous electrolyte battery is easy to assemble and the manufacturing cost is low. Further, according to the above manufacturing method, the excellent non-aqueous electrolyte battery as described above can be obtained.

【0026】上記のごとく,本発明によれば,優れたサ
イクル特性を有し,低コストで,かつ長寿命である非水
電解液電池及びその製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a non-aqueous electrolyte battery having excellent cycle characteristics, low cost, and long life, and a method for manufacturing the same.

【0027】[0027]

【実施例】【Example】

実施例1 本発明の実施例にかかる非水電解液電池につき,図1及
び図4を用いて説明する。図1に示すごとく,本例の非
水電解液電池1は,正極11と,負極12と,セパレー
ター13と,非水電解液14と,ボタン型電池容器15
とを有する。上記負極12はその表面にフッ化リチウム
を含有する被膜を有している。上記正極11としては,
活物質としてLiMn2 4 ,導電体としてグラファイ
ト,接着剤としてPVDF(ポリフッ化ビニリデン)を
使用し,これらをプレスによって所望形状に成形したも
のを使用する。上記負極12としては,リチウム金属を
使用する。
Example 1 A non-aqueous electrolyte battery according to an example of the present invention will be described with reference to FIGS. 1 and 4. As shown in FIG. 1, the non-aqueous electrolyte battery 1 of this example includes a positive electrode 11, a negative electrode 12, a separator 13, a non-aqueous electrolyte solution 14, and a button type battery container 15.
Have and. The negative electrode 12 has a coating film containing lithium fluoride on its surface. As the positive electrode 11,
LiMn 2 O 4 is used as an active material, graphite is used as a conductor, PVDF (polyvinylidene fluoride) is used as an adhesive, and these are molded into a desired shape by pressing. As the negative electrode 12, lithium metal is used.

【0028】次に,非水電解液14としては,体積にお
いて等量づつ混合したPC(プロピレンカーボネート)
とDME(1,2−ジメトキシエタン)の混合液に,濃
度1mol/リットルにてLiPF6 を含有させた溶液
を使用する。
Next, as the non-aqueous electrolyte solution 14, PC (propylene carbonate) mixed in equal volumes in volume is used.
A solution containing LiPF 6 at a concentration of 1 mol / liter in a mixed solution of DME and 1,2-dimethoxyethane is used.

【0029】上記セパレーター13はポリプロピレン製
の多孔質フィルムよりなる。また,正極側集電体110
にはアルミニウム板,負極側集電体120にはニッケル
板を使用する。電池容器15は,正極缶と負極缶と両者
を固定するためのポリプロピレン製のガスケット16か
らなる。正極缶及び負極缶は共にステンレス鋼(SUS
304)よりなる。
The separator 13 is made of a polypropylene porous film. In addition, the positive electrode side current collector 110
Is an aluminum plate, and the negative electrode side current collector 120 is a nickel plate. The battery container 15 comprises a positive electrode can and a negative electrode can, and a polypropylene gasket 16 for fixing the both. Both the positive and negative electrode cans are made of stainless steel (SUS
304).

【0030】次に,上記負極における被膜は,負極表面
を水と反応させ,次いでフッ化水素と反応させることに
より生成する。なお,上記負極と水とを反応させるに当
たっては電池の組付けにあたって,各部品の乾燥工程を
簡略化しておくことにより,電池内部に水が自然と含有
されるようにする。また,上記負極とフッ化水素とを反
応させるに当たっては,非水電解液中に水と反応するこ
とによりフッ化水素を生成する支持電解質と水とを含有
させておく。なお,上記支持電解質とは前述したLiP
6 である。
Next, the coating film on the negative electrode is formed by reacting the surface of the negative electrode with water and then with hydrogen fluoride. In the reaction of the negative electrode with water, when the battery is assembled, the drying process of each component is simplified so that water is naturally contained in the battery. In reacting the negative electrode with hydrogen fluoride, the non-aqueous electrolyte solution contains a supporting electrolyte that produces hydrogen fluoride by reacting with water, and water. The supporting electrolyte is the LiP described above.
It is F 6 .

【0031】次に,本例における作用効果につき説明す
る。本例の非水電解液電池においては,負極はリチウム
金属よりなり,その表面にフッ化リチウムを含有する被
膜が形成されている。従って,充電時には負極の表面に
均質なリチウムを析出させることができる。このため,
リチウム金属及び化合物のデンドライトの生成が防止で
きる。
Next, the function and effect of this example will be described. In the non-aqueous electrolyte battery of this example, the negative electrode is made of lithium metal, and a coating film containing lithium fluoride is formed on the surface thereof. Therefore, it is possible to deposit homogeneous lithium on the surface of the negative electrode during charging. For this reason,
Generation of dendrites of lithium metal and compounds can be prevented.

【0032】次に,上記フッ化リチウムの被膜は以下の
様にして生成する。まず,リチウム金属は空気中におい
て自然酸化され,その表面に水酸化リチウム及び酸化リ
チウムの被膜が形成されている。そして,上記リチウム
金属よりなる負極に水を接触させることにより,図4に
示す(1)の反応が生じる。なお,水酸化リチウムは水
とは反応しない。よって,負極の表面の酸化リチウムは
水酸化リチウムの被膜に変化する。
Next, the lithium fluoride coating film is formed as follows. First, lithium metal is naturally oxidized in air, and a film of lithium hydroxide and lithium oxide is formed on the surface. Then, by bringing water into contact with the negative electrode made of the lithium metal, the reaction (1) shown in FIG. 4 occurs. Lithium hydroxide does not react with water. Therefore, the lithium oxide on the surface of the negative electrode changes to a lithium hydroxide film.

【0033】一方,非水電解液には特定量のLiPF6
が含有されている。このため,図4に示す(2),
(3)の反応が非水電解液内において発生し,非水電解
液内にフッ化水素が生成する。よって,上記負極と上述
の非水電解液とは電池内において,図4に示す(4)の
反応が発生し,負極表面にフッ化リチウムの被膜が生成
する。
On the other hand, a specific amount of LiPF 6 is contained in the non-aqueous electrolyte.
Is included. Therefore, (2) shown in FIG.
The reaction (3) occurs in the non-aqueous electrolytic solution, and hydrogen fluoride is generated in the non-aqueous electrolytic solution. Therefore, the above-mentioned negative electrode and the above-mentioned non-aqueous electrolyte undergo the reaction (4) shown in Fig. 4 in the battery, and a lithium fluoride film is formed on the surface of the negative electrode.

【0034】よって,本例の負極は,まず水と反応する
ことによって,その表面に水酸化リチウムを形成し,更
にその水酸化リチウムからフッ化リチウムの被膜を生成
する。また,非水電解液内には水と反応することによっ
て,フッ化水素を生成する支持電解質が含有されてい
る。
Therefore, the negative electrode of this example first reacts with water to form lithium hydroxide on its surface, and further forms a film of lithium fluoride from the lithium hydroxide. Further, the non-aqueous electrolytic solution contains a supporting electrolyte that produces hydrogen fluoride by reacting with water.

【0035】このため,本例においては,電池組付け前
に電池内に微量の水が残存していてもよい。従来のごと
く,水の完全除去のための設備等を必要としない。よっ
て,製造が容易であると共に,製造コストを低くするこ
とができる。上記のごとく,本発明によれば,優れたサ
イクル特性を有し,低コストで,かつ長寿命である非水
電解液電池及びその製造方法を提供することができる。
Therefore, in this example, a small amount of water may remain in the battery before the battery is assembled. There is no need for equipment to completely remove water as in the past. Therefore, the manufacturing is easy and the manufacturing cost can be reduced. As described above, according to the present invention, it is possible to provide a non-aqueous electrolyte battery having excellent cycle characteristics, low cost, and long life, and a method for manufacturing the same.

【0036】実施例2 本例は実施例1と同様の非水電解液電池を使用した試料
と比較例とを用いてサイクル特性を評価するものであ
る。上記サイクル特性の評価に当たっては,図2に示す
ごとく,放電容量とサイクル数の関係について測定する
ことにより行う。まず,上記サイクル数は以下の条件に
おいて測定する。即ち,電流密度2mA/cm2 ,電圧
4.1Vの定電流,定電圧充電を5時間,その後電流密
度2mA/cm2 で電圧2.0V迄の定電流放電を1サ
イクルとして,連続的に上記サイクルを繰り返す。放電
容量は,電圧4.1Vから2.0V迄の放電に要した時
間と,放電電流の積によって放電にかかる電荷の総量を
求め,これを正極の単位活物質重量当たりの容量に換算
して測定する。
Example 2 In this example, the cycle characteristics are evaluated using a sample using the same non-aqueous electrolyte battery as in Example 1 and a comparative example. The evaluation of the cycle characteristics is performed by measuring the relationship between the discharge capacity and the number of cycles, as shown in FIG. First, the number of cycles is measured under the following conditions. That is, a constant current with a current density of 2 mA / cm 2 and a voltage of 4.1 V and a constant voltage charge for 5 hours, and then a constant current discharge with a current density of 2 mA / cm 2 and a voltage of 2.0 V were set as one cycle, and the above was continuously performed. Repeat the cycle. The discharge capacity was calculated by multiplying the time required for discharging from 4.1V to 2.0V by the product of the discharge current and calculating the total amount of charge applied to the discharge, and converting this to the capacity per unit active material weight of the positive electrode. taking measurement.

【0037】次に,本例の試料と比較例について説明す
る。まず本例の試料1〜3及び比較例は,負極を除い
て,実施例1と同様の構成の非水電解液電池である。試
料1〜3における負極は以下の条件によって,水及びフ
ッ化水素と反応させ,その表面にフッ化リチウムを有す
る被膜を形成させる。
Next, the sample of this example and a comparative example will be described. First, Samples 1 to 3 and Comparative Example of this example are non-aqueous electrolyte batteries having the same configuration as that of Example 1 except for the negative electrode. The negative electrodes in Samples 1 to 3 are reacted with water and hydrogen fluoride under the following conditions to form a coating film containing lithium fluoride on the surface thereof.

【0038】まず,PCとDMEを体積において等量づ
つ混合した混合液に所定量の水を加え溶液(A)とす
る。上記溶液(A)にリチウム金属よりなる負極を72
時間浸漬する。次に,上記同様の混合液に濃度1mol
/リットルにてLiPF6 を含有させ,更に所定量の水
を加え溶液(B)とする。そして,上記溶液(B)を6
6時間放置し,溶液(B)内にフッ化水素を生成させ
る。次いで,溶液(B)に上記負極を47時間浸漬す
る。
First, a predetermined amount of water is added to a mixed liquid in which PC and DME are mixed in equal volumes, to obtain a solution (A). A negative electrode made of lithium metal was added to the solution (A).
Soak for hours. Next, in a mixed solution similar to the above, a concentration of 1 mol
LiPF 6 is contained at a concentration of 1 / liter, and a predetermined amount of water is further added to form a solution (B). Then, the solution (B) is added to 6
It is left to stand for 6 hours to generate hydrogen fluoride in the solution (B). Then, the negative electrode is immersed in the solution (B) for 47 hours.

【0039】そして,溶液(A)の水分濃度は,試料1
が800ppm,試料2が20ppm,試料3が400
ppmである。溶液(B)の水分濃度は,試料1が40
0ppm,試料2が800ppm,試料3が400pp
mである。また,溶液(B)において生成したフッ化水
素濃度は,試料1が960ppm,試料2が1750p
pm,試料3が960ppmである。なお,比較例は水
ともフッ化水素とも反応していないリチウム金属よりな
る負極を使用する。
Then, the water concentration of the solution (A) was
Is 800 ppm, Sample 2 is 20 ppm, Sample 3 is 400 ppm
It is ppm. The water concentration of the solution (B) was 40 for Sample 1.
0ppm, sample 2 800ppm, sample 3 400pp
m. Further, the concentration of hydrogen fluoride generated in the solution (B) was 960 ppm for sample 1 and 1750 p for sample 2.
pm, sample 3 is 960 ppm. In the comparative example, a negative electrode made of lithium metal that does not react with water or hydrogen fluoride is used.

【0040】次に,上記測定結果を図2にと共に示す。
即ち,負極表面にフッ化リチウムを有する被膜を形成し
ていない比較例は,65サイクルで放電容量の急速な低
下がみられる。しかし,本例にかかる試料1〜3につい
ては,上記のごとき放電容量の低下はみられない。
Next, the above measurement results are shown in FIG.
That is, in the comparative example in which the coating film containing lithium fluoride is not formed on the surface of the negative electrode, the discharge capacity is rapidly reduced after 65 cycles. However, in Samples 1 to 3 according to this example, the decrease in discharge capacity as described above is not observed.

【0041】また,次に上記試料の負極表面における被
膜の膜厚について説明する。上記膜厚は,該負極表面を
アルゴンイオンスパッタを併用したXPS分析による深
さ方向の組成分析から求めることができる。上記試料の
負極表面は,いずれもXPS分析のケミカルシフトより
フッ化リチウムが形成していることが確認され,それぞ
れの膜厚は,試料1が350nm,試料2が200n
m,試料3が100nmであった。
Next, the film thickness of the coating film on the negative electrode surface of the above sample will be described. The film thickness can be obtained by compositional analysis in the depth direction of the negative electrode surface by XPS analysis using argon ion sputtering. It was confirmed from the chemical shift of XPS analysis that lithium fluoride was formed on the negative electrode surface of each of the above samples, and the respective film thicknesses were 350 nm for sample 1 and 200 n for sample 2.
m, sample 3 was 100 nm.

【0042】よって,負極表面を水と反応させ,次いで
フッ化水素と反応させることにより,フッ化リチウムよ
りなる被膜が生成すること,また反応させる水分濃度及
びフッ化水素濃度により,被膜の厚さが変化することが
判る。また,被膜が非水電解液電池の放電容量をより長
期間高い状態に維持し,サイクル特性を向上させるこ
と,また,その向上の度合いは被膜の厚みに依存するこ
とが判る。
Therefore, by reacting the surface of the negative electrode with water and then with hydrogen fluoride, a coating film made of lithium fluoride is produced, and the thickness of the coating film depends on the concentration of water and hydrogen fluoride to be reacted. It can be seen that It is also found that the coating maintains the discharge capacity of the non-aqueous electrolyte battery in a high state for a longer period of time to improve the cycle characteristics, and that the degree of the improvement depends on the thickness of the coating.

【0043】実施例3 本例は実施例2における試料1〜3の非水電解液電池に
おいて,その非水電解液中に一定量の水を加えた場合の
サイクル特性を評価するものである。また,上記サイク
ル特性の評価については,図3に示すごとく,実施例2
と同様に,放電容量とサイクル数との関係について測定
することにより行う。
Example 3 In this example, in the nonaqueous electrolyte batteries of Samples 1 to 3 in Example 2, the cycle characteristics were evaluated when a certain amount of water was added to the nonaqueous electrolyte solution. As for the evaluation of the cycle characteristics, as shown in FIG.
In the same manner as above, the measurement is performed by measuring the relationship between the discharge capacity and the cycle number.

【0044】まず,本例の試料について説明する。試料
4〜6はそれぞれ,非水電解液として,体積において等
量づつ混合したPCとDMEの混合液に,濃度1mol
/リットルにてLiPF6 と400ppmの水を含有さ
せた溶液を使用する。そして,電解液以外の点につい
て,試料1と同様の構成を有するのが試料4,試料2と
同様なのが試料5,試料3と同様なのが試料6である。
First, the sample of this example will be described. Samples 4 to 6 were each used as a non-aqueous electrolytic solution in a mixed solution of PC and DME mixed in equal volumes, and the concentration was 1 mol.
A solution containing LiPF 6 and 400 ppm water at 1 / liter is used. Regarding the points other than the electrolytic solution, the sample 4 has the same structure as the sample 1, the sample 4 has the same structure as the sample 5, and the sample 6 has the same structure as the sample 3.

【0045】次に,上記測定結果を図3にと共に示す。
即ち,負極にフッ化リチウムを含む被膜を形成させ,非
水電解液中に水を含有させることによって,非水電解液
電池のサイクル特性を向上させることが判る。
Next, the above measurement results are shown in FIG.
That is, it is understood that the cycle characteristics of the non-aqueous electrolyte battery are improved by forming a coating film containing lithium fluoride on the negative electrode and including water in the non-aqueous electrolyte solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における非水電解液電池の断面図。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery in Example 1.

【図2】実施例2における放電容量とサイクル数との関
係を表す線図。
FIG. 2 is a graph showing the relationship between discharge capacity and cycle number in Example 2.

【図3】実施例3における放電容量とサイクル数との関
係を表す線図。
FIG. 3 is a diagram showing the relationship between the discharge capacity and the number of cycles in Example 3.

【図4】実施例1におけるフッ化リチウム被膜の生成に
関する反応の説明図。
FIG. 4 is an explanatory diagram of a reaction related to formation of a lithium fluoride coating film in Example 1.

【符号の説明】[Explanation of symbols]

1...非水電解液電池, 11...正極, 12...負極, 13...セパレーター, 14...非水電解液, 15...電池容器, 1. . . Non-aqueous electrolyte battery, 11. . . Positive electrode, 12. . . Negative electrode, 13. . . separator, 14. . . Non-aqueous electrolyte, 15. . . Battery container,

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−124700(JP,A) 特開 平6−290773(JP,A) 特開 平7−296851(JP,A) 特開 平6−168721(JP,A) 特開 平6−168715(JP,A) 特開 平6−44972(JP,A) 特開 昭63−26951(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 10/40 H01M 4/62 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-6-124700 (JP, A) JP-A-6-290773 (JP, A) JP-A-7-296851 (JP, A) JP-A-6- 168721 (JP, A) JP-A-6-168715 (JP, A) JP-A-6-44972 (JP, A) JP-A-63-26951 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 10/40 H01M 4/62

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムを吸蔵,放出できる正極と,リ
チウム金属又はリチウム合金からなる負極と,セパレー
ターと,非水電解液と,電池容器とを有する非水電解液
二次電池を製造するに当り,上記負極において,その表
面を水と反応させ,次いでフッ化水素と反応させること
により,フッ化リチウムを含有する被膜を該表面に形成
することを特徴とする非水電解液二次電池の製造方法。
1. A nonaqueous electrolytic solution comprising a positive electrode capable of inserting and extracting lithium, a negative electrode made of lithium metal or a lithium alloy, a separator, a nonaqueous electrolytic solution, and a battery container.
In manufacturing the secondary battery, the surface of the negative electrode is reacted with water and then with hydrogen fluoride to form a coating film containing lithium fluoride on the surface. Manufacturing method of water electrolyte secondary battery.
【請求項2】 請求項1において,上記水との反応は,
水を含有する液体または気体と上記負極とを接触させる
ことにより行うことを特徴とする非水電解液二次電池の
製造方法。
2. The reaction with water according to claim 1,
A method for producing a non-aqueous electrolyte secondary battery, which is performed by bringing a liquid or gas containing water into contact with the negative electrode.
【請求項3】 請求項2において,上記液体及び気体に
含有される水の濃度を10ppm〜3000ppmの範
囲とすることを特徴とする非水電解液二次電池の製造方
法。
3. The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 2, wherein the concentration of water contained in the liquid and the gas is in the range of 10 ppm to 3000 ppm.
【請求項4】 請求項1,2又は3において,水との反
応によりフッ化水素を生成する支持電解質と非水電解液
中との水とを反応させ,フッ化水素を非水電解液中に生
成させた後,上記負極と該非水電解液とを接触させて,
フッ化水素と反応させることを特徴とする非水電解液
電池の製造方法。
4. The method according to claim 1, 2 or 3, wherein the supporting electrolyte that produces hydrogen fluoride by the reaction with water is reacted with water in the non-aqueous electrolyte solution, and the hydrogen fluoride is dissolved in the non-aqueous electrolyte solution. And then contacting the negative electrode with the non-aqueous electrolyte,
Aqueous electrolyte secondary, characterized in that the reaction with hydrogen fluoride
Next battery manufacturing method.
【請求項5】 請求項1,2又は3において,上記フッ
化水素との反応は,フッ化水素を含有する液体または気
体と上記負極とを接触させることにより行うことを特徴
とする非水電解液二次電池の製造方法。
5. The nonaqueous electrolysis according to claim 1, wherein the reaction with the hydrogen fluoride is performed by bringing a liquid or gas containing hydrogen fluoride into contact with the negative electrode. Liquid secondary battery manufacturing method.
JP11468294A 1994-04-28 1994-04-28 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Fee Related JP3417054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11468294A JP3417054B2 (en) 1994-04-28 1994-04-28 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11468294A JP3417054B2 (en) 1994-04-28 1994-04-28 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07302617A JPH07302617A (en) 1995-11-14
JP3417054B2 true JP3417054B2 (en) 2003-06-16

Family

ID=14644010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11468294A Expired - Fee Related JP3417054B2 (en) 1994-04-28 1994-04-28 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3417054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101800A1 (en) * 2016-12-01 2018-06-07 주식회사 엘지화학 Negative electrode for lithium metal secondary battery and method for manufacturing same negative electrode

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416440B2 (en) * 1997-01-10 2003-06-16 三洋電機株式会社 Anode for lithium battery and lithium battery
JPH11162520A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP3428428B2 (en) * 1998-04-03 2003-07-22 松下電器産業株式会社 Negative electrode for non-aqueous electrolyte battery and method for producing the same
JP4626013B2 (en) * 2000-06-08 2011-02-02 住友電気工業株式会社 Lithium secondary battery negative electrode
JP3812324B2 (en) * 2000-11-06 2006-08-23 日本電気株式会社 Lithium secondary battery and manufacturing method thereof
CN1179432C (en) 2001-05-31 2004-12-08 三星Sdi株式会社 Method for forming lithium metal positive-pole protective layer of lithium cell
KR100413796B1 (en) * 2001-05-31 2004-01-03 삼성에스디아이 주식회사 Method of manufacturing lithium metal anode protective layer for lithium battery
JP2003045415A (en) * 2001-07-31 2003-02-14 Nec Corp Negative electrode for secondary battery
JP4618399B2 (en) 2002-06-11 2011-01-26 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP4033074B2 (en) 2002-08-29 2008-01-16 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
WO2005029613A1 (en) 2003-09-16 2005-03-31 Nec Corporation Nonaqueous electrolyte secondary battery
US8445144B2 (en) 2003-12-15 2013-05-21 Nec Corporation Additive for an electrolyte solution for an electrochemical device
US8227116B2 (en) 2003-12-15 2012-07-24 Nec Corporation Secondary battery
JP4229062B2 (en) * 2004-12-22 2009-02-25 ソニー株式会社 Lithium ion secondary battery
US20070082268A1 (en) * 2005-09-02 2007-04-12 Kurt Star Chemical protection of metal surface
US20090220857A1 (en) * 2005-09-02 2009-09-03 Toyota Motor Engineering & Manufacturing North America, Inc. Chemical protection of metal surface
JP5169400B2 (en) 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP5546787B2 (en) * 2009-03-26 2014-07-09 株式会社東芝 Non-aqueous electrolyte battery
JP5776932B2 (en) * 2011-07-11 2015-09-09 株式会社豊田自動織機 Lithium ion secondary battery operating method and battery device
KR102050836B1 (en) * 2015-12-08 2019-12-03 주식회사 엘지화학 Electrolye for lithium secondary battery and lithium secondary battery comprising the same
CN109219900B (en) 2016-04-05 2021-09-21 麻省理工学院 Lithium metal electrode and battery thereof
CN109328413A (en) * 2016-06-21 2019-02-12 应用材料公司 The boundary layer that lithium metal for improvement recycles
KR102353825B1 (en) * 2019-09-02 2022-01-20 순천향대학교 산학협력단 Anode for lithium secondary battery and preparation method, lithium secondary battery comprising the same
JPWO2021193838A1 (en) * 2020-03-26 2021-09-30

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101325B2 (en) * 1986-07-19 1994-12-12 日立マクセル株式会社 Lithium secondary battery
JPH06290773A (en) * 1993-03-30 1994-10-18 Nippondenso Co Ltd Lithium secondary battery
JP3067426B2 (en) * 1992-11-30 2000-07-17 キヤノン株式会社 Lithium secondary battery and method for producing positive electrode active material
JP3487556B2 (en) * 1992-11-30 2004-01-19 キヤノン株式会社 Lithium secondary battery
JPH0644972A (en) * 1992-07-23 1994-02-18 Fuji Photo Film Co Ltd Lithium secondary battery
JP3232710B2 (en) * 1992-10-08 2001-11-26 松下電器産業株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JPH07296851A (en) * 1994-04-25 1995-11-10 Zenichiro Takehara Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101800A1 (en) * 2016-12-01 2018-06-07 주식회사 엘지화학 Negative electrode for lithium metal secondary battery and method for manufacturing same negative electrode
CN109155400A (en) * 2016-12-01 2019-01-04 株式会社Lg化学 Lithium metal secondary battery cathode and its manufacturing method
US10756340B2 (en) 2016-12-01 2020-08-25 Lg Chem, Ltd. Negative electrode for lithium metal secondary battery and method for manufacturing the same
CN109155400B (en) * 2016-12-01 2021-08-17 株式会社Lg化学 Negative electrode for lithium metal secondary battery and method for producing same

Also Published As

Publication number Publication date
JPH07302617A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP3417054B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US20090053594A1 (en) Rechargeable air battery and manufacturing method
US11011321B2 (en) Electrochemical energy storage device
AU2009278054A1 (en) Air secondary battery and method for producing the same
JPH11135148A (en) Organic electrolyte and lithium secondary battery using the same
US4499161A (en) Electrochemical cell using dimethoxymethane and/or trimethoxymethane as solvent for electrolyte
JP5556618B2 (en) Lithium air battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP2778065B2 (en) Non-aqueous electrolyte secondary battery
JP2002324550A (en) Non-aqueous electrolyte secondary battery
JP3475488B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
JP6057208B2 (en) Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
US6174627B1 (en) Nonaqueous electrolyte secondary battery and method of preparing the same
JP3937256B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
Matsuda et al. Solvent mixing effects on the electrode characteristics of secondary Li/TiS2 cells
Hayashi et al. Electrolyte for high voltage Li/LiMn1. 9Co0. 1O4 cells
JPH09134720A (en) Lithium secondary battery
KR100459882B1 (en) Non-aqueous electrolytes for lithium rechargeable battery and lithium rechargeable battery using the same
EP4167311A1 (en) Active material for an electrode for a battery cell and method for manufacturing thereof
CN114868274B (en) Solid electrolyte mesophase in lithium secondary batteries
WO2022118545A1 (en) Positive electrode active material, lithium secondary battery, and method for producing positive electrode active material
JP2018163754A (en) Lithium air cell
JP2001143761A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees