JP2005194156A - Method of manufacturing nickel hydroxide powder - Google Patents

Method of manufacturing nickel hydroxide powder Download PDF

Info

Publication number
JP2005194156A
JP2005194156A JP2004003812A JP2004003812A JP2005194156A JP 2005194156 A JP2005194156 A JP 2005194156A JP 2004003812 A JP2004003812 A JP 2004003812A JP 2004003812 A JP2004003812 A JP 2004003812A JP 2005194156 A JP2005194156 A JP 2005194156A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
hydroxide powder
aqueous solution
ammine complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003812A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健次 鈴木
Junichi Shigeta
潤一 茂田
Koji Takewaki
幸治 竹脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004003812A priority Critical patent/JP2005194156A/en
Publication of JP2005194156A publication Critical patent/JP2005194156A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a nickel hydroxide powder by which a nickel hydroxide powder to be used as a positive electrode active substance for a nickel hydrogen cell or the like can be manufactured quickly so that it has a high purity and a large bulk density, and by which the efficiency can be improved. <P>SOLUTION: In the manufacturing method, ammonia is added to an aqueous solution containing nickel to produce a nickel ammine complex solution to be a raw material, and the nickel ammine complex solution is treated at a high temperature and under high pressure to cause the following reaction to precipitate nickel hydroxide particles. The reaction formulae are [Ni(NH<SB>3</SB>)<SB>x</SB>]<SP>2+</SP>+xH<SB>2</SB>O←→Ni<SP>2+</SP>+xNH<SB>4</SB><SP>+</SP>+xOH<SP>-</SP>and Ni<SP>2+</SP>+2OH<SP>-</SP>→Ni(OH)<SB>2</SB>(ppt). In the formulae, ←→ means an equilibrium, reversibleness, or the like, and (ppt) expresses a precipitate, precipitation, or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水酸化ニッケル粉末の製造方法に関するものである。   The present invention relates to a method for producing nickel hydroxide powder.

従来、ニッケル水素電池等の正極活物質として使用される水酸化ニッケル粉末は、原料となる硫酸ニッケル(NiSO4)にアルカリとして水酸化ナトリウム(NaOH)等を添加することにより、
NiSO4+2NaOH→Ni(OH)2↓+Na2SO4
という反応を起こさせ、水酸化ニッケル粒子を析出させ、これを脱水・乾燥させて製造するようにしていた。
Conventionally, nickel hydroxide powder used as a positive electrode active material for nickel metal hydride batteries, by adding sodium hydroxide (NaOH) or the like as an alkali to nickel sulfate (NiSO 4 ) as a raw material,
NiSO 4 + 2NaOH → Ni (OH) 2 ↓ + Na 2 SO 4
In this way, nickel hydroxide particles are precipitated, and this is dehydrated and dried.

しかしながら、前述の如き従来の水酸化ニッケル粉末の製造方法では、水酸化ニッケルと一緒に、溶解度の低い硫酸ナトリウム(Na2SO4)が不純物として生成されてしまうため、このような不純物の充分な洗浄工程が必要となり、効率の低下につながると共に、高純度の水酸化ニッケル粉末が得にくいという欠点を有していた。 However, in the conventional method for producing nickel hydroxide powder as described above, sodium sulfate (Na 2 SO 4 ) having low solubility is produced as an impurity together with nickel hydroxide. A cleaning step is required, leading to a reduction in efficiency and a disadvantage that it is difficult to obtain high-purity nickel hydroxide powder.

このため、近年においては、ニッケル水素電池等の正極活物質である水酸化ニッケルは、ニッケルアンミン錯体溶液を原料にし、常圧下約40[℃]でアルカリを添加する等して製造されている。(例えば、特許文献1或いは特許文献2参照。)
特開平7−211318号公報 特開平11−67200号公報
For this reason, in recent years, nickel hydroxide, which is a positive electrode active material for nickel-metal hydride batteries, is manufactured by using a nickel ammine complex solution as a raw material and adding an alkali at about 40 [° C.] under normal pressure. (For example, see Patent Document 1 or Patent Document 2.)
JP-A-7-213318 JP-A-11-67200

しかしながら、特許文献1或いは特許文献2に示されているような従来の水酸化ニッケル粉末の製造方法では、水酸化ニッケル粒子の密度を制御するために結晶成長を遅くしているため、粉末の製造に一昼夜乃至二昼夜に亘る非常に長い時間が必要となっていた。尚、一昼夜乃至二昼夜に亘る非常に長い時間をかけて結晶成長を遅くし嵩密度を大きくした水酸化ニッケル粒子は、この後更に乾燥させる必要がある。   However, in the conventional nickel hydroxide powder manufacturing method as shown in Patent Document 1 or Patent Document 2, the crystal growth is slowed down in order to control the density of the nickel hydroxide particles. It took a very long time from one day to two days. The nickel hydroxide particles that have slowed the crystal growth and increased the bulk density over a very long time from day to night need to be further dried.

本発明は、斯かる実情に鑑み、ニッケル水素電池等の正極活物質として使用される水酸化ニッケル粉末を、迅速に且つ高純度で嵩密度が大きくなるように製造し得、効率向上を図り得る水酸化ニッケル粉末の製造方法を提供しようとするものである。   In view of such circumstances, the present invention can produce nickel hydroxide powder used as a positive electrode active material such as a nickel metal hydride battery quickly and with high purity so as to increase the bulk density, thereby improving efficiency. An object of the present invention is to provide a method for producing nickel hydroxide powder.

本発明は、ニッケルを含む水溶液にアンモニアを添加して原料となるニッケルアンミン錯体溶液を生成し、該ニッケルアンミン錯体溶液を高温高圧下で処理することにより、
[Ni(NH3X2++XH2O⇔Ni2++XNH4 ++XOH-
Ni2++2OH-→Ni(OH)2
という反応を起こさせ、水酸化ニッケル粒子を析出させることを特徴とする水酸化ニッケル粉末の製造方法にかかるものである。
The present invention produces a nickel ammine complex solution as a raw material by adding ammonia to an aqueous solution containing nickel, and by treating the nickel ammine complex solution under high temperature and high pressure,
[Ni (NH 3 ) X ] 2+ + XH 2 O⇔Ni 2+ + XNH 4 + + XOH
Ni 2+ + 2OH → Ni (OH) 2
The nickel hydroxide powder manufacturing method is characterized by causing the above reaction to precipitate nickel hydroxide particles.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前述の如く、ニッケルアンミン錯体溶液を高温高圧下で処理すると、一昼夜乃至二昼夜に亘る非常に長い時間を必要とせずにごく短時間で、不純物が少なく、略球形の超微細粒子が緻密に充填されて空隙が小さく、結晶性の高い粉末を得ることが可能となる。   As described above, when the nickel ammine complex solution is treated under high temperature and high pressure, it does not require a very long time from one day to two days, and it is very short in time and has a small amount of impurities. Thus, it is possible to obtain a powder having a small gap and high crystallinity.

前記水酸化ニッケル粉末の製造方法においては、処理温度を150〜250[℃]程度とし、処理圧力を処理温度における飽和蒸気圧とすることが有効となる。   In the method for producing the nickel hydroxide powder, it is effective to set the processing temperature to about 150 to 250 [° C.] and set the processing pressure to the saturated vapor pressure at the processing temperature.

又、アンモニアの添加量を調節して原料のpHを10〜11程度とすることが望ましい。   It is desirable to adjust the amount of ammonia added so that the pH of the raw material is about 10-11.

一方、ニッケルを含む水溶液は、塩化ニッケル水溶液とすることができる。   On the other hand, the aqueous solution containing nickel can be a nickel chloride aqueous solution.

又、ニッケルを含む水溶液は、硫酸ニッケル水溶液とすることもできる。   Further, the aqueous solution containing nickel may be a nickel sulfate aqueous solution.

本発明の請求項1〜5記載の水酸化ニッケル粉末の製造方法によれば、ニッケル水素電池等の正極活物質として使用される水酸化ニッケル粉末を、迅速に且つ高純度で嵩密度が大きくなるように製造し得、効率向上を図り得るという優れた効果を奏し得る。   According to the method for producing a nickel hydroxide powder according to claims 1 to 5 of the present invention, the nickel hydroxide powder used as a positive electrode active material for a nickel metal hydride battery can be rapidly and highly purified with a large bulk density. Thus, it is possible to produce an excellent effect that the efficiency can be improved.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

先ず、ニッケルを含む水溶液として、例えば、塩化ニッケル(NiCl2)水溶液を用い、該塩化ニッケル水溶液にアンモニアを添加して
NiCl2+XNH3→[Ni(NH3X2++2Cl-
という反応を起こさせ、原料となるニッケルアンミン錯体溶液を生成する。尚、前記ニッケルを含む水溶液としては、塩化ニッケル水溶液の代りに、硫酸ニッケル(NiSO4)水溶液を用いることもできる。
First, as an aqueous solution containing nickel, for example, a nickel chloride (NiCl 2 ) aqueous solution is used, and ammonia is added to the nickel chloride aqueous solution to obtain NiCl 2 + XNH 3 → [Ni (NH 3 ) X ] 2+ + 2Cl −.
To produce a nickel ammine complex solution as a raw material. In addition, as the aqueous solution containing nickel, a nickel sulfate (NiSO 4 ) aqueous solution can be used instead of the nickel chloride aqueous solution.

このとき、アンモニアの添加量を調節して原料のpHを10〜11程度とする。   At this time, the pH of the raw material is adjusted to about 10 to 11 by adjusting the addition amount of ammonia.

続いて、前記原料となるニッケルアンミン錯体溶液を圧力容器内に入れ高温高圧下で処理することにより、
[Ni(NH3X2++XH2O⇔Ni2++XNH4 ++XOH-
Ni2++2OH-→Ni(OH)2
という反応を起こさせ、水酸化ニッケル粒子を析出させる。
Subsequently, by placing the nickel ammine complex solution as the raw material in a pressure vessel and processing under high temperature and high pressure,
[Ni (NH 3 ) X ] 2+ + XH 2 O⇔Ni 2+ + XNH 4 + + XOH
Ni 2+ + 2OH → Ni (OH) 2
To cause nickel hydroxide particles to precipitate.

ここで、処理温度は150〜250[℃]程度とし、処理圧力は処理温度における飽和蒸気圧とする。   Here, the processing temperature is about 150 to 250 [° C.], and the processing pressure is a saturated vapor pressure at the processing temperature.

前述の如く、ニッケルアンミン錯体溶液を高温高圧下で処理すると、一昼夜乃至二昼夜に亘る非常に長い時間を必要とせずにごく短時間で、不純物が少なく、略球形の超微細粒子が緻密に充填されて空隙が小さく、結晶性の高い粉末を得ることが可能となる。   As described above, when the nickel ammine complex solution is treated under high temperature and high pressure, it does not require a very long time from one day to two days, and it is very short in time and has a small amount of impurities. Thus, it is possible to obtain a powder having a small void and high crystallinity.

尚、ニッケル水素電池の性能を高めるために、原料であるニッケルアンミン錯体溶液を調整する際に、コバルト(Co)等を添加し、水酸化コバルトを共晶させたり、水酸化ニッケル粒子表面にコーティングさせたりすることも可能であることは言うまでもない。   In order to improve the performance of nickel metal hydride batteries, when preparing the nickel ammine complex solution as a raw material, cobalt (Co) or the like is added to eutectic cobalt hydroxide, or the surface of nickel hydroxide particles is coated. Needless to say, it is also possible to make it happen.

又、前述のような処理を行った場合、アンモニアを容易に回収でき、再利用することも可能となる。   In addition, when the above treatment is performed, ammonia can be easily recovered and reused.

こうして、ニッケル水素電池等の正極活物質として使用される水酸化ニッケル粉末を、迅速に且つ高純度で嵩密度が大きくなるように製造し得、効率向上を図り得る。   In this way, nickel hydroxide powder used as a positive electrode active material for nickel-metal hydride batteries can be manufactured quickly and with high purity and a large bulk density, and efficiency can be improved.

尚、本発明の水酸化ニッケル粉末の製造方法は、上述の例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the manufacturing method of the nickel hydroxide powder of this invention is not limited only to the above-mentioned example, Of course, various changes can be added within the range which does not deviate from the summary of this invention.

以下に、実際に行った実験結果を示す。   The actual experimental results are shown below.

実験装置としては、図1に示すような小型バッチ式オートクレーブを用いた。   As an experimental apparatus, a small batch type autoclave as shown in FIG. 1 was used.

該小型バッチ式オートクレーブは、加熱炉1内に反応セル2を設置し、これをモータ3によってクランク軸4と連接リンク5を介し駆動される撹拌機構6により揺動させ、反応セル2内に入れた試料7を撹拌できるようにしたものである。   The small batch type autoclave has a reaction cell 2 installed in a heating furnace 1, and is shaken by a stirring mechanism 6 driven by a motor 3 via a crankshaft 4 and a connecting link 5 and placed in the reaction cell 2. The sample 7 was allowed to be stirred.

前記反応セル2は、ライナー8が内張りされたセル本体9と、内栓10を有する上蓋11とを備え、セル本体9の底部には、熱電対取付座12が形成されている。   The reaction cell 2 includes a cell main body 9 lined with a liner 8 and an upper lid 11 having an inner plug 10. A thermocouple mounting seat 12 is formed on the bottom of the cell main body 9.

先ず、試薬としては、塩化ニッケル(NiCl2)水溶液(濃度:1[mol/l])を用い、該塩化ニッケル水溶液にアンモニア水(濃度:30[wt%])を添加して
NiCl2+XNH3→[Ni(NH3X2++2Cl-
という反応を起こさせ、原料となるニッケルアンミン錯体溶液を生成した。
First, as a reagent, a nickel chloride (NiCl 2 ) aqueous solution (concentration: 1 [mol / l]) was used. Ammonia water (concentration: 30 [wt%]) was added to the nickel chloride aqueous solution, and NiCl 2 + XNH 3 was added. → [Ni (NH 3 ) X ] 2+ + 2Cl
A nickel ammine complex solution as a raw material was produced.

このとき、アンモニアの添加量を調節して原料のpHを、8〜9程度、10〜11程度、12以上と変化させた。   At this time, the amount of ammonia added was adjusted to change the pH of the raw material to about 8-9, about 10-11, or 12 or more.

続いて、前記原料となるニッケルアンミン錯体溶液(20[ml])を試料7として反応セル2のセル本体9内に入れ、上蓋11を閉じ、加熱炉1内に設置した後、高温高圧下で処理することにより、
[Ni(NH3X2++XH2O⇔Ni2++XNH4 ++XOH-
Ni2++2OH-→Ni(OH)2
という反応を起こさせ、水酸化ニッケル粒子を析出させた。
Subsequently, the nickel ammine complex solution (20 [ml]) as the raw material was placed in the cell body 9 of the reaction cell 2 as a sample 7, the upper lid 11 was closed, and the sample was placed in the heating furnace 1, and then at high temperature and high pressure. By processing
[Ni (NH 3 ) X ] 2+ + XH 2 O⇔Ni 2+ + XNH 4 + + XOH
Ni 2+ + 2OH → Ni (OH) 2
Reaction was caused to deposit nickel hydroxide particles.

ここで、処理温度は、100〜250[℃](100[℃]、125[℃]、150[℃]、175[℃]、200[℃]、250[℃])と変化させ、処理圧力は各処理温度における飽和蒸気圧とし、処理時間は10分とした。   Here, the processing temperature is changed to 100 to 250 [° C.] (100 [° C.], 125 [° C.], 150 [° C.], 175 [° C.], 200 [° C.], 250 [° C.]), and the processing pressure is changed. Is the saturated vapor pressure at each treatment temperature, and the treatment time is 10 minutes.

この後、析出させた水酸化ニッケル粒子は、孔径1[μm]のガラスフィルタを用いて濾過し、80[℃]の温度で24時間乾燥させ、各種分析に用いた。   Thereafter, the precipitated nickel hydroxide particles were filtered using a glass filter having a pore diameter of 1 [μm], dried at a temperature of 80 [° C.] for 24 hours, and used for various analyses.

分析により、アンモニア添加量と水酸化ニッケル粉末の嵩密度との関係は、図2に示すようになり、処理温度を200[℃]とし、pHを10〜11程度とした場合に、ニッケル水素電池等において嵩密度の目標値とされる2[g/cm3]程度以上にすることができた。尚、処理温度を150[℃]、175[℃]、250[℃]とし、pHを10〜11程度とした場合にも、嵩密度を2[g/cm3]程度以上にすることができたが、処理温度を100[℃]、125[℃]とし、pHを10〜11程度とした場合には、嵩密度を2[g/cm3]程度以上にすることはできなかった。 As a result of analysis, the relationship between the amount of ammonia added and the bulk density of the nickel hydroxide powder is as shown in FIG. 2. When the treatment temperature is 200 [° C.] and the pH is about 10 to 11, the nickel metal hydride battery In other words, the target value of the bulk density was 2 [g / cm 3 ] or more. In addition, even when the treatment temperature is 150 [° C.], 175 [° C.], 250 [° C.] and the pH is about 10 to 11, the bulk density can be about 2 [g / cm 3 ] or more. However, when the treatment temperatures were 100 [° C.] and 125 [° C.] and the pH was about 10 to 11, the bulk density could not be increased to about 2 [g / cm 3 ] or more.

又、水酸化ニッケル粉末の粒径は、緻密に充填する上で極端に小さすぎても逆に密度を上げることができないため、30〜60[μm]程度が目標値とされているが、アンモニア添加量と水酸化ニッケル粉末の粒径との関係は、図3に示すようになり、処理温度を200[℃]とし、pHを10〜11程度とした場合に、粒径を30[μm]程度以上にすることができた。尚、処理温度を150[℃]、175[℃]、250[℃]とし、pHを10〜11程度とした場合にも、粒径を30[μm]程度以上にすることができたが、処理温度を100[℃]、125[℃]とし、pHを10〜11程度とした場合には、粒径を30[μm]程度以上にすることはできなかった。   In addition, the particle size of the nickel hydroxide powder cannot be increased on the contrary even if it is extremely small for dense packing, so the target value is about 30 to 60 [μm]. The relationship between the amount added and the particle size of the nickel hydroxide powder is as shown in FIG. 3. When the processing temperature is 200 [° C.] and the pH is about 10 to 11, the particle size is 30 [μm]. It was able to be more than about. In addition, even when the treatment temperature was 150 [° C.], 175 [° C.], 250 [° C.] and the pH was about 10 to 11, the particle size could be about 30 [μm] or more. When the treatment temperatures were 100 [° C.] and 125 [° C.] and the pH was about 10 to 11, the particle size could not be increased to about 30 [μm] or more.

以上の実験結果に基づき、ニッケルを含む水溶液に対するアンモニアの添加量を調節して原料となるニッケルアンミン錯体溶液のpHを10〜11程度とし、処理温度を150〜250[℃]程度とし、処理圧力を処理温度における飽和蒸気圧とすることにより、一昼夜乃至二昼夜に亘る非常に長い時間を必要とせずにごく短時間(10分程度)で、不純物が少なく、略球形の超微細粒子が緻密に充填されて空隙が小さく、結晶性の高い粉末を得られることが確認できた。   Based on the above experimental results, the pH of the nickel ammine complex solution as a raw material is adjusted to about 10 to 11, the processing temperature is set to about 150 to 250 [° C.], and the processing pressure is adjusted by adjusting the amount of ammonia added to the aqueous solution containing nickel. By setting the saturated vapor pressure at the processing temperature, the very spherical ultrafine particles are densely contained in a very short time (about 10 minutes) without requiring a very long time from day to night. It was confirmed that a powder having a small gap and high crystallinity can be obtained.

本発明の水酸化ニッケル粉末の製造方法を実施するために使用した実験装置を示す概略構成図である。It is a schematic block diagram which shows the experimental apparatus used in order to implement the manufacturing method of the nickel hydroxide powder of this invention. 図1の実験装置を使用して行った実験において得られた、アンモニア添加量と水酸化ニッケル粉末の嵩密度との関係を示す線図である。It is a diagram which shows the relationship between the amount of ammonia addition, and the bulk density of nickel hydroxide powder obtained in the experiment conducted using the experimental apparatus of FIG. 図1の実験装置を使用して行った実験において得られた、アンモニア添加量と水酸化ニッケル粉末の粒径との関係を示す線図である。It is a diagram which shows the relationship between the addition amount of ammonia and the particle size of nickel hydroxide powder obtained in the experiment conducted using the experimental apparatus of FIG.

符号の説明Explanation of symbols

1 加熱炉
2 反応セル
3 モータ
4 クランク軸
5 連接リンク
6 撹拌機構
7 試料
8 ライナー
9 セル本体
10 内栓
11 上蓋
12 熱電対取付座
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Reaction cell 3 Motor 4 Crankshaft 5 Connection link 6 Stirring mechanism 7 Sample 8 Liner 9 Cell main body 10 Inner plug 11 Top lid 12 Thermocouple mounting seat

Claims (5)

ニッケルを含む水溶液にアンモニアを添加して原料となるニッケルアンミン錯体溶液を生成し、該ニッケルアンミン錯体溶液を高温高圧下で処理することにより、
[Ni(NH3X2++XH2O⇔Ni2++XNH4 ++XOH-
Ni2++2OH-→Ni(OH)2
という反応を起こさせ、水酸化ニッケル粒子を析出させることを特徴とする水酸化ニッケル粉末の製造方法。
Ammonia is added to an aqueous solution containing nickel to produce a nickel ammine complex solution as a raw material, and the nickel ammine complex solution is treated under high temperature and high pressure,
[Ni (NH 3 ) X ] 2+ + XH 2 O⇔Ni 2+ + XNH 4 + + XOH
Ni 2+ + 2OH → Ni (OH) 2
A method of producing nickel hydroxide powder, wherein nickel hydroxide particles are precipitated.
処理温度を150〜250[℃]程度とし、処理圧力を処理温度における飽和蒸気圧とした請求項1記載の水酸化ニッケル粉末の製造方法。   The method for producing nickel hydroxide powder according to claim 1, wherein the treatment temperature is about 150 to 250 ° C., and the treatment pressure is a saturated vapor pressure at the treatment temperature. アンモニアの添加量を調節して原料のpHを10〜11程度とした請求項1又は2記載の水酸化ニッケル粉末の製造方法。   The method for producing nickel hydroxide powder according to claim 1 or 2, wherein the pH of the raw material is adjusted to about 10 to 11 by adjusting the amount of ammonia added. ニッケルを含む水溶液を塩化ニッケル水溶液とした請求項1〜3いずれかに記載の水酸化ニッケル粉末の製造方法。   The manufacturing method of the nickel hydroxide powder in any one of Claims 1-3 which made the aqueous solution containing nickel the nickel chloride aqueous solution. ニッケルを含む水溶液を硫酸ニッケル水溶液とした請求項1〜3いずれかに記載の水酸化ニッケル粉末の製造方法。   The manufacturing method of the nickel hydroxide powder in any one of Claims 1-3 which made the aqueous solution containing nickel the nickel sulfate aqueous solution.
JP2004003812A 2004-01-09 2004-01-09 Method of manufacturing nickel hydroxide powder Pending JP2005194156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003812A JP2005194156A (en) 2004-01-09 2004-01-09 Method of manufacturing nickel hydroxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003812A JP2005194156A (en) 2004-01-09 2004-01-09 Method of manufacturing nickel hydroxide powder

Publications (1)

Publication Number Publication Date
JP2005194156A true JP2005194156A (en) 2005-07-21

Family

ID=34818601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003812A Pending JP2005194156A (en) 2004-01-09 2004-01-09 Method of manufacturing nickel hydroxide powder

Country Status (1)

Country Link
JP (1) JP2005194156A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364899C (en) * 2006-06-09 2008-01-30 厦门大学 Core-shell composite phase-structured nickel hydroxide and its preparation method and application
JP2010037163A (en) * 2008-08-06 2010-02-18 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its manufacturing method
JP2013075826A (en) * 2012-12-27 2013-04-25 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its production method
WO2017038589A1 (en) * 2015-08-31 2017-03-09 住友金属鉱山株式会社 Process for producing nickel powder
JP2017150063A (en) * 2015-08-31 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
US10471514B2 (en) 2014-02-21 2019-11-12 Kochi University, National University Corporation Method for producing nickel powder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPH03109218A (en) * 1989-09-22 1991-05-09 Ube Ind Ltd Platy nickel hydroxide and production thereof
JPH05254847A (en) * 1992-03-13 1993-10-05 Hitachi Maxell Ltd Production of nickel hyroxide powder for nickel electrode
JPH09139206A (en) * 1994-05-20 1997-05-27 Hyundai Motor Co Method of manufacturing high dense nickel hydroxide that is used for rechargeable alkali storage battery
JPH111324A (en) * 1997-06-10 1999-01-06 Sakai Chem Ind Co Ltd Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JPH11246226A (en) * 1998-03-02 1999-09-14 Mitsui Mining & Smelting Co Ltd Nickel hydroxide for production of nickel oxyhydroxide
JPH11268917A (en) * 1998-03-20 1999-10-05 Toyota Central Res & Dev Lab Inc Production of nickel hydroxide
JP2001076728A (en) * 1999-06-30 2001-03-23 Seimi Chem Co Ltd Manufacture of positive electrode active material for lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPH03109218A (en) * 1989-09-22 1991-05-09 Ube Ind Ltd Platy nickel hydroxide and production thereof
JPH05254847A (en) * 1992-03-13 1993-10-05 Hitachi Maxell Ltd Production of nickel hyroxide powder for nickel electrode
JPH09139206A (en) * 1994-05-20 1997-05-27 Hyundai Motor Co Method of manufacturing high dense nickel hydroxide that is used for rechargeable alkali storage battery
JPH111324A (en) * 1997-06-10 1999-01-06 Sakai Chem Ind Co Ltd Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JPH11246226A (en) * 1998-03-02 1999-09-14 Mitsui Mining & Smelting Co Ltd Nickel hydroxide for production of nickel oxyhydroxide
JPH11268917A (en) * 1998-03-20 1999-10-05 Toyota Central Res & Dev Lab Inc Production of nickel hydroxide
JP2001076728A (en) * 1999-06-30 2001-03-23 Seimi Chem Co Ltd Manufacture of positive electrode active material for lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364899C (en) * 2006-06-09 2008-01-30 厦门大学 Core-shell composite phase-structured nickel hydroxide and its preparation method and application
JP2010037163A (en) * 2008-08-06 2010-02-18 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its manufacturing method
JP2013075826A (en) * 2012-12-27 2013-04-25 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its production method
US10471514B2 (en) 2014-02-21 2019-11-12 Kochi University, National University Corporation Method for producing nickel powder
WO2017038589A1 (en) * 2015-08-31 2017-03-09 住友金属鉱山株式会社 Process for producing nickel powder
JP2017150063A (en) * 2015-08-31 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
CN107921544A (en) * 2015-08-31 2018-04-17 住友金属矿山株式会社 The manufacture method of nickel powder

Similar Documents

Publication Publication Date Title
JP5828923B2 (en) Method for producing nickel powder
JP6610425B2 (en) Method for producing nickel powder
CN108328665A (en) A kind of preparation method of battery grade spherical cobaltosic oxide particle
JPS63291813A (en) Production of scandium oxide having dodecahedral crystal form
US9528170B2 (en) Method for producing a high-purity nanometer zinc oxide from steel plant smoke and dust by ammonia decarburization
CN107285341B (en) Method for preparing magnetic P-type molecular sieve by using coal gangue
JP2017150063A5 (en)
CN110451538A (en) A kind of preparation method of high-purity boehmite and high purity aluminium oxide
ES2235906T3 (en) PROCEDURE FOR MANUFACTURING COBALT HYDROXIDE, OR MIXED HYDROXIDES OF COBALT, HIGH DENSITY AND LARGE SIZE OF PARTICLE AND A PRODUCT MANUFACTURED THROUGH THIS PROCEDURE.
CN110527833B (en) Method for preparing simple substance material by using reduction of monoatomic carbon
CN106558695A (en) A kind of nickel cobalt aluminum complex hydroxide, nickel cobalt aluminium composite oxide and preparation method thereof
JP2011256090A (en) Iron sulfide and method for producing the same
JP2005194156A (en) Method of manufacturing nickel hydroxide powder
CN110697776B (en) Preparation method of spherical nano chromium sesquioxide
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
JP4079983B1 (en) Method for producing fine particle platinum powder
CN116199270A (en) Treatment process for reducing wastewater in cobalt oxide production process
CN101570478B (en) Spherical cobalt oxalate powder and production method thereof
Mao et al. Nano-CaCO3 synthesis by tangential jet from carbide slag
JP2016108646A (en) Method for producing cobalt powder
JP2002274847A (en) Method of preparing needle zinc oxide
CN113213558A (en) Large-particle spherical cobalt carbonate precursor, preparation method thereof and preparation method of cobaltosic oxide
JP2017155253A (en) Production method of nickel powder
JPS6223912A (en) Production of fine metallic powder
JP6480237B2 (en) Method of manufacturing scorodite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629