JPH11111158A - Electron gun - Google Patents

Electron gun

Info

Publication number
JPH11111158A
JPH11111158A JP27162597A JP27162597A JPH11111158A JP H11111158 A JPH11111158 A JP H11111158A JP 27162597 A JP27162597 A JP 27162597A JP 27162597 A JP27162597 A JP 27162597A JP H11111158 A JPH11111158 A JP H11111158A
Authority
JP
Japan
Prior art keywords
electron
electron emission
needle
electron gun
emission source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27162597A
Other languages
Japanese (ja)
Other versions
JP3792859B2 (en
Inventor
Sashiro Kamimura
佐四郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Itron Corp
Original Assignee
Ise Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27162597A priority Critical patent/JP3792859B2/en
Application filed by Ise Electronics Corp filed Critical Ise Electronics Corp
Priority to DE69823441T priority patent/DE69823441T2/en
Priority to EP98118206A priority patent/EP0905737B1/en
Priority to EP03017290A priority patent/EP1361592B1/en
Priority to DE69834673T priority patent/DE69834673T2/en
Priority to US09/162,731 priority patent/US6239547B1/en
Priority to KR10-1998-0041222A priority patent/KR100363005B1/en
Publication of JPH11111158A publication Critical patent/JPH11111158A/en
Priority to KR10-2002-0051959A priority patent/KR100539696B1/en
Application granted granted Critical
Publication of JP3792859B2 publication Critical patent/JP3792859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make an electron gun durable and able to emit more electrons. SOLUTION: A needle like emitter 103 is constituted of an aggregate of carbon nanotubes. In other words, a plurality of needle like columnar graphite members having several 10 μm length and made of aggregate of carbon nanotubes are bundled approximately unidirectionally in the longitudinal direction to give the needle like emitter 103. The needle-like emitter 103 has about 5 mm length an 1-3 mmϕ and the tip part within 0.5-1 mm from the tip is processed to be taper.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ブラウン管など
に用いられる電子銃に関する。
The present invention relates to an electron gun used for a cathode ray tube or the like.

【0002】[0002]

【従来の技術】電子銃は、例えばテレビジョンに用いら
れる受像管の構成要素である。この電子銃(カソード)
の基本的な構成は、図3に示すように、先端部が閉じた
構成の陰極筒301の先端に、電子放出層302が形成
されている。また、陰極筒301の内部にはヒータ30
3が備えられている。この陰極筒301は、マグネシウ
ムや珪素などの還元剤をドープした高純度のNiから構
成し、厚さは0.1mm程度である。また、電子放出層
302は、酸化バリウム・酸化カルシウム・酸化ストロ
ンチウムのいわゆる三元酸化物から構成するようにして
いる。
2. Description of the Related Art An electron gun is a component of a picture tube used for a television, for example. This electron gun (cathode)
As shown in FIG. 3, the basic configuration of the first embodiment is such that an electron emission layer 302 is formed at the tip of a cathode tube 301 having a closed tip. The heater 30 is provided inside the cathode tube 301.
3 are provided. The cathode tube 301 is made of high-purity Ni doped with a reducing agent such as magnesium or silicon, and has a thickness of about 0.1 mm. The electron emission layer 302 is made of a so-called ternary oxide of barium oxide / calcium oxide / strontium oxide.

【0003】そして、電子放出層302は、ヒータ30
3により800℃程度に加熱されると、主にバリウムが
還元されて遊離し、この遊離されたバリウムが電子放出
層302表面に向かい、これが電子放出を容易にしてい
る。放出された電子ビームは、第1グリッド304で集
められ、第2グリッド305,第3グリッド306,ホ
ーカス電極である第4グリッド307,第5グリッド3
08を通過して蛍光面309に収束される(図3
(b))。
[0003] The electron emission layer 302 is provided with a heater 30.
When heated to about 800 ° C. by 3, barium is mainly reduced and released, and the released barium is directed to the surface of the electron-emitting layer 302, which facilitates electron emission. The emitted electron beams are collected by the first grid 304, and the second grid 305, the third grid 306, the fourth grid 307 as a focus electrode, and the fifth grid 3
08 and converges on the phosphor screen 309 (FIG. 3
(B)).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、そのバ
リウムは使用中にガスと反応して消耗するので、常に電
子放出層302内部から補給されるように作られてい
る。しかし、多くの電子を放出させるために高電流を流
そうとしても、そのバリウムの補給が十分にはできな
い。加えて、電子放出のために加熱されるが、電子放出
層302は熱で劣化するという問題があった。
However, since the barium is consumed by reacting with the gas during use, the barium is always supplied from the inside of the electron emission layer 302. However, even if an attempt is made to flow a high current to emit many electrons, barium cannot be sufficiently supplied. In addition, heating is performed for electron emission, but there is a problem that the electron emission layer 302 is deteriorated by heat.

【0005】この発明は、以上のような問題点を解消す
るためになされたものであり、耐性がありより多くの電
子を放出させることができるようにすることを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to be resistant and capable of emitting more electrons.

【0006】[0006]

【課題を解決するための手段】この発明の電子銃は、円
筒状のグラファイトからなるカーボンナノチューブから
構成された電子放出源と、その電子放出源の電子放出側
に所定の距離離れて配置されてその先端部より電子を引
き出すための電子引き出し電極とを備えるようにした。
このように構成したので、電子放出源と電子引き出し電
極との間に電位を印加すると、カーボンナノチューブの
先端に高電界が集中して電子が引き出される。
An electron gun according to the present invention comprises an electron emission source composed of a carbon nanotube made of cylindrical graphite and a predetermined distance from the electron emission side of the electron emission source. An electron extraction electrode for extracting electrons from the tip is provided.
With this configuration, when a potential is applied between the electron emission source and the electron extraction electrode, a high electric field is concentrated on the tip of the carbon nanotube, and electrons are extracted.

【0007】[0007]

【発明の実施の形態】以下この発明の実施の形態を図を
参照して説明する。図1は、この発明の実施の形態にお
ける電子銃の要部構成を示す構成図である。この電子銃
は、基台101上にxy方向に移動可能な可動ステージ
102を備え、その可動ステージ102上に針状エミッ
タ(電子放出源)103を配置している。また、針状エ
ミッタ103の先端部延長上に、基台101に固定され
た状態で引き出し電極104が配置されている。なお、
この引き出し電極104には、アパーチャ104aが形
成されている。つまり、この実施の形態では、針状エミ
ッタ103と引き出し電極104とによる電界放出型冷
陰極電子源で電子銃を構成するようにした。また、可動
ステージ102を移動させて、アパーチャ104aに対
する針状エミッタ103の先端部の位置と向きを制御す
ることで、電子引き出し効率の最適化を図ることができ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing a main configuration of an electron gun according to an embodiment of the present invention. This electron gun includes a movable stage 102 that can move in xy directions on a base 101, and a needle-like emitter (electron emission source) 103 is arranged on the movable stage 102. Further, on the extension of the distal end portion of the needle-shaped emitter 103, the extraction electrode 104 is arranged in a state fixed to the base 101. In addition,
The extraction electrode 104 has an aperture 104a. That is, in this embodiment, the electron gun is constituted by a field emission type cold cathode electron source including the needle-shaped emitter 103 and the extraction electrode 104. Further, by moving the movable stage 102 and controlling the position and the direction of the tip of the needle-shaped emitter 103 with respect to the aperture 104a, the efficiency of electron extraction can be optimized.

【0008】そして、この実施の形態においては、針状
エミッタ103をカーボンナノチューブの集合体から構
成するようにした。より詳しく説明すれば、カーボンナ
ノチューブの集合体からなる長さ数10μmの針形状の
柱状グラファイト複数が、その長手方向をほぼ同一方向
に向けて束ねられた状態に、針状エミッタ103が構成
されている。そして、針状エミッタ103は、長さ5m
m程度で1〜3mmφに形成され、その先端部の0.5
〜1mm程度のところが、先細となるように加工形成さ
れている。ここで、カーボンナノチューブについて説明
すると、これは、例えば図1(d)に示すように、完全
にグラファイト化して筒状をなし、その直径は4〜50
nm程度であり、その長さは1μmオーダである。そし
て、図1(e)に示すように、その先端部は五員環が入
ることにより閉じている。なお、おれることで先端が閉
じていない場合もある。
[0008] In this embodiment, the needle-like emitter 103 is made of an aggregate of carbon nanotubes. More specifically, the needle-like emitter 103 is configured such that a plurality of needle-like columnar graphites each having a length of several 10 μm, each of which is made of an aggregate of carbon nanotubes, are bundled with their longitudinal directions substantially in the same direction. I have. The needle-like emitter 103 has a length of 5 m.
m about 1-3 mmφ, and 0.5
A portion of about 1 mm is formed so as to be tapered. Here, the carbon nanotube will be described. For example, as shown in FIG. 1D, the carbon nanotube is completely graphitized to have a cylindrical shape, and has a diameter of 4 to 50.
nm and its length is on the order of 1 μm. Then, as shown in FIG. 1 (e), the tip is closed by the five-membered ring. Note that the tip may not be closed due to being on.

【0009】このカーボンナノチューブは、ヘリウムガ
ス中で2本の炭素電極を1〜2mm程度離した状態で直
流アーク放電を起こしたときに、陽極側の炭素が蒸発し
て陰極側の炭素電極先端に凝集した堆積物中に形成され
る。すなわち、炭素電極間のギャップを1mm程度に保
った状態で、ヘリウム中で安定なアーク放電を持続させ
ると、陽極の炭素電極の直径とほぼ同じ径をもつ円柱状
の堆積物が、陰極先端に形成される。その円柱状の堆積
物は、外側の固い殻と、その内側のもろくて黒い芯との
2つの領域から構成されている。そして、内側の芯は、
堆積物柱の長さ方向にのびた繊維状の組織をもってい
る。その繊維状の組織が、上述した柱状グラファイトで
あり、堆積物柱を切り出すことなどにより、柱状グラフ
ァイトを得ることができる。なお、外側の固い殻は、グ
ラファイトの多結晶体である。
When a direct current arc discharge occurs in a helium gas with two carbon electrodes separated by about 1 to 2 mm, the carbon on the anode side evaporates and is deposited on the tip of the carbon electrode on the cathode side. Formed in aggregated sediments. That is, when a stable arc discharge is maintained in helium with the gap between the carbon electrodes maintained at about 1 mm, a columnar deposit having a diameter substantially equal to the diameter of the carbon electrode of the anode is formed at the tip of the cathode. It is formed. The columnar deposit is composed of two regions: a hard shell on the outside and a fragile black core on the inside. And the inner core is
It has a fibrous structure extending along the length of the sediment column. The fibrous structure is the above-described columnar graphite, and columnar graphite can be obtained by cutting out a sediment column or the like. The outer hard shell is a graphite polycrystal.

【0010】そして、その柱状グラファイトにおいて、
カーボンナノチューブは、炭素の多面体微粒子(ナノポ
リヘドロン:nanopolyhedoron)とともに、複数が集合
している。そして、図1(f)に示すように、柱状グラ
ファイト131は、カーボンナノチューブ132が、ほ
ぼ同一方向を向いて集合した構造体である。なお、この
図1(e)は、柱状グラファイトを途中で切った断面を
みる斜視図である。なお、カーボンナノチューブは、図
1(d),(e)では、グラファイトの単層が円筒状に
閉じた形状として模式的に示した。しかし、これに限る
ものではなく、複数のグラファイトの層が入れ子構造的
に積層し、それぞれのグラファイト層が円筒状に閉じた
同軸多層構造となっている形状もある。そして、それら
の中心部分は、空洞となっている。
And in the columnar graphite,
A plurality of carbon nanotubes are aggregated together with carbon polyhedral fine particles (nanopolyhedoron). Then, as shown in FIG. 1F, the columnar graphite 131 is a structure in which the carbon nanotubes 132 are gathered in substantially the same direction. FIG. 1E is a perspective view showing a cross section of the columnar graphite cut in the middle. The carbon nanotube is schematically shown in FIGS. 1D and 1E as a single-layer graphite closed in a cylindrical shape. However, the shape is not limited to this, and there is also a shape in which a plurality of graphite layers are stacked in a nested structure, and each of the graphite layers has a coaxial multilayer structure closed in a cylindrical shape. And the center part of them is hollow.

【0011】以上示したように、この実施の形態におい
ては、カーボンナノチューブによる針状エミッタ103
と引き出し電極104とによる電界放出型冷陰極電子源
で電子銃を構成するようにした。この結果、この実施の
形態によれば、電流密度(エミッション量)として10
A/cm2 の性能が得られた。また、理論的には、40
0A/cm2 の性能が得られる。そして、可動ステージ
102による針状エミッタ103の位置制御ができるの
で、針状エミッタ103の先端部が劣化して削られてき
ても、針状エミッタ103の配置を引き出し電極104
側へ移動させることができ、電子放出効率を維持してい
くことが容易に可能となる。
As described above, in this embodiment, the needle-shaped emitter 103 made of carbon nanotubes is used.
An electron gun is constituted by a field emission cold-cathode electron source composed of a cathode and an extraction electrode 104. As a result, according to this embodiment, the current density (emission amount) is 10
A / cm 2 performance was obtained. In theory, 40
A performance of 0 A / cm 2 is obtained. Further, since the position of the needle-shaped emitter 103 can be controlled by the movable stage 102, even if the tip of the needle-shaped emitter 103 is deteriorated and shaved, the arrangement of the needle-shaped emitter 103 can be extracted and the extraction electrode 104 can be used.
Side, and it is possible to easily maintain the electron emission efficiency.

【0012】ところで、上述では、柱状グラファイトを
その長手方向をほぼ同一方向に向けて束ねることでエミ
ッタを構成するようにしたが、これに限るものではな
い。図2に示すように、陰極筒201の先端部に複数の
柱状グラファイト(エミッタ)202を配置し、陰極筒
201と取り出し電極203との間に電界をかけること
で、柱状グラファイト202より電子を取り出すように
してもよい。この柱状グラファイト202は、例えば、
導電性接着剤により陰極筒201に固定すればよい。こ
の場合、図2(a)に示すように、柱状グラファイト2
02の長手方向の向きを、電子取り出し方向になるべく
揃えるようにして配置した方がよい。
In the above description, the emitter is formed by bundling columnar graphite with the longitudinal direction thereof substantially in the same direction. However, the present invention is not limited to this. As shown in FIG. 2, a plurality of columnar graphites (emitters) 202 are arranged at the tip of the cathode tube 201, and electrons are extracted from the columnar graphite 202 by applying an electric field between the cathode tube 201 and the extraction electrode 203. You may do so. The columnar graphite 202 is, for example,
What is necessary is just to fix to the cathode cylinder 201 with a conductive adhesive. In this case, as shown in FIG.
It is better to arrange them in such a way that the direction of the longitudinal direction of 02 is aligned as much as possible in the electron extraction direction.

【0013】図2(c)は柱状グラファイトの長手方向
の向きによるエミッション量の違いを示す特性図であ
る。図2(c)において、(c−1)は、図2(a)に
示したように、柱状グラファイト202の長手方向の向
きが、ほぼ電子取り出し方向を向いた状態の場合のエミ
ッション量を示している。また、(c−2)は、図2
(a)に示したように、柱状グラファイト202の長手
方向の向きが、あまり電子取り出し方向を向いていない
状態の場合のエミッション量を示している。図2(c)
から明らかなように、柱状グラファイトの長手方向の向
きが、電子取り出し方向の向いていた方が、より多くの
エミッション量を得ることができる。
FIG. 2C is a characteristic diagram showing a difference in emission amount depending on a longitudinal direction of the columnar graphite. In FIG. 2C, (c-1) shows the emission amount when the longitudinal direction of the columnar graphite 202 is substantially in the electron extraction direction as shown in FIG. 2A. ing. (C-2) corresponds to FIG.
As shown in (a), the emission amount in the state where the longitudinal direction of the columnar graphite 202 is not so oriented in the electron extraction direction is shown. FIG. 2 (c)
As is clear from FIG. 5, a larger amount of emission can be obtained when the longitudinal direction of the columnar graphite is oriented in the electron extraction direction.

【0014】[0014]

【発明の効果】以上説明したように、この発明では、円
筒状のグラファイトからなるカーボンナノチューブから
構成された電子放出源と、その電子放出源の電子放出側
に所定の距離離れて配置されてその先端部より電子を引
き出すための電子引き出し電極とを備えるようにした。
このように構成したので、電子銃は、電子放出源と電子
引き出し電極との間に電位を印加すると、カーボンナノ
チューブの先端に高電界が集中して電子が引き出される
電界放出型冷陰極電子源の構成となる。そして、この発
明によれば、従来のように使用中にガスと反応して熱電
子発生源が消耗するなどのことが無く、より長期に安定
してより多くの電子を放出させることができるという効
果を有する。
As described above, according to the present invention, an electron emission source composed of a carbon nanotube made of a cylindrical graphite, and an electron emission source arranged at a predetermined distance from the electron emission side of the electron emission source. An electron extraction electrode for extracting electrons from the tip is provided.
With this configuration, the electron gun is a field emission cold cathode electron source in which a high electric field is concentrated at the tip of the carbon nanotube and electrons are extracted when a potential is applied between the electron emission source and the electron extraction electrode. Configuration. According to the present invention, it is possible to stably emit more electrons for a longer period of time without the need to react with the gas during use and to consume the thermoelectron generation source as in the related art. Has an effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態における電子銃の要部
構成を示す構成図である。
FIG. 1 is a configuration diagram showing a main configuration of an electron gun according to an embodiment of the present invention.

【図2】 この発明の他の実施の形態における電子銃の
要部構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a main configuration of an electron gun according to another embodiment of the present invention.

【図3】 従来の電子銃の構成を示す説明図である。FIG. 3 is an explanatory diagram showing a configuration of a conventional electron gun.

【符号の説明】[Explanation of symbols]

101…基台、102…可動ステージ、103…針状エ
ミッタ(電子放出源)、104…引き出し電極、104
a…アパーチャ、131…柱状グラファイト、132…
カーボンナノチューブ。
101: base, 102: movable stage, 103: needle-like emitter (electron emission source), 104: extraction electrode, 104
a: aperture, 131: columnar graphite, 132:
carbon nanotube.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状のグラファイトからなるカーボン
ナノチューブから構成された電子放出源と、 前記電子放出源の電子放出側に所定の距離離れて配置さ
れてその先端部より電子を引き出すための電子引き出し
電極とを備えたことを特徴とする電子銃。
1. An electron emission source made of a carbon nanotube made of cylindrical graphite, and an electron extraction source arranged at a predetermined distance on the electron emission side of the electron emission source to extract electrons from a tip end thereof. An electron gun comprising: an electrode;
【請求項2】 請求項1記載の電子銃において、 前記電子放出源は、前記カーボンナノチューブの集合体
からなる柱状グラファイトから構成されていることを特
徴とする電子銃。
2. The electron gun according to claim 1, wherein said electron emission source is made of columnar graphite made of an aggregate of said carbon nanotubes.
【請求項3】 請求項2記載の電子銃において、 前記電子放出源は、前記柱状グラファイト複数がその長
手方向が同一方向を向いた集合体から構成され、針状に
形成されていることを特徴とする電子銃。
3. The electron gun according to claim 2, wherein the electron emission source is formed of an aggregate of the plurality of columnar graphites whose longitudinal directions are oriented in the same direction, and is formed in a needle shape. And an electron gun.
【請求項4】 請求項1〜3記載の電子銃において、 前記電子放出源は、前記電子引き出し電極との相対位置
を変更できる移動可能な可動ステージ上に固定されてい
ることを特徴とする電子銃。
4. The electron gun according to claim 1, wherein said electron emission source is fixed on a movable movable stage capable of changing a relative position with respect to said electron extraction electrode. gun.
JP27162597A 1997-09-30 1997-10-03 Electron gun Expired - Fee Related JP3792859B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP27162597A JP3792859B2 (en) 1997-10-03 1997-10-03 Electron gun
EP98118206A EP0905737B1 (en) 1997-09-30 1998-09-25 Electron-emitting source
EP03017290A EP1361592B1 (en) 1997-09-30 1998-09-25 Method of manufacturing an electron-emitting source
DE69834673T DE69834673T2 (en) 1997-09-30 1998-09-25 Method for producing an electron-emitting source
DE69823441T DE69823441T2 (en) 1997-09-30 1998-09-25 Electron emitting source
US09/162,731 US6239547B1 (en) 1997-09-30 1998-09-28 Electron-emitting source and method of manufacturing the same
KR10-1998-0041222A KR100363005B1 (en) 1997-09-30 1998-09-30 Electronic emission source and its manufacturing method
KR10-2002-0051959A KR100539696B1 (en) 1997-09-30 2002-08-30 Electron emission source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27162597A JP3792859B2 (en) 1997-10-03 1997-10-03 Electron gun

Publications (2)

Publication Number Publication Date
JPH11111158A true JPH11111158A (en) 1999-04-23
JP3792859B2 JP3792859B2 (en) 2006-07-05

Family

ID=17502691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27162597A Expired - Fee Related JP3792859B2 (en) 1997-09-30 1997-10-03 Electron gun

Country Status (1)

Country Link
JP (1) JP3792859B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400091B1 (en) 1999-03-18 2002-06-04 Matsushita Electric Industrial Co., Ltd. Electron emission element and image output device
US6456691B2 (en) 2000-03-06 2002-09-24 Rigaku Corporation X-ray generator
US6692327B1 (en) 1999-01-13 2004-02-17 Matsushita Electric Industrial Co., Ltd. Method for producing electron emitting element
JP2004511884A (en) * 2000-10-06 2004-04-15 ザ ユニバーシティ オブ ノース カロライナ − チャペル ヒル X-ray generation mechanism using electron field emission cathode
US6734087B2 (en) 2001-11-07 2004-05-11 Hitachi, Ltd. Method for fabricating electrode device
JP2008505832A (en) * 2004-07-06 2008-02-28 ナノプロプリエタリー,インコーポレイテッド Activation of carbon nanotubes for field emission applications
JP2008507096A (en) * 2004-07-14 2008-03-06 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Microdischarge device assisted by field emission
JP2009231287A (en) * 2008-03-19 2009-10-08 Qinghua Univ Carbon nanotube needle and manufacturing method of the same
JP2009231288A (en) * 2008-03-19 2009-10-08 Qinghua Univ Field emission type electron source
US7751528B2 (en) 2007-07-19 2010-07-06 The University Of North Carolina Stationary x-ray digital breast tomosynthesis systems and related methods
US8237344B2 (en) 2008-02-01 2012-08-07 Tsinghua University Electron emission apparatus and method for making the same
US8481158B2 (en) 2004-04-19 2013-07-09 Technology Research Institute Of Osaka Prefecture Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
US8995608B2 (en) 2009-01-16 2015-03-31 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
US9782136B2 (en) 2014-06-17 2017-10-10 The University Of North Carolina At Chapel Hill Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging
US10980494B2 (en) 2014-10-20 2021-04-20 The University Of North Carolina At Chapel Hill Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692327B1 (en) 1999-01-13 2004-02-17 Matsushita Electric Industrial Co., Ltd. Method for producing electron emitting element
US6400091B1 (en) 1999-03-18 2002-06-04 Matsushita Electric Industrial Co., Ltd. Electron emission element and image output device
US6456691B2 (en) 2000-03-06 2002-09-24 Rigaku Corporation X-ray generator
JP2004511884A (en) * 2000-10-06 2004-04-15 ザ ユニバーシティ オブ ノース カロライナ − チャペル ヒル X-ray generation mechanism using electron field emission cathode
US6734087B2 (en) 2001-11-07 2004-05-11 Hitachi, Ltd. Method for fabricating electrode device
US8481158B2 (en) 2004-04-19 2013-07-09 Technology Research Institute Of Osaka Prefecture Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
US9682862B2 (en) 2004-04-19 2017-06-20 Taiyo Nippon Sanso Corporation Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
JP2008505832A (en) * 2004-07-06 2008-02-28 ナノプロプリエタリー,インコーポレイテッド Activation of carbon nanotubes for field emission applications
JP2008507096A (en) * 2004-07-14 2008-03-06 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Microdischarge device assisted by field emission
US7751528B2 (en) 2007-07-19 2010-07-06 The University Of North Carolina Stationary x-ray digital breast tomosynthesis systems and related methods
US8237344B2 (en) 2008-02-01 2012-08-07 Tsinghua University Electron emission apparatus and method for making the same
JP2009231288A (en) * 2008-03-19 2009-10-08 Qinghua Univ Field emission type electron source
JP2009231287A (en) * 2008-03-19 2009-10-08 Qinghua Univ Carbon nanotube needle and manufacturing method of the same
US8995608B2 (en) 2009-01-16 2015-03-31 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
US9782136B2 (en) 2014-06-17 2017-10-10 The University Of North Carolina At Chapel Hill Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging
US9907520B2 (en) 2014-06-17 2018-03-06 The University Of North Carolina At Chapel Hill Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging
US10980494B2 (en) 2014-10-20 2021-04-20 The University Of North Carolina At Chapel Hill Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging

Also Published As

Publication number Publication date
JP3792859B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US6283812B1 (en) Process for fabricating article comprising aligned truncated carbon nanotubes
JP3790047B2 (en) Manufacturing method of electron emission source
US6692327B1 (en) Method for producing electron emitting element
US6239547B1 (en) Electron-emitting source and method of manufacturing the same
US6504292B1 (en) Field emitting device comprising metallized nanostructures and method for making the same
JPH11111158A (en) Electron gun
US6538367B1 (en) Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same
Milne et al. Carbon nanotubes as field emission sources
US6853126B2 (en) Electron-emitting device, electron source, image forming apparatus, and electron-emitting apparatus
US6975288B2 (en) Method of driving image-forming apparatus and apparatus thereof
KR20030059291A (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
JP3828270B2 (en) Electron emission device
US20030143356A1 (en) Carbon nanotube for electron emission source and manufacturing method therefor
US8072126B2 (en) Field electron emission source having carbon nanotubes and method for manufacturing the same
JP3790045B2 (en) Fluorescent display device and manufacturing method thereof
JPH11297245A (en) Flat display
JP3554238B2 (en) Cold cathode
JP2000100317A (en) Field electron emission device
JP2000215786A (en) Electron emission element and its manufacture
US10720296B1 (en) Field emission neutralizer comprising a graphitized carbon nanotube structure
JP2001250468A (en) Field electron emission device and its manufacturing method
US7112920B2 (en) Field emission source with plural emitters in an opening
JP2003059392A (en) Cold cathode electron source and method of its manufacture
KR100372168B1 (en) A method for manufacturing gated carbon-nanotube field emission displays
Mann et al. Carbon nanotubes as electron sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees