JPH1089074A - Energy preserving cycle internal combustion engine - Google Patents

Energy preserving cycle internal combustion engine

Info

Publication number
JPH1089074A
JPH1089074A JP9055393A JP5539397A JPH1089074A JP H1089074 A JPH1089074 A JP H1089074A JP 9055393 A JP9055393 A JP 9055393A JP 5539397 A JP5539397 A JP 5539397A JP H1089074 A JPH1089074 A JP H1089074A
Authority
JP
Japan
Prior art keywords
reduced
diameter
combustion chamber
piston
main combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9055393A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9055393A priority Critical patent/JPH1089074A/en
Publication of JPH1089074A publication Critical patent/JPH1089074A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate large output by allowing a flow only directed to a diameter contracted main combustion chamber when a diameter enlarged piston in which a diameter contracted piston is projected from the center of an arm-like recessed part, is positioned in a predetermined position in a heating process, and driving a double-end diameter enlarged piston by isolation combustion in the diameter contracted main combustion chamber. SOLUTION: Diameter contracted pistons having taper root parts 2 are projected in the approximately centers of the recessed parts 1 of the right and left diameter enlarged pistons of a double-end diameter enlarged piston, therefore the double-end diameter enlarged piston can be easily reciprocated between right and left dead centers in a cylinder, and normal exhaust and scavenging can be executed over before and after the right and left dead centers. At this time, in a compression process after scavenging, the isolation of a cylindrical diameter contracted main combustion chamber having a taper diameter contracted part 7 is started by a diameter enlarged piston in which a plurality of noise reducing grooves l'5 are arranged, and next, air compressed in a diameter enlarged combustion chamber is passed through a one-way air channel 4 including a check valve 3 and a plurality of slant air channels 14 and ' to the inside of the diameter contracted main combustion chamber. Then, air is mixed with fuel form fuel injection means 5 and burnt, so that power is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通常及び特殊なピ
ストン往復運動を、回転動力に変換する、ピストンサイ
クルのエネルギ変換効率を高めるため、力学的エネルギ
保存の第3の法則を利用して、死点近傍でのエネルギ放
出量(ピストンの行程容積)を僅少として、大部分の熱
エネルギは縮径主燃焼室に保存貯金しておき、例えば死
点後クランク角度で30゜以後に縮径主燃焼室内隔離燃
焼解除する、先の出願のエネルギ保存サイクル機関の改
良に関する。
BACKGROUND OF THE INVENTION The present invention utilizes the third law of mechanical energy conservation in order to increase the energy conversion efficiency of a piston cycle, which converts normal and special piston reciprocating motion into rotational power. The amount of energy released near the dead center (stroke volume of the piston) is made small, and most of the heat energy is stored and stored in the reduced diameter main combustion chamber. The present invention relates to an improvement in the energy conservation cycle engine of the earlier application, which releases the isolated combustion in the combustion chamber.

【0002】[0002]

【従来の技術】従来の技術としては、通常の定容サイク
ル機関や定圧サイクル機関があり、車両及び船舶及び農
業機械や各種機械の駆動用、熱と電気の併給用等に使用
されており、COの低減を含む公害の低減が急務とな
っております。段付き燃焼室・段付きピストンの従来技
術も多いのですが、いずれも定容サイクルや定圧サイク
ルであるため成功例がなく、成功例を対照に説明する。
即ち、実際の定容サイクル機関や定圧サイクル機関は、
図1(a)に示すように、燃焼室はシリンダヘッド内面
とピストン上面との間に形成されるため、大径の燃焼室
に最大燃焼圧力や最高燃焼温度が加わり、冷却を必須と
するため冷却損失が大増大するのに加えて、最大燃焼圧
力を上昇すると出力当たりの重量及び摩擦損失が大増大
するため、最大燃焼圧力を大増大しても重量及び摩擦損
失の増大が僅少な縮径主燃焼室内隔離燃焼として機関を
大幅に軽量化すると共に冷却損失と摩擦損失を大低減す
る技術が待望されるのに加えて、燃焼に際しては、通常
死点後40゜乃至60゜程度の燃焼期間があります。し
かし、ピストンが死点から後退し始めると、燃焼室がシ
リンダ内と連通した状態での燃焼となり、ピストン後退
に伴って燃焼室容積は急激に増大することになり、その
結果極度の非定容燃焼となり、燃焼圧力及び燃焼温度は
急激に低下して、最悪の燃焼条件に急移行するため、N
Oxを低減すると未燃分が増大し、未燃分を低減する燃
焼にするとNOxが増大する通常の公害増大燃焼になる
ため、定容撹拌燃焼期間及び高速撹拌燃焼期間を大増大
した高速撹拌燃焼が待望され、発明したものがエネルギ
保存サイクル機関です。
2. Description of the Related Art As conventional techniques, there are ordinary constant-volume cycle engines and constant-pressure cycle engines, which are used for driving vehicles and ships, agricultural machines and various machines, and for supplying heat and electricity together. There is an urgent need to reduce pollution, including reducing CO 2 . There are many conventional technologies of stepped combustion chambers and stepped pistons, but there are no successful cases because each is a constant volume cycle or a constant pressure cycle.
That is, the actual constant volume cycle engine and constant pressure cycle engine are:
As shown in FIG. 1A, since the combustion chamber is formed between the inner surface of the cylinder head and the upper surface of the piston, the maximum combustion pressure and the maximum combustion temperature are applied to the large-diameter combustion chamber, and cooling is essential. In addition to the large increase in cooling loss, increasing the maximum combustion pressure will increase the weight per unit output and friction loss. Therefore, even if the maximum combustion pressure is increased, the increase in weight and friction loss will be slight. In addition to the long-awaited technology for greatly reducing the weight of the engine and greatly reducing the cooling loss and friction loss as isolated combustion in the main combustion chamber, the combustion period is usually about 40 to 60 degrees after the dead center. there is. However, when the piston begins to recede from the dead center, combustion occurs in a state where the combustion chamber communicates with the inside of the cylinder, and the volume of the combustion chamber rapidly increases as the piston retreats, resulting in an extremely non-constant volume. Combustion occurs, the combustion pressure and combustion temperature drop sharply, and suddenly shift to the worst combustion conditions.
When Ox is reduced, the unburned portion increases, and when combustion is performed to reduce the unburned portion, NOx increases, resulting in normal pollution increasing combustion. Therefore, high-speed stirring combustion in which the constant volume stirring combustion period and the high-speed stirring combustion period are greatly increased. The long-awaited and invented is the energy conservation cycle organization.

【0003】図1及び図2の定圧サイクル機関の圧力線
図を参照して別の説明をすると、通常の定圧サイクル機
関や定容サイクル機関のように、燃焼によって発生する
最大の熱エネルギの全部を含めて大部分の熱エネルギ
を、図2のように死点後30°までに放出すると放出量
だけエネルギが減少するため、摩擦力の増大として消費
してしまい、仕事量(ピストン行程容積)は非常に僅少
となるのに加えて、摩擦損失が最小となって単位時間の
仕事量が最大になり、最も大量に熱エネルギの放出が必
要な死点後90゜の絶好機には、熱エネルギが略14分
の1等に大低減するため、30%に近い熱エネルギの大
損失も予想されます。従って、定容サイクル機関では、
図2の圧力線図が更に死点側に移動するため、30%を
遥かに越える熱エネルギの大損失が予想されます。即
ち、最大の熱エネルギの全部を摩擦損失最大側で放出す
るのが、従来技術で最大の欠点であるため、最大の熱エ
ネルギを摩擦損失最小側で放出する技術が強く待望さ
れ、発明したものがエネルギ保存サイクル機関です。
Another explanation will be given with reference to the pressure diagrams of the constant-pressure cycle engine shown in FIGS. 1 and 2. As shown in FIG. If most of the heat energy including the above is released by 30 ° after the dead center as shown in FIG. 2, the energy is reduced by the release amount, so that it is consumed as an increase in the frictional force, and the work (piston stroke volume) In addition to being very small, the best machine 90 ° after dead center, which requires the largest amount of heat energy to be released and the largest amount of heat energy is released, Since the energy is greatly reduced to about one-fourth, a large loss of heat energy close to 30% is expected. Therefore, in a constant volume cycle engine,
Since the pressure diagram in Fig. 2 moves further to the dead center side, a large loss of thermal energy exceeding 30% is expected. That is, since the biggest disadvantage of the conventional technology is to release all of the maximum heat energy on the maximum friction loss side, a technology for releasing the maximum heat energy on the minimum friction loss side has been strongly desired and invented. Is an energy conservation cycle organization.

【0004】図2の定圧サイクル機関の圧力線図を私達
が自転車ペタルを垂直に踏み下げて効率良く前進させる
場合と比較して説明すると、定圧サイクル機関や定容サ
イクル機関では、燃焼によって発生する最大の熱エネル
ギの全部を含めて大部分の熱エネルギを、死点乃至死点
後30゜までに放出しますが私達は自然法則を経験則か
ら熟知しているため、自転車ペタルが上死点にあると
き、全エネルギを垂直方向に放出する等小学生でもしな
いし、特に摩擦損失が最小で回転動力変換効率が絶好機
の上死点後90°で、自転車ペタルに加える力を略14
分の1に大低減することは絶対にありません。私達は自
然法則を経験則より熟知しているため、自転車ペタルが
上死点にあるときは、必要最小限度のエネルギ放出量と
なり、回転動力変換効率絶好機の上死点後90°に向か
って自転車ペタルに加わる力が次第に大きくなります。
即ち私達が自転車を効率良く前進させる場合と同様に、
熱エネルギの放出時期及び放出量の配分の最適化を図っ
たものがエネルギ保存サイクル機関です。即ち上死点で
燃料の全熱エネルギを放出させる場合は、回転動力変換
効率が最悪なのに加えて、摩擦損失も最大になり、回転
動力変換効率の絶好機の上死点後90゜で燃料の全熱エ
ネルギを放出させる場合は、摩擦損失が最小となり回転
動力変換効率が最高になることが、図2から容易に理解
できます。即ち、最大の熱エネルギ放出時期を、摩擦損
失最大側から摩擦損失最小側に移動したサイクルが強く
待望されるため、なされたエネルギ保存サイクル機関の
構造を簡単にして、回転動力変換効率の上昇を図るのが
本発明です。
The pressure diagram of the constant pressure cycle engine shown in FIG. 2 will be described in comparison with the case where we efficiently step forward on the bicycle petal by vertically stepping down the bicycle petal. Most of the heat energy, including all of the maximum heat energy, is released by the dead center or 30 後 after the dead center. Elementary school students do not release all energy in the vertical direction when in the dead center. Especially, the frictional loss is minimal and the rotational power conversion efficiency is 90 ° after the top dead center of the perfect machine.
Absolutely no reduction to a factor of one. We know the laws of nature better than empirical rules. Therefore, when the bicycle petal is at the top dead center, the required minimum amount of energy is released, and the rotational power conversion efficiency machine reaches 90 ° after the top dead center. The force applied to the bicycle petal gradually increases.
That is, just as if we were to move the bike forward efficiently,
The energy preservation cycle engine optimizes the timing and distribution of heat energy release. That is, when the total heat energy of the fuel is released at the top dead center, the rotational power conversion efficiency is the worst, and the friction loss is also maximized. It can be easily understood from Fig. 2 that when all heat energy is released, the friction loss is minimized and the rotational power conversion efficiency is maximized. That is, since a cycle in which the maximum heat energy release timing is shifted from the friction loss maximum side to the friction loss minimum side is strongly expected, the structure of the energy storage cycle engine made is simplified to increase the rotational power conversion efficiency. The present invention is aimed at.

【0005】[0005]

【発明が解決しようとする課題】上述の如く、CO
低減を含む公害の低減が急務となっており、この発明
は、自然法則の有効利用を極限まで探究したエネルギ保
存サイクルとして、ピストンの往復運動を回転運動に変
換する、ピストンサイクルのエネルギ変換効率を高め
て、COの低減を含む公害の大低減を図る、エネルギ
保存サイクル機関の構造を簡単にするため、新機構を追
加することを目的とする。即ち本発明の目的は、特殊な
構成の振り子運動ピストンクランク機関をエネルギ保存
サイクル機関とした、各種B型エネルギ保存サイクル機
関の振り子腕を省略して、両頭拡径ピストンの往復運動
により、直接クランク軸を回転させて回転動力とする、
両頭拡径ピストンクランク機関をエネルギ保存サイクル
とした各種D型エネルギ保存サイクル機関を提供するこ
とである。本発明の目的は、特殊な構成の対向振り子運
動ピストンクランク機関をエネルギ保存サイクル機関と
した、各種C型エネルギ保存サイクル機関の振り子腕を
省略して、夫夫の両頭拡径ピストンの対向往復運動によ
り、直接夫夫のクランク軸を回転させて回転動力とす
る、対向往復運動両頭拡径ピストンクランク機関をエネ
ルギ保存サイクルとした各種E型エネルギ保存サイクル
機関(完全往復機関を含めて)を提供することである。
又、共通の課題として従来技術では、大径の燃焼室に最
大燃焼圧力や最高燃焼温度が加わるため、冷却が必須と
なって冷却損失が増大し、最大燃焼圧力を上昇すると出
力当たりの重量及び摩擦損失が大増大するし、水素燃料
の燃焼が困難という課題があるため、燃料の種類及び燃
料点火方式及びサイクル数及び掃気方式及び機関の型式
等を問わずに重量当たりの比出力を大増大すると共に、
摩擦損失を大低減しながら、COを含む公害の大低減
を図ることである。
As described above, there is an urgent need to reduce pollution including reduction of CO 2 , and the present invention proposes the use of a piston as an energy conservation cycle that seeks the maximum use of the law of nature to the utmost. converting a reciprocating motion into a rotary motion, to increase the energy conversion efficiency of the piston cycle, providing a large reduction of pollution, including reduction of CO 2, to simplify the structure of the energy storage cycle engine, adding new mechanism With the goal. That is, an object of the present invention is to omit the pendulum arms of various B-type energy storage cycle engines in which a pendulum motion piston crank engine having a special configuration is used as an energy storage cycle engine, and to directly crank the reciprocating motion of the double-head enlarged piston. Rotating the shaft to generate rotational power,
An object of the present invention is to provide various D-type energy storage cycle engines using a double-headed expanded piston crank engine as an energy storage cycle. SUMMARY OF THE INVENTION An object of the present invention is to omit the pendulum arms of various C-type energy storage cycle engines in which a specially configured opposed pendulum motion piston crank engine is used as an energy storage cycle engine, and to oppose reciprocating motion of each of the double-head enlarged pistons. Accordingly, there are provided various E-type energy storage cycle engines (including a complete reciprocation engine) using an opposed reciprocating double-headed enlarged-diameter piston-crank engine as an energy storage cycle, in which the respective crankshafts are directly rotated to generate rotational power. That is.
Further, as a common problem, in the conventional technology, the maximum combustion pressure and the maximum combustion temperature are applied to the large-diameter combustion chamber, so that cooling is indispensable and the cooling loss increases. Friction loss is greatly increased, and there is a problem that hydrogen fuel combustion is difficult.Therefore, the specific output per weight is greatly increased regardless of the type of fuel, the fuel ignition system, the number of cycles, the scavenging system, and the type of engine. Along with
The objective is to greatly reduce pollution including CO 2 while greatly reducing friction loss.

【0006】[0006]

【課題を解決するための手段】本発明は以上の課題に鑑
み、COの低減を含む公害の低減が困難な、通常の定
容サイクル機関及び定圧サイクル機関に換えて、各種エ
ネルギ保存サイクル機関の構造を簡単にしてCOを含
む公害の大低減を図ることである。即ち、上述のように
図1(a)の従来技術では、ピストンが死点を越えた瞬
間からピストンの後退に伴って、急激に燃焼室容積が増
大する極度の非定容燃焼による公害の増大燃焼に加え
て、死点近傍で大部分の熱エネルギを放出するため、最
も大量に熱エネルギの放出が必要な回転動力変換効率の
絶好機には、熱エネルギが殆ど無くなるため、熱エネル
ギの大損失となります。以上の従来技術の問題点を同時
に解消するため、図1(c)のように例えば5分の1に
縮径した縮径主燃焼室隔離燃焼として、高圧燃焼室の肉
圧を5分の1として大幅に軽量化する一方で、最大軸受
荷重も25分の1として、出力当たりの重量及び摩擦損
失を大低減すると共に、最大燃焼圧力の大上昇を可能に
して、例えば死点後40゜で隔離燃焼解除するエネルギ
保存サイクル機関とすると、従来技術の極度の非定容燃
焼を25倍の定容燃焼に近づけられるし、死点乃至死点
後40゜までの熱エネルギ放出量(ピストンの行程容
積)を25分の1として、25分の24の熱エネルギを
縮径主燃焼室内に保存貯金増大しておき、絶好機に向け
て速度形エネルギ+容積形エネルギとして放出して、熱
効率の大上昇が可能になるのに加えて、25倍の定容大
接近隔離撹拌燃焼により、燃焼室容積が一定容積を越え
ると、燃焼温度も3500゜Cを越えて燃焼圧力も大上
昇するため、水噴射手段を追加して水蒸気質量容積を大
増大する一方で、水素燃料燃焼に最適の断熱無冷却機関
も含めた、蒸気・内燃合体機関による公害の大低減燃焼
を可能にするのに加えて、隔離解除時の大圧力差による
高速噴射撹拌燃焼として、拡径ピストンを衝動+反動+
容積形エネルギにより噴射駆動して、大回転力を発生さ
せてCO及び公害の大低減燃焼を追加します。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, the reduction of pollution, including reduction of CO 2 is difficult, instead of the conventional constant volume cycle engine and the constant pressure cycle engine, various energy saving cycle engine And to greatly reduce pollution including CO 2 . That is, as described above, in the conventional technique of FIG. 1A, the pollution increases due to extremely non-constant volume combustion in which the volume of the combustion chamber rapidly increases as the piston retreats from the moment the piston crosses the dead center. In addition to combustion, most of the heat energy is released near the dead center. Therefore, a rotary power conversion efficiency that requires the largest amount of heat energy to be released has almost no heat energy. It will be a loss. In order to solve the above-mentioned problems of the prior art at the same time, as shown in FIG. 1 (c), the reduced pressure of the high-pressure combustion chamber is reduced to 1/5, for example, as reduced-diameter main combustion chamber isolated combustion reduced to 1/5. As a result, the maximum bearing load is also reduced by a factor of 25 to greatly reduce the weight per output and the frictional loss, and make it possible to greatly increase the maximum combustion pressure. If the engine is an energy conservation cycle engine that releases isolated combustion, the conventional non-constant volume combustion can be approximated to 25 times the constant volume combustion, and the amount of heat energy released from the dead point to 40 ° after the dead point (the piston stroke) can be obtained. Volume) is reduced to 1/25, and 24/25 thermal energy is stored and increased in the reduced-diameter main combustion chamber, and is released as speed-type energy + volume-type energy toward an ideal machine, resulting in high thermal efficiency. 25 in addition to being able to climb If the combustion chamber volume exceeds a certain volume due to the constant-volume, close-separation, stirring and combustion, the combustion temperature also exceeds 3500 ° C, and the combustion pressure also rises greatly. On the other hand, in addition to enabling a large reduction in combustion by the combined steam and internal combustion engine, including an adiabatic uncooled engine that is optimal for hydrogen fuel combustion, in addition to high-speed injection stirring combustion due to a large pressure difference at the time of isolation release As the impulse + reaction +
And ejection driven by positive displacement energy, and add a large reduction combustion of CO 2 and pollution by generating a large rotation force.

【0007】又、完全弾性衝突では、衝突の際に運動エ
ネルギが減少しない事が証明されており、従って最も好
ましい往復運動は、最も構造が簡単な比容積・比重量が
小さい2サイクル両頭拡径ピストンの往復運動となりま
す。本発明はサイクル数を問いませんが、最も簡単なエ
ネルギ保存サイクル機関を構成させるため、2サイクル
両頭拡径ピストンの往復運動により直接クランク軸を回
転させて、回転動力変換効率の上昇を図るものです。即
ち、図3のD型エネルギ保存サイクル機関の第1実施例
を参照して、往復運動について説明すると、最も重要な
ことは、往復運動によって運動エネルギが減少しないこ
とです。2サイクル両頭拡径ピストンの往復運動は、左
死点も右死点も圧縮爆発行程となるため、完全弾性衝突
の連続となり、運動エネルギの減少する部分が無いとい
うことです。運動エネルギの減少損失について別の説明
をすると、時計の振り子の往復運動は、錘りの重さをい
くら重くしても、長さが同じなら同じ速さで往復運動を
続けられます。一方通常の1気筒クランク機関(ダイキ
ン4、5HP汎用エンジン)をクランク軸とはずみ車だ
けにして力一杯回転させると、慣性力で8回転乃至10
回転しますが、ピストン等の往復運動部分のかわりに、
ピストン棒を含めて5Kgの錘りを吊り下げて力一杯回
転させても、運動エネルギの減少損失が非常に大きいた
め、慣性力で1回転させるのは非常に困難です。従っ
て、私の予想では、運動エネルギの減少損失が、最も普
及されている通常の4サイクル機関で30%乃至20%
(昔の新聞報道からの推測では、バンケル博士は30%
前後と予想していた?)、通常の2サイクル機関で15
%乃至10%、2サイクル両頭拡径ピストン機関で0%
に近づきます。即ち、通常の4サイクルクランク機関で
往復運動部分を軽量化すると、ピストン速度を増大して
比出力を増大し、熱効率も上昇する実状ですが、運動エ
ネルギの減少損失を20%以下にするのは困難なため、
運動エネルギの減少損失を皆無にできる2サイクル両頭
拡径ピストン機関が好ましいのです。
Further, it has been proved that the kinetic energy does not decrease in a completely elastic collision in the event of a collision. Therefore, the most preferable reciprocating movement is the simplest structure with a small specific volume and specific weight and a two-cycle double-ended expansion. Reciprocating movement of the piston. Although the present invention does not matter the number of cycles, in order to configure the simplest energy storage cycle engine, the crankshaft is directly rotated by the reciprocating motion of the two-cycle double-headed expanding piston to increase the rotational power conversion efficiency. is. That is, the reciprocating motion will be described with reference to the first embodiment of the D-type energy storage cycle engine shown in FIG. 3. The most important point is that the kinetic energy is not reduced by the reciprocating motion. The reciprocating motion of the two-stroke double-headed piston expands the compression and explosion strokes at both the left and right dead centers, which results in a continuation of complete elastic collision and no kinetic energy reduction. Another explanation of the loss of kinetic energy is that the reciprocating motion of the pendulum of a watch can continue to reciprocate at the same speed, no matter how heavy the weight, if the length is the same. On the other hand, when a normal one-cylinder crank engine (Daikin 4, 5HP general-purpose engine) is fully rotated by using only the crankshaft and the flywheel, the inertia force causes 8 to 10 rotations.
It rotates, but instead of a reciprocating part such as a piston,
Even if a 5kg weight including the piston rod is suspended and fully rotated, it is extremely difficult to make one rotation with inertial force because the loss of kinetic energy is extremely large. Therefore, my expectation is that the loss of kinetic energy loss will be 30% to 20% for the most prevalent normal four-stroke engines.
(According to old newspaper reports, Dr. Wankel said 30%
Did you expect it to be around? ), 15 for a normal two-cycle engine
% To 10%, 0% for a two-stroke double-headed piston engine
Approaching. That is, if the reciprocating part is lightened in a normal four-stroke crank engine, the piston speed increases, the specific output increases, and the thermal efficiency also increases, but the kinetic energy reduction loss is reduced to 20% or less. Difficult
A two-stroke double-ended piston engine that can eliminate kinetic energy loss is preferred.

【0008】上述の解決手段を先の出願で開示しており
ますが、先の出願では、両頭拡径ピストンの往復運動に
より、振り子腕を振り子運動させて、該振り子運動によ
りクランク軸を回転させて回転動力を得る構成のため、
振り子腕が振り子運動するための容積が増大して構造が
複雑になる課題があり、一方エネルギ保存サイクル機関
は、例えば5倍に拡径した拡径ピストンにより圧縮空気
を縮径主燃焼室に供給して、縮径主燃焼室内隔離燃焼と
して、高圧燃焼ガスを速度形質量エネルギとして高速噴
射して回転動力に変換するため、速度形質量エネルギを
効率良く回転動力に変換するためには、短行程機関や超
短行程機関が好ましく、両頭拡径ピストンの往復運動に
より直接クランク軸を回転させて、回転動力に変換する
と、構造を大幅に簡単にして小形軽量大出力が更に可能
になります。そこで本発明は、両頭拡径ピストンの円筒
部略中央にクランク軸側カム11を、往復転動自在に収
容維持する平行軌道12を平行に半径方向に設けて、ク
ランク軸を回転自在に軸支したクランク軸側カム11を
収容維持して、両頭拡径ピストンの往復運動により、直
接噛み合い同期手段17やはずみ車を含むクランク軸等
を回転させて、効率良く回転動力を得る構成として構造
を大幅に簡単にする一方で、比容積及び比重量の大低減
を図るものです。
The above-mentioned solution is disclosed in the earlier application. In the earlier application, the reciprocating motion of the double-headed expanding piston causes the pendulum arm to perform pendulum motion, and the crankshaft is rotated by the pendulum motion. To obtain rotational power
There is a problem that the capacity for the pendulum arm to perform the pendulum movement increases and the structure becomes complicated. On the other hand, in the energy conservation cycle engine, compressed air is supplied to the reduced-diameter main combustion chamber by, for example, a 5-diameter-expanded piston. Then, as isolated combustion in the reduced-diameter main combustion chamber, high-pressure combustion gas is injected at high speed as velocity-type mass energy and is converted into rotational power. To efficiently convert velocity-type mass energy into rotational power, a short stroke is required. Engines and ultra-short stroke engines are preferred. If the crankshaft is directly rotated by the reciprocating motion of the double-headed expanded piston and converted into rotational power, the structure is greatly simplified, making it possible to further reduce the size, weight and output. Accordingly, the present invention provides a crankshaft-side cam 11 provided substantially parallel to the center of a cylindrical portion of a double-headed enlarged piston in a radial direction in parallel with a parallel orbit 12 for holding and maintaining the camshaft so as to freely reciprocate, thereby rotatably supporting the crankshaft. The crankshaft-side cam 11 is housed and maintained, and the reciprocating motion of the double-headed enlarged piston rotates the direct-meshing synchronization means 17 and the crankshaft including the flywheel to efficiently obtain rotational power. It is intended to greatly reduce specific volume and specific weight while simplifying.

【0009】[0009]

【発明の実施の形態】発明の実施の形態を実施例に基づ
き図面を参照して説明するが、実施例と既説明とその構
成が略同じ部分には、同一名称又は符号を付して、その
重複説明は省略し、特徴的な部分や説明不足部分は順次
説明する。又、発明の意図及び予想を明快に具体的に説
明するため、数字で説明しておりますが、数字に限定す
るものではありません。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments with reference to the drawings. The overlapping description will be omitted, and the characteristic portions and the portions that are insufficiently described will be sequentially described. In addition, to clearly and specifically explain the intention and expectation of the invention, the explanation is made with numbers, but is not limited to the numbers.

【0010】図3のD型エネルギ保存サイクル内燃機関
の第1実施例を説明すると、両頭拡径ピストンの左右夫
夫の拡径ピストンの適宜の凹部1の略中央より、テーパ
根部2を有する縮径ピストンを突出して、該両頭拡径ピ
ストンがシリンダ内を左死点と右死点との間で往復運動
容易として、左右の死点前後に亘って通常の排気及び掃
気を行う、2サイクルD型エネルギ保存サイクル機関に
おいて、掃気後の圧縮過程に、テーパ根部2及び鍔状凹
凸6及び先端の幅広凸部の外周に後端を適宜に残して運
動方向に斜めに延びる複数の騒音低減溝15を設けた絋
径ピストンにより、テーパ縮径部7を有する円筒形の縮
径主燃焼室の隔離が始まり、次いで拡径燃焼室で圧縮さ
れた空気が、拡径燃焼室側から挿入れ固着された逆止弁
3を含む一方向空気流路4を通って、複数の斜め空気流
路14より縮径主燃焼室内の斜め側方向に噴射され、燃
料噴射手段5から噴射された燃料と撹拌混合して、縮径
主燃焼室内定容大接近隔離燃焼として、一定容積以上の
縮径主燃焼室では水噴射を可能にして蒸気・内燃合体機
関とします。両頭拡径ピストンが後退を始めると拡径燃
焼室内圧力が低下を始めるため、縮径ピストンの外周に
多段に設けた鍔状凹凸6により、多段に減圧して燃焼ガ
スの漏洩量を最適に制定します。更に拡径ピストンが後
退すると縮径主燃焼室内隔離燃焼解除しますが、先ず縮
径ピストンの騒音低減溝15により燃焼ガスの噴射方向
を制定すると共に、騒音の低減を図り、次にテーパ縮径
部7が末広ノズルを構成して、燃焼ガスを適宜の凹部1
に高速噴射して回転力の大増大を図る一方で、高速噴射
の過程で大圧力差による高速噴射撹拌燃焼として、未燃
分の再度皆無を図ると共に、拡径ピストンを速度形質量
エネルギ+容積形エネルギにより、衝動+反動+圧力に
より強力に後退させて、大回転力を発生させて、熱効率
の大上昇と公害の大低減を図り、通常の排気及び掃気に
移行する2サイクルD型エネルギ保存サイクル内燃機関
の第1実施例とします。
A first embodiment of the D-type energy-storing cycle internal combustion engine shown in FIG. 3 will be described. A contraction having a tapered root portion 2 from the approximate center of a suitable concave portion 1 of each of the right and left widening pistons. A two-cycle D that projects a diameter piston to facilitate normal reciprocating movement between the left dead center and the right dead center within the cylinder by the double-headed enlarged piston, thereby performing normal exhaust and scavenging before and after the left and right dead centers. In the compression process after scavenging, a plurality of noise reduction grooves 15 extending obliquely in the direction of motion in the compression process after scavenging, leaving the rear end appropriately on the outer periphery of the tapered root portion 2 and the flange-shaped unevenness 6 and the wide convex portion at the front end. The separation of the cylindrical reduced-diameter main combustion chamber having the tapered diameter-reduced portion 7 starts by means of the large-diameter piston, and then the air compressed in the expanded combustion chamber is inserted and fixed from the expanded combustion chamber side. One-way empty including check valve 3 Through the flow path 4, the fuel is injected from a plurality of oblique air flow paths 14 in an oblique direction in the reduced-diameter main combustion chamber, and is agitated and mixed with the fuel injected from the fuel injection means 5 to form a constant volume in the reduced-diameter main combustion chamber. As a large close-separation combustion, a steam-internal combustion engine is enabled by enabling water injection in the reduced diameter main combustion chamber with a certain volume or more. When the double-ended piston starts to retract, the pressure in the enlarged combustion chamber starts to decrease. Therefore, the flange-shaped unevenness 6 provided on the outer periphery of the reduced-diameter piston reduces the pressure in multiple stages to optimally establish the amount of combustion gas leakage. To do. When the diameter-expanding piston further retracts, the isolated combustion is released from the diameter-reduced main combustion chamber. First, the combustion gas injection direction is determined by the noise reduction groove 15 of the diameter-reduced piston, noise is reduced, and then the taper diameter is reduced. The part 7 constitutes a divergent nozzle, and the combustion gas is supplied to the appropriate recess 1.
High-speed injection to achieve a large increase in rotational force, and in the process of high-speed injection, as high-speed injection agitation combustion due to a large pressure difference, the unburned portion is eliminated again, and the diameter-expanding piston is moved to speed-type mass energy + volume. A two-cycle D-type energy storage cycle that retreats strongly by impulsive + recoil + pressure by the form energy to generate a large rotating force, greatly increasing thermal efficiency and greatly reducing pollution, and shifting to normal exhaust and scavenging. This is the first embodiment of the internal combustion engine.

【0011】図3を参照して別の説明をすると、円筒形
のシリンダの左右中央よりには、夫夫排気穴及び掃気穴
を適宜に設けて、左右に固着したシリンダヘッドと両頭
拡径ピストンの夫夫の拡径ピストンとの間に拡径燃焼室
を形成させて、シリンダヘッドの略中心には縮径主燃焼
室を夫夫設けて、燃料噴射燃焼が可能に夫夫燃料噴射手
段5を具備して、該燃焼をNOx大低減燃焼とするため
の水噴射手段23を夫夫に追加具備して、該縮径主燃焼
室及び拡径燃焼室から冷却損失を排除するため、該縮径
主燃焼室及びテーパ縮径部7及び適宜の凸部24を含め
て及び/前記縮径ピストン及びテーパ根部2及び適宜の
凹部1を含めて、夫夫を耐熱耐蝕材21及び断熱材22
により耐熱耐蝕断熱構造とします。又、前述のようにエ
ネルギ保存サイクル機関は短行程機関乃至超短行程機関
が好ましいため、圧縮点火機関とする場合は無駄容積を
縮小するため、前記耐熱耐蝕材21に弾力性を含めたも
のが好ましい。両頭拡径ピストンの略中央半径方向に
は、該往復運動によりクランク軸を回転させるための平
行軌道12・12を、平行に具備して、該クランク軸に
回転自在に外嵌したクランク軸側カム11を平行軌道1
2・12の間に往復転動自在に挿入れ維持して、両頭拡
径ピストンの往復運動により直接はずみ車を含むクラン
ク軸を回転させて、回転動力とする2サイクルD型エネ
ルギ保存サイクル内燃機関の第1実施例とします。
Another explanation will be given with reference to FIG. 3. Explaining that the exhaust holes and the scavenging holes are respectively provided appropriately from the left and right centers of the cylindrical cylinder, the cylinder head fixed to the left and right and the double-headed piston are enlarged. A large-diameter combustion chamber is formed between each of the large-diameter pistons and a large-diameter main combustion chamber is provided substantially at the center of the cylinder head to enable fuel injection combustion. In order to eliminate the cooling loss from the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber, a water injection means 23 is additionally provided for each of the combustion chambers to make the combustion a large NOx reduction combustion. The diameter main combustion chamber and the tapered reduced diameter portion 7 and the appropriate convex portion 24 and / or the reduced diameter piston and the tapered root portion 2 and the appropriate concave portion 1 are each made of a heat and corrosion resistant material 21 and a heat insulating material 22.
Heat and corrosion resistant insulation structure. As described above, since the energy storage cycle engine is preferably a short-stroke engine or an ultra-short-stroke engine, when the compression ignition engine is used, the heat-resistant and corrosion-resistant material 21 having elasticity should be used in order to reduce the waste volume. preferable. A substantially parallel radial track 12 for rotating the crankshaft by the reciprocating motion is provided in a substantially central radial direction of the double-ended piston in parallel with the crankshaft-side cam rotatably fitted to the crankshaft. 11 for parallel orbit 1
A two-cycle D-type energy-saving cycle internal combustion engine, which is inserted and maintained between two and twelve so as to be freely reciprocatingly rotatable and rotates a crankshaft including a flywheel directly by reciprocating motion of a double-headed enlarged-diameter piston to generate rotational power. This is the first embodiment.

【0012】図4を参照して、D型エネルギ保存サイク
ル内燃機関の第2実施例を説明すると、前記第1実施例
と殆ど同じのため該相違点と説明不足部分を説明する
と、第1実施例のテーパ縮径部7及びテーパ根部2を削
除して、周辺技術として図示したものです。従って、テ
ーパ縮径部7の効果はなくなりますが、例えば縮径主燃
焼室の内径を5分の1に縮径して隔離燃焼とすると、高
圧縮径主燃焼室の肉厚を略5分の1として大軽量が可能
になり、従来技術より25倍も定容燃焼に近づけた撹拌
燃焼及び、隔離解除時の大圧力差による高速噴射撹拌燃
焼により、1回の燃焼期間で燃焼条件を2回も極限まで
良くするため、蒸気・内燃合体機関による断熱無冷却機
関を含めて、NOxと未撚分を同時に皆無に近づけるこ
とが可能になり、加えて最大燃焼圧力による摩擦最大荷
重や軸受最大荷重を25分の1として振動要因を大低減
できる一方で、大増大した水蒸気質量容積を含む高圧燃
焼ガスの、速度形質量エネルギ+容積形エネルギを適宜
の凹部1に高速噴射して、衝動+反動+圧力により、両
頭拡径ピストンを強力に後退させて大回転力を発生させ
ると共に、過早点火や異状燃焼の影響も25分の1にな
るため、過早点火や異状燃焼を有効利用した早期完全燃
焼終了技術が可能になり、拡径燃焼室は大幅に低圧低温
の薄肉燃焼室として、機関全体を大軽量化して比出力を
大増大しながら、COを含む公害の大低減を図るもの
がエネルギ保存サイクル機関であり、そのうち両頭拡径
ピストンの往復運動により、直接はずみ車を含むクラン
ク軸を回転させて、回転動力とするものがD型エネルギ
保存サイクル内燃機関となります。
Referring to FIG. 4, a second embodiment of a D-type energy storage cycle internal combustion engine will be described. The difference between the first embodiment and the lack of description is substantially the same as that of the first embodiment. This is shown as a peripheral technology by removing the tapered reduced diameter portion 7 and the tapered root portion 2 in the example. Therefore, the effect of the tapered reduced diameter portion 7 is lost. However, for example, if the inner diameter of the reduced diameter main combustion chamber is reduced to 1/5 for isolated combustion, the wall thickness of the high compression diameter main combustion chamber is reduced to approximately 5 minutes. As a result, a large and light weight can be achieved, and the combustion conditions can be reduced by 2 times in one combustion period by the agitation combustion approaching the constant volume combustion 25 times as compared with the conventional technology and the high-speed injection agitation combustion due to the large pressure difference when the isolation is released. As a result, NOx and untwisted components can be reduced to almost zero at the same time, including the adiabatic non-cooled engine using the steam / internal combustion combined engine. While the load can be reduced to 1/25 to greatly reduce the vibration factor, high-speed combustion energy plus volume-type energy of the high-pressure combustion gas containing the greatly increased water vapor mass volume is injected at high speed into the appropriate recess 1 to generate an impulse + Double head expansion by reaction + pressure The stone is strongly retracted to generate a large rotating force, and the effect of premature ignition and abnormal combustion is reduced by a factor of 25. Thus, early complete combustion termination technology that makes effective use of premature ignition and abnormal combustion is possible. A large-diameter combustion chamber is a low-pressure, low-temperature, thin-walled combustion chamber. The energy-saving cycle engine is designed to greatly reduce the pollution including CO 2 while increasing the specific power by increasing the weight and weight of the entire engine. The D-type energy-saving cycle internal combustion engine that rotates the crankshaft including the flywheel directly by the reciprocating motion of the double-headed piston is used.

【0013】図5を参照して、D型エネルギ保存サイク
ル内燃機関の第3実施例を説明すると、前記第2実施例
と殆ど同じのため該相違点と説明不足部分を説明する
と、前記第2実施例の適宜の凹部1に換えて任意の頂部
とすることにより、両頭拡径ピストンの頂部形状に平面
形状も含めることで、シリンダヘッド内面にも平面形状
を加えて、幅広い形状範囲の周辺技術としたものです。
従って、第3実施例は排気弁を設けて2サイクルのD型
エネルギ保存サイクル機関を提供することにより、4サ
イクルのD型エネルギ保存サイクル機関も必要があれば
可能であることを示すものです。又、掃気効率を上昇さ
せる用途に使用する場合は、拡径ピストンの頂部形状か
ら次第に凹部が浅くなり平面形状となり、シリンダヘッ
ドの肩部を残して拡径燃焼室側に拡径ピストンの頂部形
状に合わせて突出していた任意の突出部も次第に平面形
状になります。又、縮径主燃焼室を例えば5分の1に縮
径して隔離燃焼とすると、最大燃焼圧力による最大軸受
荷重が25分の1に大低減するため、最大軸受荷重も最
大圧縮圧力に大低減して、最大圧縮圧力を大上昇した最
大燃焼圧力の大上昇によるCOの低減も可能になり、
運動エネルギの減少損失の非常に少ない2サイクル両頭
拡径ピストンの往復運動により、直接はずみ車を含むク
ランク軸を回転させて回転動力とするD型エネルギ保存
サイクル内燃機関とします。
Referring to FIG. 5, a third embodiment of a D-type energy storage cycle internal combustion engine will be described. The difference and the lack of description are almost the same as those of the second embodiment. By providing an arbitrary top in place of the appropriate concave portion 1 of the embodiment, a flat shape is also included in the top shape of the double-headed piston, so that a flat shape is added to the inner surface of the cylinder head, and a wide range of peripheral technologies is provided. It was a thing.
Therefore, the third embodiment shows that a four-cycle D-type energy storage cycle engine can be provided if necessary by providing an exhaust valve to provide a two-cycle D-type energy storage cycle engine. In addition, when used for applications to increase the scavenging efficiency, the concave portion gradually becomes shallower from the top shape of the expanded piston and becomes a planar shape, and the top shape of the expanded piston toward the expanded combustion chamber leaving the shoulder of the cylinder head. Any protruding parts that have been protruding according to will gradually become flat. If the reduced-diameter main combustion chamber is reduced to one-fifth, for example, for isolated combustion, the maximum bearing load due to the maximum combustion pressure is greatly reduced to one-fifth, so that the maximum bearing load is also increased to the maximum compression pressure. It is possible to reduce CO 2 by a large increase in the maximum combustion pressure, which greatly increases the maximum compression pressure.
This is a D-type energy conservation cycle internal combustion engine that uses the reciprocating motion of a two-cycle double-headed expanding piston with extremely small loss of kinetic energy to directly rotate the crankshaft, including the flywheel, and use it as rotary power.

【0014】図6のE型エネルギ保存サイクル内燃機関
の第1実施例を説明すると、夫夫の両頭拡径ピストンの
左右夫夫の拡径ピストンの適宜の凹部1の略中央より、
テーパ根部2を有する縮径ピストンを突出して、該両頭
拡径ピストンがシリンダ内を外死点と内死点との間で対
向往復運動容易として、夫夫の外死点前後に亘って及び
/夫夫の内死点前後に亘って、夫夫通常の排気及び掃気
を行う2サイクルE型エネルギ保存サイクル機関におい
て、掃気後の圧縮過程に、夫夫テーパ根部2及び鍔状凹
凸6及び先端の幅広凸部の外周に後端を適宜に残して運
動方向に斜め延びる複数の騒音低減溝15を設けた縮径
ピストンにより、夫夫テーパ縮径部7を有する縮径主燃
焼室の隔離が始まり、次いで夫夫の拡径燃焼室で圧縮さ
れた空気が、拡径燃焼室側から挿入れ固着された夫夫の
逆止弁3を含む一方向空気流路4を通って、夫夫複数の
斜め空気流路14より縮径主燃焼室内の斜め側方向に噴
射され、夫夫の燃料噴射手段5から噴射された燃料と撹
拌混合して、夫夫の縮径主燃焼室内定容大接近隔離燃焼
として、一定容積以上の縮径主燃焼室では水噴射手段2
3を可能にして蒸気・内燃合体機関とします。夫夫の両
頭拡径ピストンが後退を始めると拡径燃焼室内圧力が低
下を始めるため、夫夫の縮径ピストンの外周に多段に設
けた鍔状凹凸6により、多段に減圧して燃焼ガスの漏洩
量を最適に制定します。更に拡径ピストンが夫夫後退す
ると縮径燃焼室内隔離燃焼解除しますが、先ず夫夫の縮
径ピストンの騒音低減溝15により燃焼ガスの噴射方向
を制定すると共に、騒音の低減を図り、次に夫夫のテー
パ縮径部7が末広ノズルを構成して、燃焼ガスを夫夫の
適宜の凹部1に高速噴射して回転力の大増大を図る一方
で、高速噴射の過程で大圧力差による高速撹拌燃焼とし
て未燃分の再度皆無を図ると共に、夫夫の拡径ピストン
を速度形質量エネルギ+容積形エネルギにより、衝動+
反動+圧力により強力に後退させて、大回転力を発生さ
せて、熱効率の大上昇と公害の大低減を図り、夫夫通常
の排気及び掃気に移行する対向往復運動2サイクルE型
エネルギ保存サイクル内燃機関の第1実施例とします。
A first embodiment of the E-type energy storage cycle internal combustion engine shown in FIG. 6 will be described. From the approximate center of the appropriate concave portion 1 of each of the left and right enlarged pistons of each double-head enlarged piston,
A diameter-reducing piston having a tapered root portion 2 protrudes, and the double-headed diameter-enlarged piston facilitates opposing reciprocating movement between the outer dead center and the inner dead center in the cylinder. In a two-cycle E-type energy storage cycle engine that performs normal exhaust and scavenging before and after the husband's inner dead center, during the compression process after scavenging, both the tapered root portion 2 and the flange-shaped unevenness 6 and the tip With the reduced diameter piston provided with a plurality of noise reduction grooves 15 extending obliquely in the movement direction while appropriately leaving a rear end on the outer periphery of the wide convex portion, isolation of the reduced diameter main combustion chamber having the tapered reduced diameter portion 7 starts. Then, the air compressed in each of the expanded combustion chambers passes through a one-way air flow path 4 including each of the check valves 3 inserted and fixed from the expanded combustion chamber side, and a plurality of air flows. The fuel is injected from the oblique air flow path 14 in the oblique direction in the reduced-diameter main combustion chamber. And stirring and mixing with the fuel injected from the injection means 5, as condensation 径主 combustion chamber prospective capacity close approaches isolation combustion severally, the condensation 径主 combustion chamber over a certain volume of water injection means 2
3 and a combined steam and internal combustion engine. Since the pressure in the expanded combustion chamber starts to decrease when the double-ended pistons start to retract, the pressure of the combustion gas is reduced in multiple stages by the flange-shaped irregularities 6 provided on the outer periphery of the reduced-diameter pistons in multiple stages. Optimize the amount of leakage. When the diameter-expanding piston retreats further, the isolated combustion is released from the reduced-diameter combustion chamber. First, the combustion gas injection direction is established by the noise reduction groove 15 of each diameter-reduced piston, and the noise is reduced. Each of the tapered diameter reducing portions 7 constitutes a divergent nozzle, and the combustion gas is injected at high speed into each of the appropriate recesses 1 to achieve a large increase in the rotational force. As a result of the high-speed stirring combustion, the unburned portion is eliminated again, and the expanding pistons are driven by the speed-type mass energy + the volume-type energy to generate an impulse +
Strong retreat by reaction + pressure to generate large rotational force, to achieve a large increase in thermal efficiency and a great reduction in pollution, two-way reciprocating E-type energy conservation cycle internal combustion, each of which shifts to normal exhaust and scavenging This is the first example of the institution.

【0015】図6を参照して別の説明をすると、図3の
D型エネルギ保存サイクル内燃機関の第1実施例を、対
向に連結して噛合い同期手段17により、夫夫の両頭拡
径ピストンの対向往復運動を同期させて振動を大低減し
て、超大型のE型エネルギ保存サイクル内燃機関を可能
にするものです。即ち、対向に設けた夫夫のシリンダの
左右に夫夫シリンダヘットを固着して対向に連結し、円
筒形のシリンダの左右中央寄りには、夫夫排気穴及び掃
気穴を適宜に設けて、夫夫左右に固着したシリンダヘッ
トと両頭拡径ピストンとの間に拡径燃焼室を形成させ
て、夫夫のシリンダヘットの略中心には夫夫縮径主燃焼
室を形成させて、夫夫燃料噴射燃焼が可能に夫夫に燃料
噴射手段5を具備して、該燃焼をNOx大低減燃焼とす
るための水噴射手段23を夫夫追加具備して、該縮径主
燃焼室及び拡径燃焼室から冷却損失を排除するため、該
縮径主燃焼室及びテーパ縮径部7及び適宜の凸部24を
含めて及び/前記夫夫の縮径ピストン及びテーパ根部2
及び適宜の凹部1を含めて、夫夫を耐熱耐蝕材21及び
耐熱材22により耐熱耐蝕断熱構造とします。又、前述
のようにエネルギ保存サイクル機関は短行程機関乃至超
短行程機関が好ましいため、圧縮点火機関とする場合は
無駄容積を縮小するため、前記耐熱耐蝕材21に適宜の
弾力性を含めたものが好ましい。夫夫の両頭拡径ピスト
ンの略中央半径方向には、該往復運動によりクランク軸
を回転させるための平行軌道12・12を夫夫に平行に
具備して、該クランク軸に回転自在に外嵌したクランク
軸側カム11・11を、夫夫の平行軌道12・12の間
に夫夫往復転動自在に挿入れ維持して、夫夫の両頭拡径
ピストンの対向往復運動により、直接噛み合い同期手段
17を含む夫夫のクランク軸を回転させて回転動力とす
る、2サイクルE型エネルギ保存サイクル内燃機関の第
1実施例とします。
Another explanation will be given with reference to FIG. 6. The first embodiment of the D-type energy storage cycle internal combustion engine shown in FIG. Synchronizes opposing reciprocating motions of the pistons to greatly reduce vibrations, enabling a super-large E-type energy conservation cycle internal combustion engine. That is, the respective cylinder heads are fixedly attached to the left and right sides of the respective opposing cylinders and connected to each other, and the respective exhaust holes and scavenging holes are appropriately provided near the left and right center of the cylindrical cylinder, An enlarged combustion chamber is formed between the cylinder head fixed to the right and left and the double-head enlarged piston, and a reduced-diameter main combustion chamber is formed substantially at the center of each cylinder head. The fuel injection means 5 is provided so as to enable fuel injection combustion, and the water injection means 23 for making the combustion a large NOx reduction combustion is additionally provided. In order to eliminate the cooling loss from the combustion chamber, the reduced diameter main combustion chamber and the tapered reduced diameter portion 7 and the appropriate convex portion 24 are included and / or the reduced diameter piston and the tapered root portion 2 are respectively included.
Each of them, including the appropriate recess 1, is made of a heat-resistant, corrosion-resistant and heat-resistant material 21 and a heat-resistant and corrosion-resistant material 22. Further, as described above, since the energy saving cycle engine is preferably a short-stroke engine or an ultra-short-stroke engine, when the compression ignition engine is used, the heat resistant and corrosion-resistant material 21 is provided with appropriate elasticity in order to reduce the waste volume. Are preferred. In the approximate center radial direction of each of the double-headed pistons, parallel orbits 12 and 12 for rotating the crankshaft by the reciprocating motion are provided in parallel with each other, and are rotatably fitted to the crankshafts. The crankshaft side cams 11 and 11 are inserted and maintained between the respective parallel orbits 12 and 12 so as to be freely reciprocatingly rotatable. A first embodiment of a two-cycle E-type energy-storing cycle internal combustion engine, in which each of the crankshafts including the means 17 is rotated to generate rotational power, is used.

【0016】図7を参照して、E型エネルギ保存サイク
ル内燃機関の第2実施例を説明すると、前記E型エネル
ギ保存サイクル機関の第1実施例と殆ど同じのため、該
相違点と説明不足部分を説明すると、該第1実施例の夫
夫のテーパ縮径部7及びテーパ根部2を削除して、該周
辺技術として図示したものです。従って、夫夫のテーパ
縮径部7の効果はなくなりますが、例えば夫夫の縮径主
燃焼室の内径を5分の1に縮径して夫夫隔離燃焼とする
と、高圧縮径主燃焼室の肉厚を夫夫略5分の1として大
軽量が可能になり、従来技術より夫夫25倍も定容燃焼
に近づけた撹拌燃焼及び、隔離解除時の大圧力差による
高速噴射撹拌燃焼により、1回の全燃焼期間で燃焼条件
を2回も極限まで良くするため、夫夫の蒸気・内燃合体
機関による断熱無冷却機関を含めて、NOxと未燃分を
同時に皆無に近づけることが可能になり、加えて最大燃
焼圧力による摩擦最大荷重や軸受最大荷重を夫夫25分
の1として対向往復運動を含めて振動要因を大低減でき
る一方で、大増大した水蒸気質量容積を含む高圧燃焼ガ
スの速度形質量エネルギ+容積形エネルギを、夫夫の適
宜の凹部1に高速噴射して衝動+反動+圧力により、夫
夫の両頭拡径ピストンを強力に後退させて大回転力を発
生させると共に、過早点火や異状燃焼の影響も25分の
1になるため、過早点火や異状燃焼の有効利用が可能に
なり、夫夫の拡径燃焼室は大幅に低圧低温の薄肉燃焼室
として、機関全体を大軽量化して比出力を大増大しなが
ら、COを含む公害の大低減を図るものがエネルギ保
存サイクル機関であり、そのうち夫夫の両頭拡径ピスト
ンの対向往復運動により、直接噛み合い同期手段17を
含む夫夫のクランク軸を回転させて、回転動力とするも
のがE型エネルギ保存サイクル機関となります。
Referring to FIG. 7, a description will be given of a second embodiment of the E-type energy storage cycle internal combustion engine. Explaining the portions, the peripheral technology is illustrated by removing the tapered reduced diameter portion 7 and the tapered root portion 2 of the first embodiment. Therefore, the effect of each of the tapered diameter-reducing portions 7 is lost. However, for example, if the inside diameter of each of the diameter-reduced main combustion chambers is reduced to one-fifth to perform the isolated combustion, respectively, the high compression diameter main combustion is performed. The thickness of the chamber can be reduced to approximately one-fifth and large and light weight can be achieved. Stirring combustion that is 25 times as close to constant volume combustion as the conventional technology, and high-speed injection stirring combustion due to a large pressure difference when the isolation is released. Therefore, in order to improve the combustion conditions to the limit twice in one full combustion period, NOx and unburned components can be simultaneously reduced to almost zero, including the adiabatic non-cooled engine by the combined steam and internal combustion engine. It is possible to reduce the vibration factor including the reciprocating motion by making the friction maximum load and the bearing maximum load by the maximum combustion pressure 1/25 each, and at the same time, the high pressure combustion including the greatly increased steam mass volume. The velocity type mass energy of the gas + the volume type energy High-speed injection into the appropriate concave portion 1 causes the two-headed enlarged pistons to retreat vigorously by the impulse + reaction + pressure to generate a large rotational force, and the effect of premature ignition and abnormal combustion is reduced by a factor of 25. Therefore, premature ignition and abnormal combustion can be effectively used, and the expanded combustion chamber of each of them is a low-pressure, low-temperature, thin-walled combustion chamber. An energy storage cycle engine that greatly reduces pollution including CO 2 is the energy storage cycle engine, in which the two reciprocating motions of the double-headed pistons rotate the respective crankshafts including the direct meshing synchronization means 17, The one that uses the rotating power is the E-type energy conservation cycle engine.

【0017】図8を参照して、E型エネルギ保存サイク
ル内燃機関の第3実施例を説明すると、前記E型エネル
ギ保存サイクル内燃機関の第2実施例と殆ど同じのた
め、該相違点と説明不足部分を説明すると、前記第2実
施例の適宜の凹部1に換えて任意の頂部とすることによ
り、夫夫の両頭拡径ピストンの頂部形状やシリンダヘッ
ド内部形状も含めて幅広い形状範囲の周辺技術としたも
のです。従って、該第3実施例は掃気効率を重要視する
用途に使用する場合は、拡径ピストンの頂部形状から、
掃気効率の重要度に応じて次第に夫夫の凹部が浅くな
り、平面形状に移行します。同様に夫夫のシリンダヘッ
トも拡径燃焼室側に拡径ピストンの頂部形状に合わせて
夫夫突出していた、任意の突出部も次第に平面形状に移
行します。又、夫夫の縮径主燃焼室を例えば5分の1に
縮径して隔離燃焼とすると、最大燃焼圧力による最大軸
受荷重が夫夫25分の1に大低減するため、最大軸受荷
重も最大圧縮圧力に大低減して、最大圧縮圧力を大上昇
した最大燃焼圧力の大上昇によるCOの大低減も可能
になり、運動エネルギの減少損失の非常に少ない2サイ
クル両頭拡径ピストンの対向往復運動により、直接夫夫
のクランク軸を回転させて、回転動力とする一方で、噛
み合い同期手段17も同時に回転させて、両頭拡径ピス
トンの対向往復運動を同期させて無振動を図るE型エネ
ルギ保存サイクル内燃機関とします。
Referring to FIG. 8, a third embodiment of the E-type energy storage cycle internal combustion engine will be described. The difference between the third embodiment and the second embodiment of the E-type energy storage cycle internal combustion engine is almost the same. To explain the insufficiency, an arbitrary top is used in place of the appropriate concave portion 1 of the second embodiment, so that the periphery of a wide range of shapes including the top shape of each double-headed enlarged piston and the internal shape of the cylinder head is obtained. Technology. Therefore, when the third embodiment is used for an application in which the scavenging efficiency is regarded as important, from the top shape of the diameter-enlarging piston,
Depending on the importance of scavenging efficiency, the recesses of the husband and wife gradually become shallower and shift to a planar shape. Similarly, each cylinder head also protrudes toward the expanded combustion chamber according to the top shape of the expanded piston. Further, if each of the reduced diameter main combustion chambers is reduced to one-fifth, for example, for isolated combustion, the maximum bearing load due to the maximum combustion pressure is greatly reduced to one-fifth of each. a big reduction in the maximum compression pressure, the large reduction of the CO 2 the maximum compression pressure due to the large increase in the large elevated largest combustion pressure also allows, opposite the very small two-cycle double-headed diameter piston reduction loss of kinetic energy The reciprocating motion directly rotates the respective crankshafts to generate rotational power, while simultaneously rotating the meshing synchronization means 17 to synchronize the opposing reciprocating motions of the double-headed pistons to eliminate vibration. An energy conservation cycle internal combustion engine.

【0018】図9を参照して、クランク軸の使用例及び
噛み合い同期手段17を説明すると、D型エネルギ保存
サイクル内燃機関の第1実施例乃至第3実施例の場合
は、クランク軸は1本でよいため、図の噛み合い同期手
段17に換えて図3乃至図5のはずみ車を固着して2気
筒づつ連結するため、2気筒・4気筒・6気筒・8気筒
というように2気筒刻みで多気筒内燃機関に移行しま
す。E型エネルギ保存サイクル内燃機関の第1実施例乃
至第3実施例の場合は、クランク軸が2本必要になり、
夫夫の両頭拡径ピストンの対向往復運動を同期させて無
振動に近づけるための、噛み合い同期手段17等の同期
手段を具備します。噛み合い同期手段17は必要に応じ
て機械式過給機としても兼用するものです。この発明は
振動を大低減することにより、超大型のE型エネルギ保
存サイクル内燃機関を可能にするものですが、クランク
軸が2本となり4気筒づつの連結となるため、4気筒・
8気筒・12気筒というように4気筒刻みで多気筒内燃
機関に移行し、適宜に動力伝達軸に連結します。
Referring to FIG. 9, the use example of the crankshaft and the meshing synchronizing means 17 will be described. In the first to third embodiments of the D-type energy storage cycle internal combustion engine, one crankshaft is used. Since the flywheel shown in FIGS. 3 to 5 is fixed and connected to each of the two cylinders instead of the meshing synchronizing means 17 shown in FIG. Transition to a cylinder internal combustion engine. In the case of the first to third embodiments of the E-type energy storage cycle internal combustion engine, two crankshafts are required,
Synchronizing means such as meshing synchronizing means 17 are provided to synchronize the reciprocating movements of the two-headed enlarged pistons toward the non-vibrating state. The meshing synchronizing means 17 is also used as a mechanical supercharger if necessary. This invention enables a super-large E-type energy conservation cycle internal combustion engine by greatly reducing vibration. However, since there are two crankshafts and four cylinders are connected, four cylinders and four cylinders are used.
Transition to a multi-cylinder internal combustion engine in 4-cylinder increments, such as 8-cylinder and 12-cylinder, and connect to the power transmission shaft as appropriate.

【0019】図10を参照して、各種エネルギ保存サイ
クル内燃機関の第1の実施形態について説明すると、こ
の実施形態は、超小型縮径主燃焼室内隔離燃焼乃至小型
縮径主燃焼室内隔離燃焼に対応する実施形態です。即
ち、超小型縮径主燃焼室内定容大接近隔離燃焼乃至小型
縮径主燃焼室内定容大接近隔離燃焼にすると、縮径主燃
焼室内も拡径燃焼室内も掃気が困難なため、残留ガスの
多い雰囲気でNOx低減燃焼にはなりますが、燃焼室が
小さいと冷却され易いため、水噴射に不向きの燃焼とな
ります。従って、そのような燃焼に対応するものが第1
の実施形態となります。即ち、縮径主燃焼室に空気と燃
料が供給されると、縮径主燃焼室内定容大接近隔離燃焼
となり、圧縮過程から加熱過程に移行し、隔離燃焼解除
により縮径主燃焼室と拡径燃焼室が連通して、速度形エ
ネルギの衝動+反動を含む容積形エネルギの膨張過程と
なり、次に拡径燃焼室から通常の排気・掃気過程に移行
します。通常のように排気エネルギによりターボ過給機
を駆動して、排気部より排気します。通常のようにター
ボ過給機で吸入圧縮された空気は、通常のように拡径燃
焼室に供給され、圧縮過程の終わりに拡径燃焼室から一
方向空気流路を通って縮径主燃焼室に供給されて、燃料
の供給により縮径主燃焼室内定容大接近隔離燃焼とな
り、第1の実施形態のサイクルとなります。
Referring to FIG. 10, a description will be given of a first embodiment of an internal combustion engine of various energy storage cycles. This embodiment is applicable to the isolated combustion in the ultra-small diameter reduced main combustion chamber or the isolated combustion in the small diameter reduced main combustion chamber. The corresponding embodiment. That is, when the small-sized reduced-diameter main combustion chamber is set to a large close-separation combustion or the small-diameter main combustion chamber is set to a large-closed-separation combustion, it is difficult to scavenge both the reduced-diameter main combustion chamber and the enlarged-diameter combustion chamber. Although NOx reduction combustion is performed in an atmosphere with a lot of air, if the combustion chamber is small, it is easy to cool, so it is not suitable for water injection. Therefore, the one corresponding to such combustion is the first
It becomes the embodiment of. That is, when air and fuel are supplied to the reduced-diameter main combustion chamber, the reduced-diameter main combustion chamber becomes constant-volume close-separation combustion, and the process shifts from the compression process to the heating process. The radial combustion chamber communicates, and the volume-type energy expansion process including the speed-type energy impulse + reaction occurs, and then the normal-diameter exhaust / scavenging process starts from the large-diameter combustion chamber. As usual, the turbocharger is driven by exhaust energy and exhausted from the exhaust section. Normally, the air sucked and compressed by the turbocharger is supplied to the expanded combustion chamber as usual, and at the end of the compression process, the reduced-diameter main combustion passes through the one-way air flow path from the expanded combustion chamber. The fuel is supplied to the chamber, and the fuel is supplied so that the reduced-diameter main combustion chamber becomes a large-volume close-separated combustion chamber, which is the cycle of the first embodiment.

【0020】図11を参照して、各種エネルギ保存サイ
クル内燃機関の第2の実施形態について説明すると、こ
の実施形態は、小型縮径主燃焼室内隔離燃焼乃至中型縮
径主燃焼室内隔離燃焼に対応する実施形態です。即ち、
小型縮径主燃焼室内定容大接近隔離燃焼乃至中型縮径主
燃焼室内定容大接近隔離燃焼にすると、縮径主燃焼室も
拡径燃焼室も掃気が困難なため、残留ガスの多い雰囲気
でのNOx低減燃焼にはなりますが、燃焼室が少し大き
くなると断熱燃焼室にすると、水噴射が可能な燃焼とな
ります。しかし設備費を節減する必要もあるため、第2
の実施形態となります。即ち、縮径主燃焼室に空気と燃
料が供給されて圧縮過程から加熱過程に移行し、縮径主
燃焼室内定容大接近隔離燃焼となり、適宜に排気部熱交
換手段18で加熱された水が供給されると、NOxも未
燃分も生成しない燃焼を図る蒸気・内燃合体機関に移行
し、隔離燃焼解除により縮径主燃焼室と拡径燃焼室が連
通して、高圧の速度形質量エネルギの衝動+反動を含む
容積形エネルギの膨張過程となり、次に拡径燃焼室から
通常の排気過程に移行します。通常のように排気エネル
ギによりターボ過給機を駆動しますが、燃焼ガスを大気
圧まで膨張させると、540カロリーの熱量で1700
倍に膨張した水蒸気質量容積が含まれるため、ターボ過
給機の駆動力を増大して排気部より排気します。通常以
上にターボ過給機で吸入圧縮された空気は、通常のよう
に拡径燃焼室に供給され、圧縮過程の終わりに拡径燃焼
室より縮径主燃焼室に供給されて、燃料の供給及び適宜
の水噴射を含めて縮径主燃焼室内定容大接近隔離燃焼と
なり、第2の実施形態のサイクルとなります。
Referring to FIG. 11, a description will be given of a second embodiment of the internal combustion engine of various energy storage cycles. This embodiment corresponds to the isolated combustion of the small-diameter main combustion chamber to the medium-sized reduced main combustion chamber. It is an embodiment to do. That is,
When small-diameter main combustion chamber constant-volume large-close-separation combustion to medium-sized reduced-diameter main combustion chamber constant-volume close-separation combustion is used, it is difficult to scavenge both the reduced-diameter main combustion chamber and the enlarged-diameter combustion chamber. However, if the combustion chamber becomes a little larger, adiabatic combustion chamber can be used for water injection. However, it is necessary to reduce equipment costs.
It becomes the embodiment of. That is, air and fuel are supplied to the reduced-diameter main combustion chamber to shift from the compression process to the heating process, resulting in constant-volume close-separation combustion in the reduced-diameter main combustion chamber, and the water heated by the exhaust-portion heat exchange means 18 as appropriate. Is supplied, the engine shifts to a steam / internal combustion combined engine that performs combustion that generates neither NOx nor unburned components, and the reduced-diameter main combustion chamber and the expanded combustion chamber communicate with each other by releasing the isolated combustion, and the high-pressure velocity-type mass The process of expansion of volumetric energy including energy impulse + reaction is followed by the transition from the expanded combustion chamber to the normal exhaust process. The turbocharger is driven by the exhaust energy as usual, but when the combustion gas is expanded to the atmospheric pressure, the heat of 540 calories is 1700.
Since it contains the twice-expanded mass of water vapor, the driving force of the turbocharger is increased and exhausted from the exhaust section. The air that has been sucked and compressed by the turbocharger more than usual is supplied to the expanded combustion chamber as usual, and is supplied from the expanded combustion chamber to the reduced main combustion chamber at the end of the compression process to supply fuel. In addition, including the appropriate water injection, the reduced-diameter main combustion chamber becomes the constant-volume, close-separation combustion, which is the cycle of the second embodiment.

【0021】図12を参照して、各種エネルギ保存サイ
クル内燃機関の第3の実施形態について説明すると、こ
の実施形態は、中型縮径主燃焼室内隔離燃焼乃至大型縮
径主燃焼室内隔離燃焼に対応する実施形態です。即ち、
中型縮径主燃焼室内定容大接近隔離燃焼乃至大型縮径主
燃焼室内定容大接近隔離燃焼にすると、縮径主燃焼室も
拡径燃焼室も掃気が困難なため、残留ガスの多い雰囲気
でのNOx低減燃焼にはなりますが、縮径主燃焼室が大
きくなると断熱燃焼室も容易となり、一定容積以上の断
熱燃焼室では燃焼温度も3500°Cを越えて燃焼圧力
も大上昇するため、水噴射によりNOxを皆無に近づけ
る燃焼を必須とします。しかし設備費を節減する必要も
あるため第3の実施形態となります。即ち、縮径主燃焼
室に空気と燃料が供給されて圧縮過程から加熱過程に移
行し、縮径主燃焼室内定容大接近隔離燃焼となり排気部
熱交換手段18及び縮径部熱交換手段19で加熱された
水が適宜に供給されると、NOxも未燃分もない燃焼を
目的とした蒸気・内燃合体機関に移行し、隔離燃焼解除
により縮径主燃焼室と拡径燃焼室が連通して、高圧の速
度形エネルギの衝動+反動を含む容積形エネルギの膨張
過程となり、次に拡径燃焼室から通常の排気過程に移行
します。通常のように排気エネルギによりターボ過給機
を駆動しますが、燃焼ガスを大気圧まで膨張させると、
540カロリーの気化潜熱で1700倍に膨張した水蒸
気が多いためターボ過給機の比出力を増大して排気部よ
り排気します。通常以上にターボ過給機で吸入圧縮が強
化された空気は、通常のように拡径燃焼室に供給され、
圧縮過程の終わりに拡径燃焼室から一方向空気流路を介
して縮径主燃焼室に供給されて、燃料の供給及び適宜の
水噴射を含めて縮径主燃焼室内定容大接近隔離燃焼とな
り、第3の実施形態のサイクルとなります。
Referring to FIG. 12, a description will be given of a third embodiment of various energy storage cycle internal combustion engines. This embodiment corresponds to an isolated combustion in a medium-sized reduced main combustion chamber or an isolated combustion in a large-sized reduced main combustion chamber. It is an embodiment to do. That is,
When medium-sized reduced-diameter main combustion chamber constant-volume close-separation combustion or large-diameter main combustion chamber constant-volume close-separation combustion is used, it is difficult to scavenge both the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber. However, if the diameter of the main combustion chamber becomes larger, the adiabatic combustion chamber becomes easier, and the combustion temperature of the adiabatic combustion chamber having a certain volume or more exceeds 3500 ° C and the combustion pressure rises greatly. In addition, combustion that makes NOx almost zero by water injection is essential. However, since it is necessary to reduce equipment costs, this is the third embodiment. That is, air and fuel are supplied to the reduced-diameter main combustion chamber, and a transition is made from the compression process to the heating process. When the heated water is supplied as appropriate, the system shifts to a steam / internal combustion engine for the purpose of burning NOx and unburned components, and the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber communicate with each other by releasing isolated combustion. Then, the expansion process of volumetric energy including the impulse + reaction of high-pressure velocity-type energy is performed, and then the process proceeds from the expanded combustion chamber to the normal exhaust process. The turbocharger is driven by the exhaust energy as usual, but when the combustion gas is expanded to atmospheric pressure,
Because there is a lot of water vapor expanded 1700 times due to the latent heat of vaporization of 540 calories, the specific output of the turbocharger is increased and exhausted from the exhaust part. The air whose suction compression is enhanced by the turbocharger more than usual is supplied to the expanded combustion chamber as usual,
At the end of the compression process, the fuel is supplied from the expanded combustion chamber to the reduced-diameter main combustion chamber via a one-way air flow path. This is the cycle of the third embodiment.

【0022】図13を参照して各種エネルギ保存サイク
ル内燃機関の第4の実施形態について説明すると、この
実施形態は、大型縮径主燃焼室内隔離燃焼乃至超大型縮
径主燃焼室内隔離燃焼に対応する実施形態です。即ち、
大型縮径主燃焼室内定容大接近隔離燃焼乃至超大型縮径
主燃焼室内定容大接近隔離燃焼にすると、縮径主燃焼室
も拡径燃焼室も掃気が困難なため、残留ガスの多い雰囲
気でのNOx低減燃焼にはなりますが、縮径主燃焼室が
更に大きくなると断熱燃焼室も必須となり、大型断熱燃
焼室では、燃焼温度も3500゜Cを越えて燃焼圧力も
大上昇してNOx増大燃焼となりますが、燃焼時間が最
大となるため、できるだけ高温の水を最大量噴射した、
燃焼温度を最低にしたNOx皆無燃焼も可能になり、第
4の実施形態となります。即ち、縮径主燃焼室に空気と
燃料が供給されて圧縮過程から加熱過程に移行し、縮径
主燃焼室内定容大接近隔離燃焼となり、排気部熱交換手
段18及び縮径部熱交換手段19及び燃焼部熱交換手段
20で加熱された水が適宜に供給されると、NOxも未
燃分も無い燃焼が可能な蒸気・内燃合体機関に移行し、
隔離燃焼解除により縮径主燃焼室と拡径燃焼室が連通し
て、高圧の速度形エネルギの衝動+反動を含む容積形エ
ネルギの膨張過程となり、次に拡径燃焼室から通常の排
気過程に移行します。通常のように排気エネルギにより
ターボ過給機を駆動しますが、燃焼ガスを大気圧まで膨
張させると、540カロリーの気化潜熱で1700倍に
膨張した水蒸気質量容積が非常に多いため、ターボ過給
機の比出力を大増大して排気部より排気します。通常よ
り大幅にターボ過給機で吸入圧縮が強化された空気は、
通常のように拡径燃焼室に供給され、圧縮過程の終わり
に拡径燃焼室から一方向空気流路を介して縮径主燃焼室
に供給されて、燃料の供給及び適宜の水噴射を含めて縮
径主燃焼室内定容大接近隔離燃焼となり、第4の実施形
態のサイクルとなります。
Referring to FIG. 13, a fourth embodiment of an internal combustion engine having various energy storage cycles will be described. This embodiment is applicable to the isolated combustion in the large-diameter main combustion chamber or the isolated combustion in the ultra-large-diameter main combustion chamber. It is an embodiment to do. That is,
Large-diameter main combustion chamber constant-volume close-constant combustion or ultra-large-diameter main combustion chamber constant-volume close-separation combustion makes it difficult to scavenge both the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber. Although NOx reduction combustion is performed in an atmosphere, if the diameter-reduced main combustion chamber becomes even larger, an adiabatic combustion chamber becomes indispensable. In a large adiabatic combustion chamber, the combustion temperature exceeds 3500 ° C, and the combustion pressure increases greatly. NOx increase combustion, but since the combustion time is maximum, the maximum amount of hot water was injected as much as possible.
NOx combustion without combustion temperature is also possible, which is the fourth embodiment. That is, air and fuel are supplied to the reduced-diameter main combustion chamber, and a transition is made from the compression process to the heating process, and constant-volume, close-separation combustion is performed in the reduced-diameter main combustion chamber. When the water heated by the heat exchange means 19 and the combustion part heat exchange means 20 is appropriately supplied, the process shifts to a steam / internal combustion combined engine capable of burning without NOx and unburned components,
When the isolated combustion is released, the reduced-diameter main combustion chamber and the expanded combustion chamber communicate with each other to form a volumetric energy expansion process including a high-pressure velocity-type energy impulse + reaction, and then from the expanded-diameter combustion chamber to a normal exhaust process. Migrate. The turbocharger is driven by the exhaust energy as usual, but when the combustion gas is expanded to the atmospheric pressure, the steam mass volume expanded 1700 times with the vaporization latent heat of 540 calories is very large, so the turbocharger is used. The specific output of the machine is greatly increased and exhausted from the exhaust section. The air whose suction compression has been greatly enhanced by the turbocharger
It is supplied to the expanded combustion chamber as usual, and at the end of the compression process is supplied from the expanded combustion chamber to the reduced diameter main combustion chamber via a one-way air flow path, including fuel supply and appropriate water injection. As a result, constant-volume close-separation combustion is performed in the reduced-diameter main combustion chamber, and the cycle is the fourth embodiment.

【0023】[0023]

【発明の効果】一方向空気流路を設けて隔離燃焼とする
ことにより、例えば5分の1に縮径した縮径主燃焼室内
定容大接近隔離燃焼にする及び、両頭拡径ピストンの往
復運動により直接クランク軸を回転させると、 (1)隔離期間中の撹拌燃焼を従来技術の25倍も定容
燃焼に近づけられるため、NOxや未燃分を皆無にする
ための水噴射を含む各種燃焼法により、公害を大低減可
能にする大きな効果があります。 (2)高圧燃焼室を小径円筒型として、容易に断熱無冷
却高温燃焼として、水噴射を追加した蒸気・内燃合体機
関が可能になり、NOxや未燃分を皆無に近づけられる
のに加えて、圧縮容易な水により速度形質量エネルギの
大増大及び/540カロリーの気化潜熱により1700
倍(大気圧)に大増大する容積形速度エネルギの大増大
によりCOを低減する大きな効果があります。 (3)隔離燃焼解除時に高圧の燃焼ガス噴流を、拡径ピ
ストンの頂部に噴射して回転力を大増大する一方で、大
圧力差による高速噴射撹拌燃焼により未燃分を再度皆無
に近づけるためCOを含む公害の低減に大きな効果が
あります。 (4)最大燃焼圧力及び最大摩擦圧力及び異状燃焼の影
響が25分の1になる一方で振動が低減するのに加え
て、従来技術の最大軸受荷重も25分の1になるため、
最大軸受荷重が最大燃焼圧力から最大圧縮圧力に大低減
するため、最大燃焼圧力を大上昇してCOを大低減す
るために大きな効果があります。 (5)高圧燃焼室が5分の1に縮径した隔離燃焼となる
ため、縮径主燃焼室の肉厚を略5分の1に薄肉軽量化し
た高圧燃焼室とする一方で、拡径燃焼室が大幅に低圧低
温の薄肉燃焼室となるため、出力当たりの比重量を従来
の軽量化技術より更に大幅に軽量化できる大きな効果が
あります。 (6)本発明は燃焼法の大改善及び回転力の大増大及び
出力当たりの比重量の大低減を図る発明であるため、燃
料の種類及び点火方式及びサイクル数及び掃気方式及び
機関の型式を問わずにCOを含む公害の大低減に大き
な効果があります。 (7)本発明は、両頭拡径ピストンの往復運動により直
接クランク軸を回転して回転動力とするため、部品数を
大低減して構造を簡単にすると共に、小型軽量大出力低
燃費にする大きな効果があります。
According to the present invention, by providing a one-way air flow path and performing isolated combustion, for example, a reduced-diameter main combustion chamber whose diameter has been reduced to one-fifth, large-capacity isolated combustion, and reciprocation of a double-ended piston are performed. When the crankshaft is directly rotated by the movement, (1) Since the agitation combustion during the isolation period can be approached to the constant volume combustion 25 times as much as the conventional technology, various injections including water injection for eliminating NOx and unburned components can be performed. The combustion method has a great effect of greatly reducing pollution. (2) A small-diameter cylindrical high-pressure combustion chamber makes it easy to perform adiabatic non-cooled high-temperature combustion, enabling a steam-internal-combined engine with water injection added. A large increase in velocity type mass energy with water that is easy to compress and 1700 with latent heat of vaporization of / 540 calories
Times by the large increase in volume-type speed energy which large increases (atmospheric pressure) there is a large effect of reducing the CO 2. (3) In order to greatly increase the rotational force by injecting a high-pressure combustion gas jet to the top of the diameter-expanding piston when the isolated combustion is released, to reduce the unburned portion to zero again by high-speed injection stirring combustion due to the large pressure difference. It has a great effect on reducing pollution including CO 2 . (4) In addition to reducing vibration while reducing the effect of maximum combustion pressure and friction pressure and abnormal combustion by a factor of 25, the maximum bearing load of the prior art is also reduced by a factor of 25.
Since the maximum bearing load is large reduction in the maximum compression pressure from the maximum combustion pressure and a large effect to a large reduction of CO 2 and atmospheric increase the maximum combustion pressure. (5) Since the high-pressure combustion chamber performs isolated combustion with a diameter reduced to one-fifth, the diameter of the reduced-diameter main combustion chamber is reduced to approximately one-fifth and the thickness is reduced while the high-pressure combustion chamber is reduced in thickness. Since the combustion chamber is a low-pressure, low-temperature, thin-walled combustion chamber, the specific weight per output has a great effect that it can be much more reduced than conventional lightweight technologies. (6) Since the present invention aims to greatly improve the combustion method, greatly increase the rotational force, and greatly reduce the specific weight per output, the type of fuel, the ignition method, the number of cycles, the scavenging method, and the model of the engine are changed. Regardless, it has a great effect on greatly reducing pollution including CO 2 . (7) In the present invention, since the crankshaft is rotated directly by the reciprocating motion of the double-headed piston to generate rotational power, the number of parts is greatly reduced, the structure is simplified, and the size, weight, and output and fuel consumption are reduced. It has a great effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A型エネルギ保存サイクル内燃機関の実施例を
従来技術と比較して説明するための一部断面図。
FIG. 1 is a partial cross-sectional view for explaining an embodiment of an A-type energy storage cycle internal combustion engine in comparison with a conventional technique.

【図2】各種エネルギ保存サイクル内燃機関のクランク
角度に対する燃焼圧力の変化を従来技術と比較説明する
ための概略グラフである。
FIG. 2 is a schematic graph for comparing a change in combustion pressure with respect to a crank angle of a various energy storage cycle internal combustion engine with a conventional technique.

【図3】D型エネルギ保存サイクル内燃機関の第1実施
例の一部断面図。
FIG. 3 is a partial sectional view of a first embodiment of a D-type energy storage cycle internal combustion engine.

【図4】D型エネルギ保存サイクル内燃機関の第2実施
例の一部断面図。
FIG. 4 is a partial sectional view of a second embodiment of a D-type energy storage cycle internal combustion engine.

【図5】D型エネルギ保存サイクル内燃機関の第3実施
例の一部断面図。
FIG. 5 is a partial cross-sectional view of a third embodiment of a D-type energy storage cycle internal combustion engine.

【図6】E型エネルギ保存サイクル内燃機関の第1実施
例の一部断面図。
FIG. 6 is a partial cross-sectional view of a first embodiment of an E-type energy storage cycle internal combustion engine.

【図7】E型エネルギ保存サイクル内燃機関の第2実施
例の一部断面図。
FIG. 7 is a partial sectional view of a second embodiment of an E-type energy storage cycle internal combustion engine.

【図8】E型エネルギ保存サイクル内燃機関の第3実施
例の一部断面図。
FIG. 8 is a partial cross-sectional view of a third embodiment of the E-type energy storage cycle internal combustion engine.

【図9】D型及びE型エネルギ保存サイクル内燃機関の
クランク軸及び噛み合い同期手段を含めて、クランク軸
の利用方法を比較説明するための一部断面図。
FIG. 9 is a partial cross-sectional view for comparing and explaining how to use the crankshaft of the D-type and E-type energy storage cycle internal combustion engines, including the crankshaft and the meshing synchronization means.

【図10】各種エネルギ保存サイクル内燃機関の第1の
実施形態を示す全体構成図。
FIG. 10 is an overall configuration diagram showing a first embodiment of an internal combustion engine of various energy storage cycles.

【図11】各種エネルギ保存サイクル内燃機関の第2の
実施形態を示す全体構成図。
FIG. 11 is an overall configuration diagram showing a second embodiment of various energy storage cycle internal combustion engines.

【図12】各種エネルギ保存サイクル内燃機関の第3の
実施形態を示す全体構成図。
FIG. 12 is an overall configuration diagram showing a third embodiment of an internal combustion engine of various energy storage cycles.

【図13】各種エネルギ保存サイクル内燃機関の第4の
実施形態を示す全体構成図。
FIG. 13 is an overall configuration diagram showing a fourth embodiment of various energy storage cycle internal combustion engines.

【符号の説明】 1:適宜の凹部 2:テーパ根部 3:逆止弁
4:一方向空気流路 5:燃料噴射手段 6:鍔状凹凸 7:テーパ縮径
部 8:ピストン穴 11:クランク軸側カム 12:平行軌道 14:
斜め空気流路 15:騒音低減溝 16:シリンダ
穴 17:噛み合い同期手段 18:排気部熱交換
手段 19:縮径部熱交換手段 20:燃焼部熱交
換手段 21:耐熱耐蝕材 22:断熱材 2
3:水噴射手段 24:適宜の凸部
[Description of Signs] 1: Appropriate recess 2: Tapered root 3: Check valve
4: One-way air flow path 5: Fuel injection means 6: Collar-like unevenness 7: Tapered reduced diameter portion 8: Piston hole 11: Crank shaft side cam 12: Parallel orbit 14:
Diagonal air flow path 15: Noise reduction groove 16: Cylinder hole 17: Meshing synchronization means 18: Exhaust part heat exchange means 19: Reduced diameter part heat exchange means 20: Combustion part heat exchange means 21: Heat and corrosion resistant material 22: Heat insulating material 2
3: water injection means 24: appropriate protrusion

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02B 75/02 F02B 75/02 Z 75/10 75/10 Z 75/18 75/18 J 75/28 75/28 D F02F 1/00 F02F 1/00 D 1/18 1/18 B 1/24 1/24 E 3/00 3/00 D 302 302Z 3/28 3/28 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02B 75/02 F02B 75/02 Z 75/10 75/10 Z 75/18 75/18 J 75/28 75/28 D F02F 1 / 00 F02F 1/00 D 1/18 1/18 B 1/24 1/24 E 3/00 3/00 D 302 302Z 3/28 3/28 B

Claims (50)

【特許請求の範囲】[Claims] 【請求項1】 圧縮過程・加熱過程・膨張過程・排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径されてテーパ根部(2)を有
する縮径ピストンを、適宜の凹部(1)の略中央より突
出した両頭拡径ピストンの、左右の死点前後の所定期間
に亘って、テーパ縮径部(7)を有する縮径主燃焼室と
拡径燃焼室を連通して、該縮径主燃焼室に向かう流れだ
けを可能にした一方向空気流路(4)を構成させて、前
記縮径ピストンによる該縮径主燃焼室内隔離燃焼及び隔
離解除により、前記両頭拡径ピストンが往復運動して直
接クランク軸を回転させて、エネルギ保存サイクルとす
る方法。
1. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein a diameter-reduced piston having a tapered root portion (2) is appropriately reduced in the heating step. The enlarged-diameter main combustion chamber having a tapered diameter-reducing portion (7) communicates with the enlarged-diameter combustion chamber for a predetermined period before and after the left and right dead centers of the double-headed enlarged piston protruding from the approximate center of the concave portion (1). Then, a one-way air flow path (4) that allows only the flow toward the reduced diameter main combustion chamber is formed, and the two-heads are separated by the isolated combustion and the release of the isolation by the reduced diameter piston. A method in which an enlarging piston reciprocates and directly rotates a crankshaft to provide an energy conservation cycle.
【請求項2】 圧縮過程・加熱過程・膨張過程・排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径された縮径ピストンを夫夫の
適宜の凹部(1)の略中央より突出した両頭拡径ピスト
ンの、左右の死点前後の所定期間に亘って縮径主燃焼室
と拡径燃焼室を連通して、該縮径主燃焼室に向かう流れ
だけを可能にした一方向空気流路(4)を構成させて、
前記縮径ピストンによる該縮径主燃焼室内隔離燃焼及び
隔離解除により、前記両頭拡径ピストンが往復運動して
直接クランク軸を回転させて、エネルギ保存サイクルと
する方法。
2. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston which is appropriately reduced is provided in each of a suitable concave part (1). The double-head enlarged piston protruding from the approximate center of the cylinder communicates with the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber for a predetermined period before and after the dead center on the left and right sides, allowing only the flow toward the reduced-diameter main combustion chamber. The one-way air flow path (4)
A method of energy conservation cycle in which the double-ended double-diameter piston reciprocates and directly rotates the crankshaft by the isolated combustion and the release of isolation from the reduced-diameter main combustion chamber by the reduced-diameter piston.
【請求項3】 圧縮過程・加熱過程・膨張過程・排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径された縮径ピストンを夫夫頂
部略中央より突出した両頭拡径ピストンの左右の、死点
前後の所定期間に亘って、縮径主燃焼室と拡径燃焼室を
連通して、該縮径主燃焼室に向かう流れだけを可能にし
た一方向空気流路(4)を構成させて、前記縮径主燃焼
室内隔離燃焼及び隔離解除により、前記両頭拡径ピスト
ンが往復運動して直接クランク軸を回転させて、エネル
ギ保存サイクルとする方法。
3. A reciprocating piston cycle comprising a compression process, a heating process, an expansion process, and an exhaust process, wherein in the heating process, a reduced-diameter piston whose diameter is appropriately reduced projects from a substantially central portion of a top portion. A one-way air flow that communicates between the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber for a predetermined period before and after the dead center on the left and right sides of the expanded piston and enables only the flow toward the reduced-diameter main combustion chamber. A method of constructing a path (4), wherein the double-headed enlarged piston reciprocates and directly rotates the crankshaft by the isolated combustion and de-isolation of the reduced diameter main combustion chamber, thereby forming an energy conservation cycle.
【請求項4】 圧縮過程・加熱過程・膨張過程・排気過
程からなる対向往復運動ピストンサイクルであって、該
加熱過程において、適宜に縮径されてテーパ根部(2)
を有する縮径ピストンを、夫夫の適宜の凹部(1)の略
中央より突出した夫夫の両頭拡径ピストンの、夫夫の外
死点前後の所定期間に亘って及び/夫夫の内死点前後の
所定期間に亘って、夫夫テーパ縮径部(7)を有する縮
径主燃焼室と拡径燃焼室を連通して、該縮径主燃焼室に
向かう流れだけを可能にした一方向空気流路(4)を構
成させて、前記縮径ピストンによる該縮径主燃焼室内隔
離燃焼及び隔離解除により、前記夫夫の両頭拡径ピスト
ンが対向往復運動して、直接夫夫のクランク軸を回転さ
せてエネルギ保存サイクルとする方法。
4. An opposed reciprocating piston cycle comprising a compression process, a heating process, an expansion process, and an exhaust process, wherein the diameter of the tapered root portion is appropriately reduced in the heating process.
The diameter-reduced piston having the diameter is extended over a predetermined period before and after the outer dead center of each of the two-headed enlarged-diameter pistons protruding from the approximate center of the appropriate concave portion (1). For a predetermined period before and after the dead center, the reduced-diameter main combustion chamber and the increased-diameter combustion chamber each having the tapered diameter-reduced portion (7) are communicated, and only the flow toward the reduced-diameter main combustion chamber is enabled. A one-way air flow path (4) is formed, and by the isolated combustion and release from the reduced-diameter main combustion chamber by the reduced-diameter piston, the respective double-headed enlarged pistons reciprocate to face each other, thereby directly causing the respective ones to reciprocate. A method of rotating the crankshaft to make an energy conservation cycle.
【請求項5】 圧縮過程・加熱過程・膨張過程・排気過
程からなる対向往復ピストンサイクルであって、該加熱
過程において、適宜に縮径された縮径ピストンを夫夫の
適宜の凹部(1)の略中央より突出した夫夫の両頭拡径
ピストンの、夫夫の外死点前後の所定期間に亘って及び
/夫夫の内死点前後の所定期間に亘って、夫夫の縮径主
燃焼室と拡径燃焼室を連通して、該縮径主燃焼室に向か
う流れだけを可能にした一方向空気流路(4)を構成さ
せて、前記縮径ピストンによる該縮径主燃焼室内隔離燃
焼及び隔離解除により、前記夫夫の両頭拡径ピストンが
対向往復運動して、直接夫夫のクランク軸を回転させて
エネルギ保存サイクルとする方法。
5. An opposed reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, the diameter-reduced piston is appropriately reduced in each of the appropriate recesses (1). Of the two-head enlarged-diameter piston projecting from the approximate center of the husband and wife over a predetermined period before and after the outer dead center of the husband and / or over a predetermined period before and after the inner dead center of the husband and wife. The combustion chamber communicates with the enlarged combustion chamber to form a one-way air flow path (4) that allows only the flow toward the reduced diameter main combustion chamber, and the reduced diameter main combustion chamber is formed by the reduced diameter piston. A method of isolating combustion and de-isolation causes the respective double-ended pistons to reciprocate in opposite directions to directly rotate their respective crankshafts to achieve an energy conservation cycle.
【請求項6】 圧縮過程・加熱過程・膨張過程・排気過
程からなる対向往復運動ピストンサイクルであって、該
加熱過程において、適宜に縮径された縮径ピストンを対
向に設けた夫夫の頂部略中央より突出した夫夫の両頭拡
径ピストンの、夫夫の外死点前後の所定期間に亘って及
び/夫夫の内死点前後の所定期間に亘って、夫夫の縮径
主燃焼室と拡径燃焼室を連通して、該縮径主燃焼室に向
かう流れだけを可能にした一方向空気流路(4)を構成
させて、前記縮径ピストンによる該縮径主燃焼室内隔離
燃焼及び隔離解除により、前記夫夫の両頭拡径ピストン
が対向往復運動して直接夫夫のクランク軸を回転させ
て、エネルギ保存サイクルとする方法。
6. An opposing reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a suitably reduced diameter piston is provided opposite to each other. The husband and wife's double-sided enlarged pistons projecting from the approximate center extend over a predetermined period before and after the husband's outer dead center and / or over a predetermined period before and after the husband's inner dead center. A one-way air flow path (4) is provided which communicates the chamber with the expanded combustion chamber to allow only the flow toward the reduced-diameter main combustion chamber, and isolates the reduced-diameter main combustion chamber by the reduced-diameter piston. A method of energy conservation cycle in which the respective double-headed pistons reciprocate and rotate their respective crankshafts directly by combustion and release of isolation.
【請求項7】 前記縮径主燃焼にテーパ縮径部(7)を
増設して、速度形熱エネルギの噴射方向を制定する請求
項1又は請求項4に記載のエネルギ保存サイクルとする
方法。
7. The method according to claim 1, wherein a tapered portion (7) is added to the reduced-diameter main combustion so as to establish a direction of velocity-type heat energy injection.
【請求項8】 前記夫夫の両頭拡径ピストンの対向往復
運動を同期させる、噛み合い同期手段(17)を設けて
夫夫のクランク軸を結合して同期させる請求項4乃至請
求項6のいずれか1項に記載のエネルギ保存サイクルと
する方法。
8. A method according to claim 4, further comprising providing a synchronizing means for synchronizing the opposing reciprocating movements of the respective double-headed enlarged pistons, and synchronizing the respective crankshafts by coupling them. 2. A method as set forth in claim 1, wherein the energy storage cycle is used.
【請求項9】 前記夫夫の両頭拡径ピストンの対向往復
運動を同期させる、噛み合い同期手段(17)を機械式
過給機としても兼用して請求項4乃至請求項6のいずれ
か1項に記載のエネルギ保存サイクルとする方法。
9. The mechanical supercharger according to claim 4, wherein the meshing synchronizing means (17) for synchronizing the reciprocating movements of the double-headed pistons of the respective members is also used as a mechanical supercharger. 5. A method for making an energy conservation cycle as described in 1. above.
【請求項10】 前記縮径主燃焼室内隔離燃焼させるた
め、該縮径主燃焼室と拡径燃焼室を連通して、該縮径主
燃焼室に向かう流れだけを可能にする逆止弁(3)を含
む一方向空気流路(4)を、少なくとも1組以上設けて
請求項1乃至請求項9のいずれか1項に記載のエネルギ
保存サイクルとする方法。
10. A non-return valve (10) communicating the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber to allow only the flow toward the reduced-diameter main combustion chamber to perform isolated combustion in the reduced-diameter main combustion chamber. The method of any one of claims 1 to 9, wherein at least one set of one-way air flow paths (4) including (3) is provided.
【請求項11】 前記縮径主燃焼室内隔離燃焼させるこ
とで、定容大接近撹拌燃焼及び隔離解除時の高速撹拌燃
焼とする一方で、該縮径主燃焼室に保存貯金された熱エ
ネルギを隔離解除時に速度形質量熱エネルギ+容積形熱
エネルギとして噴射する請求項1乃至請求項10のいず
れか1項に記載のエネルギ保存サイクルとする方法。
11. The isolated combustion in the reduced-diameter main combustion chamber results in constant-volume large-close-stirring combustion and high-speed agitated combustion at the time of release of isolation, and the thermal energy stored and stored in the reduced-diameter main combustion chamber is reduced. 11. The method as claimed in any one of claims 1 to 10, wherein the injection is performed as velocity type mass heat energy + volume type heat energy at the time of release of isolation.
【請求項12】 前記両頭拡径ピストンの内部略中央に
は、クランク軸側カム(11)を挿入れ維持する平行軌
道(12)を対向に設けて、両頭拡径ピストンの往復運
動によりクランク軸側カム(11)に回転自在に軸支さ
れたクランク軸が回転して動力を伝達可能にした請求項
1乃至請求項11のいずれか1項に記載のエネルギ保存
サイクルとする方法。
12. A parallel orbit (12) for inserting and maintaining a crankshaft-side cam (11) is provided at substantially the center of the inside of the double-ended piston to oppose it, and the crankshaft is reciprocated by the double-ended piston. 12. The method according to claim 1, wherein the crankshaft rotatably supported by the side cam (11) rotates to transmit power.
【請求項13】 前記縮径主燃焼室内隔離燃焼を解除す
る時期を、夫夫の拡径ピストンの死点後クランク角度で
30゜以後として、速度形質量熱エネルギを拡径ピスト
ンに噴射する請求項1乃至請求項12のいずれか1項に
記載のエネルギ保存サイクルとする方法。
13. A method of injecting velocity-type mass heat energy to the expanded piston, wherein the timing of releasing the isolated combustion in the reduced-diameter main combustion chamber is set to 30 ° or more after the dead angle of each of the expanded pistons. 13. A method as an energy storage cycle according to any one of claims 1 to 12.
【請求項14】 前記縮径ピストンの外周に鍔状凹凸
(6)を多段に設けて、多段に減圧して漏洩量を制定し
ながら縮径主燃焼室内定容大接近隔離撹拌燃焼とした請
求項1乃至請求項13のいずれか1項に記載のエネルギ
保存サイクルとする方法。
14. A reduced-diameter main combustion chamber having a constant-volume, close-separation, agitated combustion, in which a flange-shaped unevenness (6) is provided in multiple stages on the outer periphery of the reduced-diameter piston, and the pressure is reduced in multiple stages to establish the amount of leakage. 14. A method as an energy storage cycle according to any one of claims 1 to 13.
【請求項15】 前記縮径主燃焼室内隔離燃焼させるこ
とで、総合的には希薄燃焼とした請求項1乃至請求項1
4のいずれか1項に記載のエネルギ保存サイクルとする
方法。
15. The lean combustion as a whole by performing isolated combustion in the reduced diameter main combustion chamber.
5. A method according to claim 4, wherein the energy storage cycle is performed.
【請求項16】 前記縮径主燃焼室内隔離燃焼を燃料過
剰燃焼として請求項1乃至請求項15のいずれか1項に
記載のエネルギ保存サイクルとする方法。
16. The method according to claim 1, wherein the isolated combustion in the reduced-diameter main combustion chamber is an excess fuel combustion.
【請求項17】 前記縮径主燃焼室内隔離燃焼を、残留
ガスの多い雰囲気での中温高圧燃焼として、NOxと未
燃分を同時に皆無に近づける請求項1乃至請求項16の
いずれか1項に記載のエネルギ保存サイクルとする方
法。
17. The method according to claim 1, wherein the isolated combustion in the reduced-diameter main combustion chamber is a medium-temperature and high-pressure combustion in an atmosphere containing a large amount of residual gas, thereby simultaneously reducing NOx and unburned components to almost zero. A method as described in the energy conservation cycle.
【請求項18】 前記縮径主燃焼室内隔離燃焼及び隔離
解除時の高速噴射撹拌燃焼で、NOxと未燃分の同時大
低減を図る請求項1乃至請求項17のいずれか1項に記
載のエネルギ保存サイクルとする方法。
18. The method according to claim 1, wherein NOx and unburned components are simultaneously and largely reduced in the isolated combustion in the reduced-diameter main combustion chamber and the high-speed injection stirring combustion at the time of release of the isolation. A method that uses an energy conservation cycle.
【請求項19】 前記縮径主燃焼室内隔離燃焼に、該縮
径主燃焼室内水噴射する水噴射手段(23)を追加し
て、NOxと未燃分を同時に皆無に近づける請求項1乃
至請求項18のいずれか1項に記載のエネルギ保存サイ
クルとする方法。
19. A water injection means (23) for injecting water into the reduced-diameter main combustion chamber to the isolated combustion in the reduced-diameter main combustion chamber to simultaneously reduce NOx and unburned components to almost zero. Item 19. A method according to any one of Items 18, wherein the energy conservation cycle.
【請求項20】 前記縮径主燃焼室内隔離燃焼を最適時
に解除することで最大軸受荷重や振動を大低減する一方
で、小径の高圧縮径主燃焼室を薄肉軽量化すると共に、
拡径燃焼室は大幅に低圧低温の燃焼室として軽量化した
請求項1乃至請求項19のいずれか1項に記載のエネル
ギ保存サイクルとする方法。
20. While the isolated combustion in the reduced-diameter main combustion chamber is released at the optimum time, the maximum bearing load and vibration are greatly reduced, while the small-diameter high-compression main combustion chamber is reduced in thickness and weight.
20. The method as claimed in any one of claims 1 to 19, wherein the expanded combustion chamber is significantly reduced in weight as a low pressure and low temperature combustion chamber.
【請求項21】 前記速度形質量熱エネルギの噴射を受
ける両頭拡径ピストンの頭部を適宜の凹部(1)とし
て、対応するシリンダヘッドを適宜の凸部(24)とし
て請求項1乃至請求項20のいずれか1項に記載のエネ
ルギ保存サイクルとする方法。
21. The head of a double-headed enlarged piston receiving the injection of the velocity-type mass heat energy as an appropriate concave portion (1), and the corresponding cylinder head as an appropriate convex portion (24). 21. A method according to any one of claims 20 to 20, wherein the energy conservation cycle is used.
【請求項22】 前記縮径ピストンの先端の凸部を幅広
として外周面に、該凸部の下部を適宜に残して、前記両
頭拡径ピストンの運動方向に対して斜めに延びる複数の
騒音低減溝(15)を設けた請求項1乃至請求項21の
いずれか1項に記載のエネルギ保存サイクルとする方
法。
22. A plurality of noise reductions extending obliquely with respect to the direction of movement of the double-headed enlarged piston, with the convex part at the tip end of the reduced-diameter piston being wide and the lower part of the convex part being appropriately left on the outer peripheral surface. A method as claimed in any one of the preceding claims, comprising a groove (15).
【請求項23】 前記縮径主燃焼室内隔離燃焼に、該縮
径主燃焼室内水噴射する水噴射手段(23)を追加し
て、断熱無冷却機関とした請求項1乃至請求項22のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
23. The adiabatic non-cooled engine according to claim 1, wherein a water injection means (23) for injecting water into the reduced diameter main combustion chamber is added to the isolated combustion in the reduced diameter main combustion chamber. 2. A method as set forth in claim 1, wherein the energy storage cycle is used.
【請求項24】 前記縮径主燃焼室内隔離燃焼により、
定容大接近燃焼期間を延長する請求項1乃至請求項23
のいずれか1項に記載のエネルギ保存サイクルとする方
法。
24. The isolated combustion in the reduced diameter main combustion chamber,
24. The constant volume large approach combustion period is extended.
A method as an energy conservation cycle according to any one of the preceding claims.
【請求項25】 前記縮径主燃焼室内隔離燃焼により、
定容大接近撹拌燃焼及び隔離解除時超高速撹拌燃焼とし
て完全燃焼終了期間を短縮確実として、両頭拡径ピスト
ンを大拡径して超短行程機関により比出力の大増大を図
る請求項1乃至請求項24のいずれか1項に記載のエネ
ルギ保存サイクルとする方法。
25. The isolated combustion in the reduced diameter main combustion chamber,
A constant-volume, large-close agitated combustion and ultra-high-speed agitation combustion at the time of release of isolation, in which the complete combustion end period is shortened and ensured. 25. A method according to any one of the preceding claims, wherein the cycle is an energy conservation cycle.
【請求項26】 前記縮径主燃焼室内水噴射する水噴射
手段(23)に使用する水を、排気部熱交換手段(1
8)縮径部熱交換手段(19)燃焼部熱交換手段(2
0)のうち、少なくとも1手段以上で加熱された水とし
た請求項1乃至請求項25のいずれか1項に記載のエネ
ルギ保存サイクルとする方法。
26. An exhaust heat exchange means (1) for supplying water used for water injection means (23) for injecting water into the reduced diameter main combustion chamber.
8) Heat exchange means of reduced diameter part (19) Heat exchange means of combustion part (2
26. The method according to any one of claims 1 to 25, wherein water heated by at least one or more means in (0) is used.
【請求項27】 前記縮径主燃焼室及びテーパ縮径部
(7)及び適宜の凹部(1)を耐熱耐蝕材(21)及び
断熱材(22)により耐熱耐蝕断熱構造として請求項1
乃至請求項26のいずれか1項に記載のエネルギ保存サ
イクルとする方法。
27. A heat-resistant, corrosion-resistant and heat-insulating structure in which the reduced-diameter main combustion chamber, the tapered reduced-diameter portion (7) and an appropriate concave portion (1) are made of a heat-resistant and corrosion-resistant material (21) and a heat-insulating material (22).
A method as claimed in any one of claims 26 to 26.
【請求項28】 シリンダ内の左死点と右死点との間で
往復運動する両頭拡径ピストンの、適宜の凹部(1)の
左右略中央より適宜に縮径してテーパ根部(2)を有す
る縮径ピストンを突出し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
夫夫前記縮径ピストンを収容して隔離燃焼が可能に、最
適に縮径してテーパ縮径部(7)を有する縮径主燃焼室
を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
形成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により前記両頭
拡径ピストンが往復運動して、クランク軸側カム(1
1)に回転自在に軸支されたクランク軸を回転させて回
転動力とするエネルギ保存サイクル内燃機関。
28. A tapered root portion (2) of a double-headed enlarged piston reciprocating between a left dead center and a right dead center in a cylinder, the diameter of which is appropriately reduced from a substantially right and left center of an appropriate concave portion (1). Projecting a reduced diameter piston having a cylinder head on each of the left and right sides of the cylinder,
The reduced-diameter main combustion chamber having the tapered diameter-reduced portion (7) is formed by optimally reducing the diameter of the reduced-diameter main combustion chamber so as to accommodate the reduced-diameter piston and perform isolated combustion. Forming a one-way air flow path (4) communicating with the combustion chamber and allowing only the flow toward the reduced diameter main combustion chamber; Reciprocates and the crankshaft cam (1
1) An energy storage cycle internal combustion engine that rotates a crankshaft rotatably supported in (1) to generate rotational power.
【請求項29】 シリンダ内の左死点と右死点との間で
往復運動する両頭拡径ピストンの、適宜の凹部(1)の
左右略中央より適宜に縮径した縮径ピストンを突出し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
夫夫前記縮径ピストンを収容して隔離燃焼が可能に、最
適に縮径した縮径主燃焼室を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
構成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により前記両頭
拡径ピストンが往復運動して、クランク軸側カム(1
1)に回転自在に軸支されたクランク軸を回転させて、
回転動力を得るエネルギ保存サイクル内燃機関。
29. A double-headed large-diameter piston reciprocating between a left dead center and a right dead center in a cylinder projects a diameter-reduced piston that is appropriately reduced in diameter from substantially the left and right centers of an appropriate recess (1). A cylinder head is provided on each side of the cylinder,
The reduced-diameter main combustion chamber and the expanded-diameter combustion chamber are communicated with each other by optimally reducing the diameter of the reduced-diameter main combustion chamber. A one-way air flow path (4) that allows only the flow toward the combustion chamber is formed, and the double-headed enlarged piston reciprocates by the isolated combustion and the release of the isolation in the reduced-diameter main combustion chamber, and the crankshaft cam (1
1) By rotating the crankshaft that is rotatably supported in 1),
An energy storage cycle internal combustion engine that obtains rotational power.
【請求項30】 シリンダ内の左死点と右死点との間で
往復運動する両頭拡径ピストンの、左右任意の頂面の略
中央より適宜に縮径した縮径ピストンを突出し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
夫夫前記縮径ピストンを収容して隔離燃焼が可能に、最
適に縮径した縮径主燃焼室を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
構成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により前記両頭
拡径ピストンが往復運動して、クランク軸側カム(1
1)に回転自在に軸支されたクランク軸を回転させて回
転動力を得るエネルギ保存サイクル内燃機関。
30. A double-headed large-diameter piston reciprocating between a left dead center and a right dead center in a cylinder, the reduced diameter piston of which is appropriately reduced from substantially the center of an arbitrary top surface on the left and right, protruding from the cylinder. Provide left and right cylinder heads,
The reduced-diameter main combustion chamber and the expanded-diameter combustion chamber are communicated with each other by optimally reducing the diameter of the reduced-diameter main combustion chamber. A one-way air flow path (4) that allows only the flow toward the combustion chamber is formed, and the double-headed enlarged piston reciprocates by the isolated combustion and the release of the isolation in the reduced-diameter main combustion chamber, and the crankshaft cam (1
An energy storage cycle internal combustion engine that obtains rotational power by rotating a crankshaft rotatably supported in 1).
【請求項31】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する2つの両頭拡径ピストン
の、夫夫の適宜の凹部(1)の左右略中央より、適宜に
縮径してテーパ根部(2)を有する縮径ピストンを突出
し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
夫夫に前記縮径ピストンを収容して隔離燃焼が可能に、
最適に縮径してテーパ縮径部(7)を有する縮径主燃焼
室を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
夫夫に形成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により、前記夫
夫の両頭拡径ピストンが対向往復運動して、夫夫のクラ
ンク軸側カム(11)(11)に回転自在に軸支された
夫夫のクランク軸を回転させて回転動力とするエネルギ
保存サイクル内燃機関。
31. The two double-headed enlarged pistons reciprocating between an outer dead center and an inner dead center in opposed cylinders, respectively, from right and left substantially centers of appropriate concave portions (1). A diameter-reduced piston having a tapered root (2) is projected by appropriately reducing the diameter, and cylinder heads are provided on the left and right sides of the cylinder, respectively.
The husband and wife accommodate the reduced-diameter piston to enable isolated combustion,
A diameter-reduced main combustion chamber having a tapered diameter-reduced portion (7) is formed by optimally reducing the diameter, and the reduced-diameter main combustion chamber communicates with the enlarged-diameter combustion chamber, and only the flow toward the reduced-diameter main combustion chamber is performed. The two-way enlarged pistons are reciprocally opposed to each other by the isolated combustion and the release of the isolation in the reduced-diameter main combustion chamber. An energy storage cycle internal combustion engine that uses the crankshaft side cams (11) and (11) to rotate the respective crankshafts rotatably supported by the cams (11) and (11) to generate rotational power.
【請求項32】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する2つの両頭拡径ピストン
の、夫夫の適宜の凹部(1)の左右略中央より、適宜に
縮径した縮径ピストンを突出し、 前記対向に設けた夫夫のシリンダの左右にはシリンダヘ
ッドを設けて、夫夫前記縮径ピストンを収容して隔離燃
焼が可能に最適に縮径した縮径主燃焼室を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
夫夫に形成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により、前記夫
夫の両頭拡径ピストンが対向往復運動して、夫夫のクラ
ンク軸側カム(11)(11)に回転自在に軸支された
夫夫のクランク軸を回転させて回転動力とするエネルギ
保存サイクル内燃機関。
32. A two-headed enlarged piston which reciprocates between an outer dead center and an inner dead center in a cylinder provided oppositely, from right and left substantially centers of respective appropriate concave portions (1). Protruding the appropriately reduced diameter piston, cylinder heads are provided on the left and right sides of the opposed cylinders, respectively, to accommodate the reduced diameter pistons and reduce the diameter optimally to enable isolated combustion. A one-way air flow path (4) is provided which forms a reduced-diameter main combustion chamber, communicates the reduced-diameter main combustion chamber with the expanded-diameter combustion chamber, and allows only a flow toward the reduced-diameter main combustion chamber. Due to the isolated combustion and the release of the isolation in the reduced diameter main combustion chamber, the respective double-headed enlarged pistons reciprocate in opposition to rotate freely on the respective crankshaft side cams (11) and (11). An energy-storing cycle internal combustion engine that rotates its respective supported crankshafts to generate rotational power. Seki.
【請求項33】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する2つの両頭拡径ピストン
の、夫夫の左右頂面略中央より適宜に縮径した縮径ピス
トンを突出し、 前記対向に設けた夫夫のシリンダの左右にはシリンダヘ
ッドを設けて、夫夫前記縮径ピストンを収容して隔離燃
焼が可能に最適に縮径した縮径主燃焼室を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
夫夫に形成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により、前記夫
夫の両頭拡径ピストンが対向往復運動して、夫夫のクラ
ンク軸側カム(11)(11)に回転自在に軸支された
夫夫のクランク軸を回転させて回転動力とするエネルギ
保存サイクル内燃機関。
33. Reduction of two double-head enlarged pistons, which reciprocate oppositely between an outer dead center and an inner dead center in cylinders provided opposite each other, from the approximate center of the right and left top surfaces of the respective pistons. A diameter-reduced main combustion chamber which protrudes a diameter piston, is provided with a cylinder head on each of the left and right sides of each of the opposed cylinders and accommodates the diameter-reduced pistons and optimally reduces the diameter to enable isolated combustion. Forming a one-way air flow path (4), which communicates the reduced-diameter main combustion chamber with the expanded-diameter combustion chamber and allows only a flow toward the reduced-diameter main combustion chamber, Due to the isolated combustion and the release of the isolation in the reduced diameter main combustion chamber, the respective double-headed enlarged pistons reciprocate oppositely, and are rotatably supported by the respective crankshaft cams (11) and (11). An energy-storing cycle internal combustion engine that rotates a crankshaft to generate rotational power.
【請求項34】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段(17)を、夫夫のクラ
ンク軸に設けて、両頭拡径ピストンの対向往復運動を同
期させる請求項31乃至請求項33のいずれか1項に記
載のエネルギ保存サイクル内燃機関。
34. A mesh synchronizing means (17) for synchronizing the opposed reciprocating motion of the double-headed enlarged piston is provided on each of the crankshafts to synchronize the opposed reciprocating motion of the double-headed enlarged piston. Item 34. The energy storage cycle internal combustion engine according to any one of items 33.
【請求項35】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段(17)を、機械式過給
機としても兼用する請求項31乃至請求項34のいずれ
か1項に記載のエネルギ保存サイクル内燃機関。
35. The energy according to claim 31, wherein the meshing synchronizing means (17) for synchronizing the opposed reciprocating motions of the double-headed enlarged piston also serves as a mechanical supercharger. Save cycle internal combustion engine.
【請求項36】 前記クランク軸を回転させるため、拡
径燃焼室を含む気筒数を、2気筒刻みで2気筒・4気筒
・6気筒と増加して限りなく多気筒とする請求項28乃
至請求項30のいずれか1項に記載のエネルギ保存サイ
クル内燃機関。
36. The cylinder as claimed in claim 28, wherein the number of cylinders including the expanded combustion chamber is increased to two, four and six cylinders in two-cylinder increments in order to rotate the crankshaft. Item 31. An energy storage cycle internal combustion engine according to any one of the items 30.
【請求項37】 前記夫夫のクランク軸を回転させるた
め、拡径燃焼室を含む気筒数を、4気筒刻みで4気筒・
8気筒・12気筒と増加して限りなく多気筒とする請求
項31乃至請求項35のいずれか1項に記載のエネルギ
保存サイクル内燃機関。
37. In order to rotate the respective crankshafts, the number of cylinders including the expanded-diameter combustion chamber is increased by four cylinders at intervals of four cylinders.
The energy storage cycle internal combustion engine according to any one of claims 31 to 35, wherein the number of cylinders is increased to eight cylinders and twelve cylinders to increase the number of cylinders.
【請求項38】 前記両頭拡径ピストンの内部略中央に
は、該両頭拡径ピストンの往復運動によりクランク軸が
回転容易に、クランク軸に回転自在に枢支されたクラン
ク軸側カム(11)を、往復動自在に挿入れ維持する平
行軌道(12)を対向に設けた請求項28乃至請求項3
7のいずれか1項に記載のエネルギ保存サイクル内燃機
関。
38. A crankshaft-side cam (11) rotatably supported by the crankshaft so as to easily rotate the crankshaft by the reciprocating motion of the double-headed piston, substantially at the center of the inside of the double-headed piston. And a parallel track (12) that is inserted and maintained so as to be reciprocally movable is provided opposite to each other.
An internal combustion engine having an energy conservation cycle according to any one of claims 7 to 10.
【請求項39】 前記縮径ピストンの外周には鍔状凹凸
(6)を多段に設けて、その先端の幅広凸部外周面に凸
部の下部を適宜に残して、前記両頭拡径ピストンの運動
方向に対して斜めに延びる複数の騒音低減溝(15)を
設けた請求項28乃至請求項38のいずれか1項に記載
のエネルギ保存サイクル内燃機関。
39. A flange-shaped unevenness (6) is provided in multiple stages on an outer periphery of the reduced diameter piston, and a lower portion of the convex portion is appropriately left on an outer peripheral surface of a wide convex portion at a tip end of the reduced diameter piston. 39. An internal combustion engine according to any one of claims 28 to 38, comprising a plurality of noise reduction grooves (15) extending obliquely to the direction of movement.
【請求項40】 前記縮径主燃焼室を耐熱耐蝕材(2
1)及び断熱材(22)により耐熱耐蝕断熱構造とし
て、耐熱耐蝕材(21)に一方向空気流路(4)の斜め
空気流路(14)を適数設けた請求項28乃至請求項3
9のいずれか1項に記載のエネルギ保存サイクル内燃機
関。
40. The reduced-diameter main combustion chamber is made of a heat-resistant and corrosion-resistant material (2).
28. The heat-resistant and corrosion-resistant heat-insulating structure of (1) and the heat-insulating material (22), wherein the heat-resistant and corrosion-resistant material (21) is provided with an appropriate number of oblique air flow paths (14) of the one-way air flow path (4).
10. The energy storage cycle internal combustion engine according to claim 9.
【請求項41】 前記縮径主燃焼室に燃料を噴射する燃
料噴射手段(5)を設け、該噴射燃料が前記斜め空気流
路(14)を通って流入する空気と乱れを形成する請求
項28乃至請求項40のいずれか1項に記載のエネルギ
保存サイクル内燃機関。
41. A fuel injection means (5) for injecting fuel into the reduced diameter main combustion chamber, wherein the injected fuel forms turbulence with air flowing through the oblique air flow path (14). The energy storage cycle internal combustion engine according to any one of claims 28 to 40.
【請求項42】 前記縮径ピストン及び適宜の凹部
(1)を耐熱耐蝕材(21)及び断熱材(22)により
耐熱耐蝕断熱構造とした請求項28乃至請求項41のい
ずれか1項に記載のエネルギ保存サイクル内燃機関。
42. A heat-resistant, corrosion-resistant, heat-insulating structure in which the reduced-diameter piston and an appropriate recess (1) are made of a heat-resistant, corrosion-resistant material (21) and a heat-insulating material (22). Energy conservation cycle internal combustion engine.
【請求項43】 前記縮径ピストンは、前記縮径主燃焼
室内に挿入れ維持されて、死点前後の所定期間に亘って
前記縮径主燃焼室内隔離燃焼の隔離期間を形成した請求
項28乃至請求項42のいずれか1項に記載のエネルギ
保存サイクル内燃機関。
43. The reduced-diameter piston is inserted and maintained in the reduced-diameter main combustion chamber to form an isolated period of the isolated combustion in the reduced-diameter main combustion chamber for a predetermined period before and after a dead center. 43. The energy storage cycle internal combustion engine according to any one of claims 42 to 42.
【請求項44】 前記シリンダヘッド内面を、前記拡径
ピストンの頂部形状に合わせて、肩部の外周を残して拡
径燃焼室側に突出させた請求項28乃至請求項43のい
ずれか1項に記載のエネルギ保存サイクル内燃機関。
44. The cylinder head according to any one of claims 28 to 43, wherein the inner surface of the cylinder head projects to the enlarged combustion chamber side except for the outer periphery of a shoulder portion in accordance with the shape of the top of the enlarged piston. An energy storage cycle internal combustion engine according to claim 1.
【請求項45】 前記一方向空気流路(4)を、前記拡
径ピストンの頂部形状に合わせて、シリンダヘッドの肩
部の外周を残して拡径燃焼室側に突出させた突出部に、
拡径燃焼室側から挿入れ固着した逆止弁(3)を含めて
少なくとも1組以上設けた請求項28乃至請求項44の
いずれか1項に記載のエネルギ保存サイクル内燃機関。
45. The one-way air flow path (4) is formed in a protruding portion that protrudes toward the enlarged combustion chamber except for an outer periphery of a shoulder portion of a cylinder head according to the shape of the top of the enlarged piston.
The energy storage cycle internal combustion engine according to any one of claims 28 to 44, wherein at least one or more sets are provided including a check valve (3) inserted and fixed from the enlarged combustion chamber side.
【請求項46】 前記シリンダヘッドの内部に、該肩部
の外周を残して前記拡径ピストンの頂部形状に合わせて
拡径燃焼室側に突出させた突出部に、少なくとも1箇以
上の排気弁を設けた請求項28乃至請求項45のいずれ
か1項に記載のエネルギ保存サイクル内燃機関。
46. At least one or more exhaust valves are provided on a protruding portion of the cylinder head that protrudes toward the enlarged combustion chamber according to the shape of the top of the enlarged piston while leaving the outer periphery of the shoulder portion inside the cylinder head. The energy storage cycle internal combustion engine according to any one of claims 28 to 45, further comprising:
【請求項47】 前記縮径された縮径主燃焼室内隔離燃
焼を最適時に解除することで、振動及び最大軸受荷重を
大低減する一方で、高圧の縮径主燃焼室を小径として薄
肉軽量化すると共に、拡径燃焼室は大幅に低圧低温の薄
肉燃焼室として軽量化した請求項28乃至請求項46の
いずれか1項に記載のエネルギ保存サイクル内燃機関。
47. When the isolated combustion in the reduced diameter reduced main combustion chamber is released at an optimum time, vibration and the maximum bearing load are greatly reduced, and the high pressure reduced diameter main combustion chamber is reduced in diameter to reduce the thickness and weight. 47. The energy storage cycle internal combustion engine according to any one of claims 28 to 46, wherein the diameter expansion combustion chamber is reduced in weight as a low pressure and low temperature thin combustion chamber.
【請求項48】 前記縮径主燃焼室内隔離燃焼に、水噴
射手段(23)を追加して、該水を予加熱する排気部熱
交換手段(18)及び縮径部熱交換手段(19)及び燃
焼部熱交換手段(20)のうち、少なくとも1手段以上
を設けた請求項28乃至請求項47のいずれか1項に記
載のエネルギ保存サイクル内燃機関。
48. An exhaust heat exchange means (18) and a reduced diameter heat exchange means (19) for preheating the water by adding a water injection means (23) to the isolated combustion in the reduced diameter main combustion chamber. 48. The energy storage cycle internal combustion engine according to any one of claims 28 to 47, wherein at least one or more of the combustion unit heat exchange means (20) is provided.
【請求項49】 前記シリンダヘッドの内部を、該肩部
の外周を残して前記拡径ピストンの頂部形状に合わせて
拡径燃焼室側に突出させて、該突出部を耐熱耐蝕材(2
1)及び断熱材(22)により耐熱耐蝕断熱構造とした
請求項28乃至請求項48のいずれか1項に記載のエネ
ルギ保存サイクル内燃機関。
49. The inside of the cylinder head is made to protrude toward the expanded combustion chamber according to the shape of the top of the expanded piston except for the outer periphery of the shoulder, and the protruding portion is made of a heat-resistant and corrosion-resistant material (2).
49. The energy storage cycle internal combustion engine according to any one of claims 28 to 48, wherein a heat-resistant, corrosion-resistant, and heat-insulating structure is provided by 1) and a heat insulating material (22).
【請求項50】 前記燃料は、ガソリン及び軽油及び重
油及びプロパン及び水素及び天然ガス及びメタノールの
うち、少なくとも1種類以上である請求項28乃至請求
項49のいずれか1項に記載のエネルギ保存サイクル内
燃機関。
50. The energy storage cycle according to claim 28, wherein the fuel is at least one of gasoline, light oil, heavy oil, propane, hydrogen, natural gas, and methanol. Internal combustion engine.
JP9055393A 1996-05-28 1997-02-03 Energy preserving cycle internal combustion engine Pending JPH1089074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9055393A JPH1089074A (en) 1996-05-28 1997-02-03 Energy preserving cycle internal combustion engine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8-172752 1996-05-28
JP17275296 1996-05-28
JP8-229188 1996-07-26
JP22918896 1996-07-26
JP9055393A JPH1089074A (en) 1996-05-28 1997-02-03 Energy preserving cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1089074A true JPH1089074A (en) 1998-04-07

Family

ID=27295583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9055393A Pending JPH1089074A (en) 1996-05-28 1997-02-03 Energy preserving cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH1089074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902175A1 (en) * 1996-05-28 1999-03-17 Hiroyasu Tanigawa Energy conservation cycle engine
US7011070B2 (en) 2002-10-02 2006-03-14 Westport Research Inc. Method of reducing particulates and enhancing burning rate within a combustion chamber
CN117121945A (en) * 2023-10-26 2023-11-28 山东初饮生物科技有限公司 Fermentation equipment for dairy products

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902175A1 (en) * 1996-05-28 1999-03-17 Hiroyasu Tanigawa Energy conservation cycle engine
EP0902175A4 (en) * 1996-05-28 2000-05-31 Hiroyasu Tanigawa Energy conservation cycle engine
US7011070B2 (en) 2002-10-02 2006-03-14 Westport Research Inc. Method of reducing particulates and enhancing burning rate within a combustion chamber
CN117121945A (en) * 2023-10-26 2023-11-28 山东初饮生物科技有限公司 Fermentation equipment for dairy products
CN117121945B (en) * 2023-10-26 2024-01-05 山东初饮生物科技有限公司 Fermentation equipment for dairy products

Similar Documents

Publication Publication Date Title
US5228415A (en) Engines featuring modified dwell
US4917054A (en) Six-stroke internal combustion engine
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
US5431130A (en) Internal combustion engine with stroke specialized cylinders
AU2005285117B2 (en) Two-cycle swash plate internal combustion engine
EP0902175B1 (en) Energy conservation cycle engine
WO2009066178A2 (en) Heat engines
US3895620A (en) Engine and gas generator
WO2002059502A1 (en) A new transmission apparatus which achieves the transformation between the rotation and the reciprocating motion
WO2016114683A1 (en) Internal combustion engine and operating method therefor
JPH1089074A (en) Energy preserving cycle internal combustion engine
CN100443706C (en) Two cylinders or multicylinders four-stroke internal-combustion engine of single or multiple cascaded swing pistons
US5749262A (en) Crank mechanism
JPH1047062A (en) Various kinds of energy preservation cycle internal combustion engines
JPH1047075A (en) D-type/e-type energy preservation cycle internal combustion engine
JPH1047063A (en) F-type/g-type energy preservation cycle internal combustion engine
RU2800634C1 (en) Turbine piston internal combustion engine
JPH1089001A (en) Energy conservation cycle engine
JPH1089075A (en) Device and method for making pendulum piston to serve as energy preserving cycle
CN113323737B (en) Timing connecting rod component and horizontally opposed engine
JPH1082321A (en) Method and device for utilizing energy conservation cycle internal combustion engine
JPH1047001A (en) Method for using pendulum piston as energy conservation cycle and device therefor
RU2053392C1 (en) Internal combustion engine
CN209990543U (en) Two-stroke engine with independent combustion chamber, special piston and synchronous supercharging
RU2435975C2 (en) Menshov internal combustion engine